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Superconductivity: a state of matter with zero
electrical resistivity

DISCOVGI’Y 1911 Superconductor repels magnetic field
Heike Kamerlingh Onnes (1853-1926) Meissner and Ochsenfeld, Berlin 1933

Microscopic Theory for Superconductivity 1957

BCS Theory generally accepted in the early 1970s



Fermions, Bosons, and Cooper Pairs -
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Superconductivity in the cuprates

e Discovered in 1986 by Bednorz and Muller
e Totally different materials

- In the normal state

conventional superconductors are metals
cuprates are insulators or poor conductors
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Twenty years later

» No predictive power for T in known materials
» No predictive power for design of new SC materials

» No explanation for other unusual properties of
cuprates (pseudogap, transport, ...)

» Only partial consensus on which materials aspects
are essential for high-T. superconductivity

p No controlled solution for proposed models



The role of Inhomogeneities
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Stripes in neutron scattering:

Tranquada et al. '95, Random SC gap
Mook et al., ‘00, ... modulations in STM
(BSCCO):
Lang etal. 02
Charge ordered
“checkerboard” state
(Na doped cuprates):
Hanaguri et al. ‘04
Random gap e
modulations above T 0.53 1S
(BSCCO):

Gomes et al. ‘07
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Outline

e Brief introduction into superconductivity and the cuprates

e Background: The two dimensional Hubbard model and the
DCA/QMC method

¢ Simulational studies with the DCA/QMC method

e Algorithmic improvements and a method to study effects of
disorder an nanoscale inhomogeneities

- Accelerating Hirsch-Fye QMC with delayed updates

- Mixed precision and multithreaded implementations (GPU In
particular)

- Disorder averaging and a first study of how disorder affects the
superconducting transition temperature

e DCA++, concurrency, scaling, and performance

- Results for Cray XT4 and first results for a PF/s scale system

e Summary and conclusions



From cuprate materials to the Hubbard model

Holes form Zhang-Rice
La,CuO4 CuO; plane singlet states / 0-px
Sr doping j O-py
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2D Hubbard model and its physics

‘ ” Half filling: number of carriers = number of sites
t

Formation of a magnetic moment  » | y o

‘ ‘ ‘ when U is large enough 4 U
‘ ‘ ‘ Antiferromagnetic alignment of
neighboring moments —
U J J % x I | = 482U

Energy

g
1. When t >> U: 2. When U >> 8t at half filling (not doped)
Model describes a metal with Model describes a “Mott Insulator” with antiferromagnetic ground state
band width W=8t (as seen experimentally seen in undoped cuprates)

\W=8t
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Hubbard model for the cuprates

3. Parameter range relevant for superconducting cuprates
U=8t

. . No simple solution!
Finite doping levels (0.05 - 0.25)

Typical values: U~10eV; t~0.9eV; J~0.2eV; (0.1eV ~ 10° Kelvin)



The challenge: a (quantum) multi-scale problem

Antiferromagnetic
correlations / nano-scale
gap fluctuations

Thurston et al. (1998)

Superconductivity
(macroscopic)

N ~ 1023
On-site Coulomb
repulsion (~A)

Comp‘eXIty ~ 4N Gomes et al. (2007)



Quantum cluster theories |
Maier et al., Rev. Mod. Phys. '05

Antiferromagnetic correlations /
nano-scale gap fluctuations

Thurston et al. (1998)

On-site Coulomb Superconductivity
repulsion (~A) (macroscopic)

Gomes et al. (2007)

Explicitly treat
correlations within a
localized cluster

Treat macro-scopic

f ’ scales within mean-
2

fleld

Coherently embed cluster into effective medium



Green’s functions in guantum many-body theory

. . - 1 }
Noninteracting Hamiltonian & Ho = [—§V2 + V(?“)]
Green’s function [i% - H0] Go(7,t,7,t") = 6(F — 7)d(t — t)

Fourier transform & analytic continuation:  * =w+ie Gy (7, 2) = [z7 — Ho]

Hubbard Hamiltonian 7 =—t > clcjo+U anw nig = ¢l ciy

<19>,0

Hide symmetry in algebraic properties of field operators ~ cie¢jor + ¢jorCic =0
cchr + CT = 04050
Green's function  Go(ri, 7575, 7') = — <T cia(f)c}a(f’)>

Spectral representation  Go(k,z) = [z — eo(k)]

Glk,z) = [z —eo(k) — 2(k,2)] "



Sketch of the Dynamical Cluster Approximation

Size N clusters Reciprocal space
Tky - Z(Z, ]C)

Bulk lattice § " L
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"/""’/ o "/""’/"' Integrate out remaining l DEA
i’i’ /"A’/ /"A’/ degrees of freedom
L rsys
FARI RIS py
EEOEIAZHA 'y
i”""/ """’/ Embedded cluster with
’/"A’/ i’i’/" periodic boundary conditions

Solve many-body problem with guantum Monte Carole on cluster
>Egssential assumption: Correlations are short ranged



DCA method: self-consistently determine the
“effective” medium

Go(R, 2)

———————————————————————————————————————————————————————————————————————————————

DCA cluster
\ mapping /

________________________________________________________________________________



Systematic solution and analysis of the pairing
mechanism in the 2D Hubbard Model

® First systematic solution demonstrates existence of a superconducting transition in
2D Hubbard model  Maieret al., Phys. Rev. Lett. 95, 237001 (2005)
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® Study the mechanism responsible for
pairing in the model

- Analyze the particle-particle vertex
- Pairing is mediated by spin fluctuations

Maier, et al., Phys. Rev. Lett. 96 47005 (2006) » Spin fluctuation “Glue”



Moving toward a resolution of debate over
pairing mechanism in the 2D Hubbard model

e “We have a mammoth (U) and an elephant (J) in our refrigerator - do we care much if
there Is also a mouse?”
- P.W. Anderson, Science 316, 1705 (2007)
- see also www.sciencemag.org/cgi/eletters/316/5832/1705
“Scalapino Is not a glue sniffer”
e Relative importance of resonant valence bond
and spin-fluctuation mechanisms
- Maier et al., Phys. Rev. Lett. 100 237001 (2008)
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http://www.science
http://www.science

Hirsch-Fye Quantum Monte Carole (HF-QMC) for
the quantum cluster solver jnarye phys rev. Lett 56, 2521 (1998)

Partition function & Metropolis Monte Carlo  Z = / e~ EIXI/kpT gy

Acceptance criterion for M-MC move: min{1, eZPxl=Eb+i}

Partition function & HF-QMC: ~ Z ~ Zdet sz, ) 1]

NC N; ~ 102
matrix of dimensions Ny X IV Ny = N, x N; =~ 2000

\
Acceptance:  min{l,det|G.({s;,!}x)]/ det|Ge({s:, [} py1)]}

o YA Ve Y.\ s N
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Update of accepted Green’s function:
Gc({sia l}k—l—l) — Gc({8i7 l}k) + a X bk



HF-QMC with Delayed updates (or Ed updates)

GC({SZ', l}k_|_1) — GC({SZ', l}k) + ag X btk

222222 2 2N 2 N R A R

N N\ N AT e — N
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Gc({sial}k—l—l) — GC({SZ',Z}O) -+ [ag\a1|...\ak] X [bo‘bl“bk]t

Complexity for k updates remains O(kN;)

But we can replace k rank-1 updates with one matrix-matrix multiply plus
some additional bookkeeping.



Performance improvement with delayed updates
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MultiCore/GPU/Cell: threaded programming

Multi-core processors: OpenMP (or just MPI)

NVIDIA G80 GPU: CUDA, cuBLAS
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IBM Cell BE: SIMD, threaded prog.



DCA++ with mixed precision 2 CPU Nixed Precision
O GPU Mixed Precision
— Mean
Run HF-QMC in single precision 0.021
Multiple runs to compute Te:
0.020
: 0.019
Results for mixed and . A 5
double precision runs F AN
are identical for same 0.018 -:- A S

random number
sequence! 0.017 -

0.016

DCA cluster

\ mapping /

Keep the rest of the code, In particular
cluster mapping in double precision

Speedup of HF-QMC updates (2GHz

Opteron vs. NVIDIA 8800GTS GPU):

- 9x for offloading BLAS to GPU &
transferring all data

- 13x for offloading BLAS to GPU &
lazy data transfer

- 19x for full offload HF-updates &
full lazy data transfer



Disorder and inhomogeneities

Hubbard Model with random disorder (eg. in U) ... need to disorder-average cluster Green function
Ng
1
HY) = —¢ . U nin; Go(X; — X;,2) = GY(X;, X,
3 clatie + 30 mma (X = X5,2) = 2 3 GUXi X,
’Lj 1 V=

Ui(y) c {U,0}; N, =16 — Ng = 2'°

@ required
communication

Algorithm 1 DCA/QMC Algorithm with QMC cluster solver
(lines 5-10), disorder averaging (lines 4, 11-12), and DCA
cluster mapping (line 3, 13)

1. Set initial self-energy

2: repeat

3:  Compute the coarse-grained Green Function

4. for Every disorder configuration (in parallel) do
5 Perform warm-up steps

6: for Every Markov chain (in parallel) do

7

8

/ random walker \

disorder
configurations

Update auxiliary fields
: Measure Green Function and observables
9: end for

10: Accumulate measurements over Markov chains
11:  end for

12:  Accumulate measurements over disorder configurations. |
13:  Re-compute the self-energy DCA cluster

14: until self consistency is reached X apping~




DCA++ code from a concurrency point of view

11 1 pthread / CUDA
[N Y%
NP N7/ [up to 103 Markov
/48 74 chains
MPI AllReduce
MPI Broadcast
disorder |
configurations / Problem of interest:
~102 - 102 disorder
configurations

MPI AllReduce

DCA cluster
\\ napping /'



DCA++: strong scaling on HF-QMC

Updates = cgemm

G:M /l - Measurement = zgemm

Warm up Sample QMC time

DCA cluster

\ mapping ,



Weak scaling on Cray XT4
D,

o HF-QMC: 122 Markov chains on 122 cores

onfigurations
1 ing

DCA cluster
\\ appin /’

e Weak scaling over disorder configurations

1 4 8 16 32 64 128 404

1200 31,232 cores @ 2.1 GHz +
rTY 17,812 cores @ 2.3 GHz =
) X ’ .
Q cores @ 2.1 GHZ. o © 49,044-core chimera
ﬂn ® ® @ o
S
5 1100 146
@)
) -
o 17,812 cores @ 2.3 GHz =
® 1000
IS

100 1000 10000

Number of Cores



Sustained performance of DCA++ on Cray XT4




Cray XT5 portion of Jaguar @ NCCS

Peak: 1.382 TF/s
Quad-Core AMD
Freg.: 2.3 GHz
150,176 cores
Memory: 300 TB

For more details, go to
WWW.NCCS.gov



Sustained performance of DCA++ on Cray XT5

Weak scaling with number disorder configurations, each running on 128 Markov chains on
128 cores (16 nodes) - 16 site cluster and 150 time slides

51.9% efficiency



Summary

e Today’s methods and computational capabilities allow us to take a deep look
into the mechanisms of high-Tc superconductivity
- Simulations of superconducting transition in model without phonons
— Dominant contribution to pairing mechanism: “glue” due to spin fluctuations

e DCA++ - optimally mapping DCA/QMC method onto today’s hardware
architectures
— Algorithm: Hirsch-Fye QMC with delayed updates (>10x speedup)
— Accelerator work motivated: mixed precision (almost 2x speedup)
— Highly scalable implementation to study disorder and nanoscale inhomegeneities
- Extensible implementation based on C++/STL generic programming model

e Sustained 1.35 PF/s on 150K cores of Cray XT5 portion of NCCS/Jaguar
— Sustained 625 TF/s on 130K cores in double precision (52% efficiency)

e More than 1000 fold capability enhancement since 2004

- NCCS 2004: Cray X1 with 5 TF/s peak, DCA/QMC sustained about 2 TF/s
(required high memory bandwidth)

- NCCS 2008: factor 300 more in peak Flop/s & at least 20x due to algorithms
— Future: Continuous time QMC - a new class of QMC algorithms



The DCA++ Story:

How new algorithms, new computers, and innovative
software design allow us to solve real simulation
problems of high high temperature superconductivity
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