Linearly Scaling Three Dimensional Fragment Method for
 Large Scale Eectronic Structure Calculations

Juan Meza

High Performance Computing Research
Lawrence Berkeley National Laboratory

LS3DF Team

Lin-Wang Wang

Zhengji Zhao

Byounghak Lee

HongZhang Shan

Juan Meza

Erich Strohmaier

David Bailey

Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures: Mathematics to Algorithms to Observables

* Initiate a program on the theory and modeling of the electronic excited-state and optical properties of various nanoscience structure
* Address existing bottlenecks in simulating excitations and optical responses of nanostructure
* Seek novel reformulations of the underlying physical
 theories by exploring new ideas in applied mathematics
* Apply the methodology to targeted problems in nanosciences

Participants:


```
ASCR(Lab): Iuan Meza, gofn Bell, Andrew Canning, Byoungrak Lee,
    Chuck Rendleman, Chao Yang, Zhengji Zhao
ASCR (Iniversity): Iofn Dennis (Rice University), Yousef Saad (UNMN)
\(\mathfrak{B E S}\) (Lab): Martin Head-Gordon, Steven Louie, Michelvan \(\mathcal{H o v e}\), Lin-
    Wang Wang
\(\mathcal{B E S}\) (University): Emily Carter(Princeton), Iames Chelikowsky (UNNX)
```


Project Highlights

* New constrained minimization algorithms for computing the ground state energy of large atomistic systems.
* New global optimization methods for determination of atomicscale structure of surfaces from experiments.
* Screened-exchange (sX) density functional method in PEtot.
* Improvements to PARATEC to aid in GW calculations. Parallel vector version developed and run on the Earth Simulator and NERSC machines.
* Development of higher-order, compact-schemes AMR eigensolver.
* New Linear Scaling 3D Fragment Method
- Divide-and-conquer approach for solving large systems
- Modeled systems with over 36,000 atoms with excellent scaling up to 160,000 processors
- ACM Gordon Bell Award SC08

Nanostructures have wide applications including: solar cells, biological tags, electronics devices

* Different electronic structures than bulk materials
* 1,000 ~ 100,000 atom systems are too large for direct $O\left(N^{3}\right)$ ab initio calculations
* O(N) computational methods are required
* Parallel supercomputers critical for the solution of these systems

Why are quantum mechanical calculations so computationally expensive?

$$
\left[-\frac{1}{2} \nabla^{2}+V_{t o t}(r)+\right] \psi_{i}(r)=\varepsilon_{i} \psi_{i}(r)
$$

* If the size of the system is N :
* N coefficients to describe one wavefunction, $\psi_{i}(r)$
$\star i=1, \ldots, M$ wavefunctions $\psi_{i}(r) M$ is proportional to N.
* Orthogonalization: $\int \psi_{i}(r) \psi_{j}^{*}(r) d^{3} r, M^{2}$ wavefunction pairs, each with N coefficients: $N^{*} M^{2}$, i.e N^{3} scaling.

[^0]
Previous Work on Linear Scaling DFT methods

* Three main approaches:
- Localized orbital method
- Truncated density matrix method
- Divide-and-conquer method
* Some current methods include:
- Parallel SIESTA (atomic orbitals, not for large parallelization)
- Many quantum chemistry codes (truncated D-matrix, Gaussian basis, not for large parallelization)
- ONETEP (M. Payne, PW to local orbitals, then truncated Dmatrix)
- CONQUEST (D. Bowler, UCL, localized orbital)
* Most of these use localized orbital or truncated-D matrix
* None of them scales to tens of thousands of processors

Linearly Scaling 3 Dimensional Fragment method (LS3DF)

* A novel divide and conquer scheme with a new approach for patching the fragments together
* No spatial partition functions needed
* Uses overlapping positive and negative fragments
* New approach minimizes artificial boundary effects

$$
\text { divide-and-conquer method } \longleftrightarrow O(N) \text { scaling } \begin{aligned}
& \text { Massively parallelizable }
\end{aligned}
$$

LS3DF: 1D Example

WWMWWWWWWWWWW $\rho(r)$
MWMWWMMWMWMWW

Total $=\boldsymbol{\Sigma}_{\mathrm{F}}\left\{\quad \square \quad \mathrm{Z}_{\mathrm{F}}-\square\right.$

Phys. Rev. B 77, 165113 (2008); J. Phys: Cond. Matt. 20, 294203 (2008)

Schematic for LS3DF calculation

∇

Major components of LS3DF method

1. Generate fragment potentials V_{F}
2. Solve for fragment wave functions
3. Compute total charge density
4. Solve global Poisson equation

Overview of computational effort in LS3DF

* Most time consuming part of LS3DF calculation is for the fragment wavefunctions
- Modified from the stand alone PEtot code
- Uses planewave pseudopotential (like VASP, Qbox)
- All-band algorithm takes advantage of BLAS3
* 2-level parallelization:
- q-space (Fourier space)
- band index (i in $\psi_{i}(r)$)
* PEtot efficiency > 50\% for large systems (e.g, more than 500 atoms), 30-40\% for our fragments.

PEtot code: http://hpcrd.Ibl.gov/~linwang/PEtot/PEtot.html

Details on the LS3DF divide and conquer scheme

* Variational formalism, sound mathematics
* The division into fragments is done automatically, based on atom's spatial locations
* Typical large fragments ($2 \times 2 \times 2$) have ~ 100 atoms and the small fragments ($1 \times 1 \times 1$) have ~ 20 atoms
* Processors are divided into M groups, each with N_{p} processors.
- N_{p} is usually set to $16-128$ cores
- M is between 100 and 10,000
* Each processor group is assigned N_{f} fragments, according to estimated computing times, load balance within 10%.
- N_{f} is typically between 8 and 100

The performance of LS3DF method (strong scaling, NERSC Franklin)

1. Generate fragment potentials V_{F}
2. Solve for fragment wave functions
3. Compute total charge density
4. Solve global

Poisson equation

data movement

NERSC Franklin results

* 3456 atom system, 17280 cores:
- one min. per SCF iteration, one hour for a converged result
* 13824 atom system, 17280 cores,
- 3-4 min. per SCF iteration, 3 hours for a converged result
* LS3DF is 400 times faster than PEtot on the 13824 atom system

Near perfect speedup across a wide variety of systems (weak scaling)

ZnTeO alloy weak scaling calculations

Note: Ecut = 60Ryd with d states, up to 36864 atoms

Node mapping and performance on BlueGene/P

Map all the groups into identical compact cubes, for good intra-group FFT communication, and inter-group load balance.

Time: 50\% inside group FFT 50\% inside group DGEMM

Times on diff. parts of the code (sec)

core	8,192	32,768	163,840	
atom	512	2048	10,240	
gen_VF	0.08	0.08	0.23	
PEtot_F	69.30	68.81	69.87	
gen_dens	0.08	0.14	0.37	
Poisson	0.12	0.22	0.76	
Perfect weak scaling				

System Performance Summary

* 135 Tflops/s on 36,864 processors of the quad-core Cray XT4 Franklin at NERSC, 40\% efficiency
* 224 Tflops/s on 163,840 processors of the BlueGene/P Intrepid at ALCF, 40\% efficiency
* 442 Tflops/s on 147,456 processors of the Cray XT5 Jaguar at NCCS, 33\% efficiency

For the largest physical system (36,000 atoms), LS3DF is 1000 times faster than direct DFT codes

Selfconsistent convergence of LS3DF

Measured by potential

Measured by total energy

* SCF convergence of LS3DF is similar to direct LDA method
\& It doesn't have the SCF problem some other $O(N)$ methods have

LS3DF Accuracy is determined by fragment size

* A comparison to direct LDA calculation, with an 8 atom $1 \times 1 \times 1$ fragment size division:
- The total energy error: $3 \mathrm{MeV} /$ atom $\sim 0.1 \mathrm{kcal} / \mathrm{mol}$
- Charge density difference: 0.2\%
- Better than other numerical uncertainties (e.g. PW cut off, pseudopotential)
* Atomic force difference: 10^{-5} a.u
- Smaller than the typical stopping criterion for atomic relaxation
* Other properties:
- The dipole moment error: 1.3×10^{-3} Debye/atom, 5%
- Smaller than other numerical errors

Can one use an intermediate state to improve solar cell efficiency?

* Single band material theoretical PV efficiency is 30\%
* With an intermediate state, the PV efficiency could be 60\%
* One proposed material ZnTe:O
- Is there really a gap?
- Is it optically forbidden?
* LS3DF calculation for 3500 atom 3\% O alloy [one hour on 17,000 cores of Franklin]
* Yes, there is a gap, and O induced states are very localized.

LS3DF computations yield dipole moments of nanorods and the effects on electrons

$$
P=30.3 \text { Debye }
$$

$P=73.3$ Debye

(b) Electron and hole

* Equal volume nanorods can have different dipole moments
* The inequality comes from shape dependent self-screening
* Dipole moments depend on bulk and surface contributions
* Dipole moments can significantly change the electron and hole wave functions
$\mathrm{Cd}_{714} \mathrm{Se}_{724}$
WZ

INCITE project at NCCS and NERSC

Summary and Conclusions

* LS3DF scales linearly to over 160,000 processors. It reached 440 Tflops/s. It runs on different platforms with little retuning
* The numerical results are the same as a direct DFT based on an $O\left(N^{3}\right)$ algorithm, but at only $O(N)$ computational cost
* LS3DF can be used to compute electronic structures for >10,000 atom systems with total energy and forces in 1-2 hours. It can be 1000 times faster than $O\left(N^{3}\right)$ direct DFT calculations.
* Enables us to yield new scientific results predicting the efficiency of proposed new solar cell materials

Acknowledgements

* National Energy Scientific Computing Center (Kathy Yelick, NERSC)
* National Center for Computational Sciences (NCCS) (Buddy Bland, Jeff Larkin at Cray Inc)
* Argonne Leadership Computing Facility (ALCF) (Paul Messina, Katherine M Riley, William Scullin)
* Innovative and Novel Computational Impact on Theory and Experiment (INCITE)
* SciDAC/PERI (Performance Engineering Research Institute)
* DOE/SC/Basic Energy Science (BES) DOEISCIAdvanced Scientific Computing Research (ASCR)

Thank you!

Backup Slides

Operation counts for direct LDA and LS3DF

* Cross over with direct LDA method [PEtot] is ~ 500 atoms.
* Similar to other O(N) methods.

Linear Scaling 3D Fragment (LS3DF) method

- Uses a novel divide and conquer approach to solve DFT
- Scales linearly with the number of atoms and has excellent parallel scaling
- Numerically equivalent to LDA
- The total energy difference is $3 \mathrm{meV} /$ atom $\sim 0.1 \mathrm{kcal} / \mathrm{mol}$
- Charge density difference: 0.2\%
- Atomic force difference: 10^{-5} a.u

The charge density of a 15,000 atom quantum dot, $\mathrm{Si}_{13607} \mathrm{H}_{2236}$. Using 2048 processors at NERSC the calculation took about 5 hours, while a direct LDA calculation would have taken a few months.

Geometric Effects on Dipole Moment

Pure bulk contribution $=0.0143\left(\mathrm{~N}_{\mathrm{cd}}+\mathrm{N}_{\mathrm{se}}\right)$

$$
P_{0}=20.5 \text { (a.u.) }
$$

$R=7, L=3$ (a.u.)
Effective screening
$P=30.3$ (a.u.)

R=4.5, L=9 (a.u.)
Weak screening
P=73.3 (a.u.)

LS3DF calculation of dipole moment of nanostructure shows that it has a strong geometry dependence!

Dipole Moment calculation using LS3DF

* The calculated dipole moment of a 2633 atom CdSe quantum rod, $\mathrm{Cd}_{961} \mathrm{Se}_{724} \mathrm{H}_{948}$.
* Using 2560 processors at NERSC the calculation took about 30 hours.

New minimization algorithms used to solve surface structure problems with mixed variables

Screened Exchange (sX) algorithm accurately computes bandgap for CaB_{6}

LDA band gap = -0.5 eV
\rightarrow semimetal

sX band gap = 1.27
\rightarrow semiconductor
B. Lee and L.-W. Wang Appl. Phys. Lett. 87, 262509 (2005)

[^0]: The repeated calculation of these orthogonal wavefunctions make the computation expensive, $O\left(N^{3}\right)$.

