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Scalable Methods for Electronic Excitations and Optical Responses 
of Nanostructures:  Mathematics to Algorithms to Observables

Initiate a program on the theory and modeling of the 
electronic excited-state and optical properties of various 
nanoscience structure
Address existing bottlenecks in simulating excitations 
and optical responses of nanostructure
Seek novel reformulations of the underlying physical 
theories by exploring new ideas in applied mathematics
Apply the methodology to targeted problems in 
nanosciences
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Project Highlights

New constrained minimization algorithms for computing the 
ground state energy of large atomistic systems.
New global optimization methods for determination of atomic-
scale structure of surfaces from experiments.
Screened-exchange (sX) density functional method in PEtot.
Improvements to PARATEC to aid in GW calculations. Parallel 
vector version developed and run on the Earth Simulator and 
NERSC machines.
Development of higher-order, compact-schemes AMR 
eigensolver.
New Linear Scaling 3D Fragment Method

Divide-and-conquer approach for solving large systems
Modeled systems with over 36,000 atoms with excellent 
scaling up to 160,000 processors 
ACM Gordon Bell Award SC08
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Nanostructures have wide applications including: 
solar cells, biological tags, electronics devices

Different  electronic structures than bulk materials 
1,000 ~ 100,000 atom systems are too large for direct O(N3) ab initio
calculations
O(N) computational methods are required
Parallel supercomputers critical for the solution of these systems
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Why are quantum mechanical calculations so 
computationally expensive?

If the size of the system is N:
N coefficients to describe one wavefunction,
i = 1,…, M wavefunctions         , M is proportional to N.
Orthogonalization:                        , M2 wavefunction 
pairs, each with N coefficients: N*M2, i.e N3 scaling. 
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The repeated calculation of these orthogonal 
wavefunctions make the computation expensive, O(N3).

ψi(r)
ψi(r)
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Previous Work on Linear Scaling DFT methods

Three main approaches:
Localized orbital method
Truncated density matrix method
Divide-and-conquer method

Some current methods include:
Parallel SIESTA (atomic orbitals, not for large parallelization)
Many quantum chemistry codes (truncated D-matrix, Gaussian 
basis, not for large parallelization)
ONETEP (M. Payne, PW to local orbitals, then truncated D-
matrix)
CONQUEST (D. Bowler, UCL, localized orbital)

Most of these use localized orbital or truncated-D matrix
None of them scales to tens of thousands of  processors
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Linearly Scaling 3 Dimensional Fragment 
method (LS3DF)

A novel divide and conquer scheme with a new 
approach for patching the fragments together

No spatial partition functions needed

Uses overlapping positive and negative fragments

New approach minimizes artificial boundary effects

divide-and-conquer method O(N) scaling
Massively parallelizable 
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F FTotal = ΣF { }

Phys. Rev. B 77, 165113 (2008); J. Phys: Cond. Matt. 20, 294203 (2008)

ρ(r)

LS3DF: 1D Example
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Schematic for LS3DF calculation
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Based on the plane wave PEtot code: http://hpcrd.lbl.gov/~linwang/PEtot/PEtot.html

Major components of  LS3DF method

1. Generate fragment 
potentials VF

2. Solve for fragment wave 
functions

3. Compute total charge 
density

4. Solve global Poisson 
equation
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Overview of computational effort in LS3DF

Most time consuming part of LS3DF calculation is for    
the fragment wavefunctions

Modified from the stand alone PEtot code
Uses planewave pseudopotential (like VASP, Qbox)
All-band algorithm takes advantage of BLAS3

2-level parallelization: 
q-space (Fourier space)
band index (i in )

PEtot efficiency > 50% for large systems (e.g, more 
than 500 atoms), 30-40% for our fragments.

PEtot code: http://hpcrd.lbl.gov/~linwang/PEtot/PEtot.html

ψi(r)
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Details on the LS3DF divide and conquer scheme

Variational formalism, sound mathematics

The division into fragments is done automatically, based 
on atom’s spatial locations

Typical large fragments (2x2x2) have ~100 atoms and 
the small fragments (1x1x1) have ~ 20 atoms

Processors are divided into M groups, each with Np
processors.

Np is usually set to 16 – 128 cores
M is between 100 and 10,000

Each processor group is assigned Nf fragments, 
according to estimated computing times, load balance 
within 10%.  

Nf is typically between 8 and 100
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But massively parallel

The performance of LS3DF method
(strong scaling, NERSC Franklin)

1. Generate fragment 

potentials VF

2. Solve for fragment 

wave functions

3. Compute total 

charge density

4. Solve global

Poisson equation
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NERSC Franklin results

3456 atom system, 17280 cores:
one min. per SCF iteration, one hour for a converged result

13824 atom system, 17280 cores,
3-4 min. per SCF iteration, 3 hours for a converged result

LS3DF is 400 times faster than PEtot on the 13824 atom system
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Near perfect speedup across a wide variety of 
systems (weak scaling)

(XT4)

(dual-core)
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ZnTeO alloy weak scaling calculations
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Note: Ecut = 60Ryd with d states, up to 36864 atoms
Number of cores
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Node mapping and performance on BlueGene/P

Map all the groups into identical
compact cubes, for good
intra-group FFT communication, 
and inter-group load balance.

core 8,192 32,768 163,840
atom 512 2048 10,240

gen_VF 0.08 0.08 0.23

PEtot_F 69.30 68.81 69.87

gen_dens 0.08 0.14 0.37

Poisson 0.12 0.22 0.76

Times on diff. parts of the code (sec)

Perfect weak scaling

Time: 50% inside group FFT
50% inside group DGEMM



C    O    M    P    U    T    A    T    I    O    N    A    L   R    E    S    E    A    R    C    H        D    I    V    I    S    I    O    N

System Performance Summary

135 Tflops/s on 36,864 
processors of the quad-core 
Cray XT4 Franklin at NERSC,  
40% efficiency 

224 Tflops/s on 163,840 
processors of the BlueGene/P 
Intrepid at ALCF, 40% efficiency

442 Tflops/s on 147,456 
processors of the Cray XT5 
Jaguar at NCCS, 33% efficiency 

For the largest physical system (36,000 atoms), 
LS3DF is 1000 times faster than direct DFT codes



C    O    M    P    U    T    A    T    I    O    N    A    L   R    E    S    E    A    R    C    H        D    I    V    I    S    I    O    N

SCF convergence of LS3DF is similar to direct LDA method

It doesn’t have the SCF problem some other O(N) methods have 

Selfconsistent convergence of LS3DF

Measured by potential Measured by total energy
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LS3DF Accuracy is determined by fragment size

A comparison to direct LDA calculation, with an 8 atom 1x1x1 fragment 
size division: 

The total energy error: 3 MeV/atom ~ 0.1 kcal/mol 
Charge density difference: 0.2% 
Better than other numerical uncertainties (e.g. PW cut off, 
pseudopotential) 

Atomic force difference: 10-5 a.u  
Smaller than the typical stopping criterion for atomic relaxation

Other properties:
The dipole moment error: 1.3x10-3 Debye/atom, 5% 
Smaller than other numerical errors



C    O    M    P    U    T    A    T    I    O    N    A    L   R    E    S    E    A    R    C    H        D    I    V    I    S    I    O    N
ZnTe bottom of cond. band stateHighest O induced state

Can one use an intermediate state to improve 
solar cell efficiency?

Single band material 
theoretical PV efficiency is 
30%
With an intermediate state, 
the PV efficiency could be 
60%
One proposed material 
ZnTe:O

Is there really a gap?
Is it optically forbidden?

LS3DF calculation for 3500 
atom 3% O alloy [one hour 
on 17,000 cores of Franklin] 
Yes, there is a gap, and O 
induced states are very 
localized.

INCITE project, NERSC, NCCS.
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P=73.3 Debye

P = 30.3 Debye

Cd714Se724

WZ

Equal volume nanorods can have different
dipole moments
The inequality comes from shape dependent
self-screening
Dipole moments depend on bulk and surface 
contributions
Dipole moments can significantly change the 
electron and hole wave functions

INCITE project at NCCS and NERSC

LS3DF computations yield dipole moments of 
nanorods and the effects on electrons
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Summary and Conclusions

LS3DF scales linearly to over 160,000 processors. It 
reached 440 Tflops/s. It runs on different platforms 
with little retuning
The numerical results are the same as a direct DFT 
based on an O(N3) algorithm, but at only O(N)
computational cost
LS3DF can be used to compute electronic structures 
for  >10,000 atom systems with total energy and 
forces in 1-2 hours. It can be 1000 times faster than 
O(N3) direct DFT calculations. 
Enables us to yield new scientific results predicting 
the efficiency of proposed new solar cell materials
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Thank you!
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Backup Slides
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Cross over with direct LDA method [PEtot] is ~500 atoms.

Similar to other O(N) methods.  

Operation counts for direct LDA and LS3DF

(x
10

12
)



C    O    M    P    U    T    A    T    I    O    N    A    L   R    E    S    E    A    R    C    H        D    I    V    I    S    I    O    N

• Uses a novel divide and conquer 
approach to solve DFT

• Scales linearly with the number of 
atoms and has excellent parallel 
scaling

• Numerically equivalent to LDA
• The total energy difference is 
3meV/atom ~ 0.1 kcal/mol
• Charge density difference: 0.2%
• Atomic force difference: 10-5 a.u

The charge density of a 15,000 atom quantum dot, Si13607H2236.  Using 
2048 processors at NERSC the calculation took about 5 hours, while a 
direct LDA calculation would have taken a few months.

Linear Scaling 3D Fragment (LS3DF) method
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Geometric Effects on Dipole Moment

R=4.5, L=9 (a.u.)
Weak screening

R=7, L=3 (a.u.)
Effective screening 

P=73.3 (a.u.)
P=30.3 (a.u.)

Pure bulk contribution = 0.0143 (NCd+ Nse)
P0 = 20.5 (a.u.)

LS3DF calculation of dipole moment of nanostructure 
shows that it has a strong geometry dependence!
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Dipole Moment calculation using LS3DF

The calculated dipole moment of a 2633 atom CdSe quantum rod, 
Cd961Se724H948 .  
Using 2560 processors at NERSC the calculation took about 30 hours.
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New minimization algorithms used to solve surface 
structure problems with mixed variables

Previous best known solution R-factor = 0.24
New solution found with          R-factor = .2151
Final (global) solution with      R-factor = .1184

Invalid structures

R-factor = 0.24
# of func call = 212 R-factor = 0.2151

# of func call = 1195
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

GWsX-LDA

B. Lee and L.-W. Wang Appl. Phys. Lett. 87, 262509 (2005)

Screened Exchange (sX) algorithm accurately 
computes bandgap for CaB6

LDA band gap = -0.5 eV
semimetal

sX band gap = 1.27
semiconductor


