

A Scientific Research and Development Approach to Transform Cyber Security

A Report Prepared for the **Department of Energy** Charlie Catlett, CIO, Argonne National Laboratory

On behalf of the Cyber Security Community (DOE Laboratories, Universities, Industry participants)

ASCAC - March 3, 2009

Background

- Summits
- Working Groups
- Open Workshops
- Report Vetted w/ Industry, Multiple Agencies

A National Priority

2005

"broad failure to invest" in "fundamental research in civilian cyber security."

2007

"The ability to design and develop secure... systems is a national priority."

2008

"special focus and prioritization are needed to respond to current national networking security concerns."

The Department of Energy

- Unique Requirements
 - National-scale civilian and classified infrastructure, assets, programs
 - International science communities
- Unique Strengths
 - National Laboratories with strong multi-disciplinary programs and rich academic and industry collaborations
 - Mathematics and Computational Science programs coupled with Leadership Class facilities.

Cyber Defense Today

- Mathematics & Computational Science Untapped
 - Mathematics-based Intrusion Detection
 - Limited use of modeling and simulation
- Architecture is Anachronistic
 - Inherent trust among components
 - Passive data
- Policy is Reactive and Tactical
 - Defense against specific, previous tactics
 - Underlying model (layered defense) awkward

Client-Side Exploits Vulnerability Disclosure to Public Exploit

Source: C. Catlett, c@anl.gov

Source: Kathy Sierra

Three Focus Areas

Information Self-Protective Data and Software

Platforms Trustworthy Systems from Untrusted Components

Mathematics Predictive Awareness for Secure Systems

Source: C. Catlett, c@anl.gov

Focus Areas in Context

Source: C. Catlett, c@anl.gov

Argonne

Mathematics: Predictive Awareness for Secure Systems

- Create capabilities to examine system or network behavior to anticipate failure or attack, including real-time detection of anomalous activity and adaptive "immune system" response.
- **Requires** a deeper understanding of complex applications and systems, appropriate architectures, techniques, and processes using data-driven modeling, analysis, and simulation.
- Leverages DOE programs in mathematics and computational science, and leadership computing expertise and facilities.

"...meteorology provides proof that complex, evolving, large-scale systems are amenable to mathematical analysis and that the network-security community need not necessarily restrict itself to the (probably oversimplified) models now in the literature." *Workshop on Scalable Cyber-Security Challenges in Large-Scale Networks: Deployment Obstacles, Interagency Working Group for IT R&D, March 2003.*

Information: Self-Protective Data and Software

- **Create** "active" data systems and protocols to enable self-protective, self-advocating, and self-healing digital objects.
- **Requires** data provenance and related research to provide information integrity, awareness of attributes such as source, modification, trace back, and actors; and mechanisms to enforce policy concerning data confidentiality and access.
- Leverages DOE leadership in, and mission requirements for, protection of classified and/or controlled information (data, software) and analysis and stewardship of large-scale scientific data sets for international experiments.

Self-Protective Data and Software

Platforms: Trustworthy Systems from Untrusted Components

- **Create** mechanisms for specifying and maintaining overall trust properties for operating environments and platforms.
- **Requires** techniques for quantifying and bounding security and protection, integrity, confidentiality, and access in the context of a "system" comprised of individual components for which there are varying degrees of trust.
- Leverages DOE expertise in hardware and software systems architecture, operating systems, and secure build and test facilities.

Trustworthy Systems from Untrusted Components

DOE: Uniquely Positioned

	DOE	DARPA	NSF	DOD Labs	NSA, IARPA	NIH	DHS
Programmatic Orientation	Vision & Project	Project	Project	Vision	Project	Vision & Project	Project
"Customer"	Society; Energy	DOD	Society	DOD	Intelligence Community	Society; Medical Community	National Infra.
National Laboratory Assets	~			~	~	~	
Research Horizon	Near Mid Long	- Mid -	- - Long	- - Long	Near Mid Long	Near Mid Long	Near Mid Long
Typical Performers	Gov Academia Industry	Gov Academia Industry	- Academia -	Gov Academia -	Gov Academia Industry	- Academia Industry	- Academia Industry
Cyber Security Expertise	v	v	some	some	v		v
Primary Results Applicability	Flexible	Classified	Open	Classified	Classified	Open	Classified

Example of Industry Work

Source: Ashar Aziz, FireEye Inc.

Recommendations (1 of 2)

- Focus Areas to Harness DOE Strengths
 - Mathematics: Predictive Awareness for Secure Systems
 - Leadership computing, mathematics, and computational science programs cyber security as a computational science and engineering challenge leveraging INCITE.
 - Information: Self-Protective Data and Software
 - Computer science, computer architecture programs to explore novel approaches to *active* data.
 - Platforms: Trustworthy Systems from Untrusted Components
 - System software and architecture programs to pursue new operating system, distributed application, and platform architectures harnessing state-of-the-art such as multicore.

Recommendations (2 of 2)

• Programmatic Considerations

- SciDAC-scale multidisciplinary teams
- "X-Prize" style clear targets, broad competition
 - Engage Industry
 - Facilitate many "failures" to find diamonds in the rough (aggressive program leadership/management)
- Proactive research collaboration with industry, other agencies (NSF, DHS) and DOE programs.
- Harness Leadership Computing, data analysis, and related infrastructure.
 - Support computational science (modeling and simulation) as well as nearer term needs such as sensor data analysis and intensive software vulnerability testing (e.g. "a software wind tunnel")