Office of Advanced Scientific Computing Research

State of the Office

Michael R. Strayer
Associate Director
Office of Science

Advanced Scientific Computing Research Program

Director
Principal Deputy
Chief of Staff
Raymond Orbach
James Decker
Jeffrey Salomon

Deputy for Programs
James Decker

Chief Operating Officer
Donald Erbschloe (A)

Oak Ridge Office
Gerald Boyd

SC Integrated Support Center

Chicago Office
Marvin Gunn, Jr.

Project Assessment
Daniel Lehman

Laboratory Policy & Infrastructure
Leah Dever (A)

Program Direction & Corporate Analysis
John Alleva

Information Technology Management
Kimberly Rasar (A)

Ames Site Office
Roxanne Purucker

Argonne Site Office
R. Wunderlich

Berkeley Site Office
Andrea Richards

Pacific Northwest Site Office
Paul Kruger

Brookhaven Site Office
Michael Holland

Fermi Site Office
Joanna Livengood

Princeton Site Office
Jerry Faul

Stanford Site Office
Nancy Sanchez

Thomas Jefferson Site Office
James Turi

Advanced Scientific Computing Research
Michael Strayer

Basic Energy Sciences
Patricia Dehmer

High Energy Physics
Robin Stoffin

Fusion Energy Sciences
Anne Davies

Nuclear Physics
Dennis Kovar

Workforce Development for Teachers & Scientists
Peter Faletra

Budget and Planning
Ralph De Lorenzo (A)

(A) Acting
Mission

Secretary Samuel Bodman, House Committee on Science Hearing, February 15, 2006

“The Office of Science plays a critical role in ensuring America’s scientific leadership and economic dynamism…”

The mission of the Science program is to deliver the discoveries and scientific tools that transform our understanding of energy and matter and advance the national, economic, and energy security of the United States.

In support of it’s mission, the Science program has responsibilities in three main areas: selection and management of research; operation of world-class, state-of-the-art scientific facilities; and design and construction of new facilities.

“Investment in these facilities is much more than bricks and mortar: it is an investment in discovery, and in the future of our nation.”
In the President’s State of the Union Address on January 31, 2006, President Bush stated,

“I propose to double the federal commitment to the most critical basic research program in the physical sciences over the next ten years. This funding will support the work of America’s most creative minds as they explore promising areas such as nanotechnology, supercomputing, and alternative energy sources.”

Secretary Bodman, Ibid

“Developing revolutionary, science-driven technology is at the heart of the Department of Energy’s mission. To ensure that America remains at the forefront in an increasingly competitive world, our Department is pursuing transformational new technologies in the cutting-edge scientific fields of the 21st century—areas like nanotechnology, material science, biotechnology, and high-speed computing.”
Vision

First in Computational Science

“Best in class in advancing science and technological through modeling and simulation”

Facilities
Enabling Technologies
Computational Partnerships
“In the last decade the power of computation - our ability to model and simulate experiments that we have not conducted in a laboratory – has become so great that it must now be considered a third pillar, along with theory and experiment, in the triad of tools used for scientific discovery.” Dr. Raymond L. Orbach, SciDAC Review, spring, 2006

“SciDAC is unique in the world….There isn’t any other program like it anywhere else, and it has the remarkable ability to do science by bringing together physical scientists, applied mathematicians, and computer scientists who recognize that computation is not something you just do at the end…” Dr. Raymond L. Orbach, SciDAC Review, spring, 2006

“SciDAC, together with ASCR facilities, could provide powerful resources and the nexus of a new global village for computing that could take computational science and scientific discovery to wholly new levels.”
Facilities for the Future of Science:
A Twenty-Year Outlook

Contents

A Message from the Secretary 3
Steward of the World’s Finest Suite of Scientific Facilities and Instruments 5
Introduction 8
Prioritization Process 9
A Benchmark for the Future 10
The Twenty-Year Facilities Outlook—A Prioritized List 11
Facility Summaries 14

Near-Term Priorities

Priority: 1
TIIER 14
Priority: 2
Oxfordshire Scientific Computing Capability (OSSCC) 15
Priority: Tie for 3
Joint Dark Energy Mission (JDEM) 16
Linear Coherent Light Source (LCLS) 16
Priority: Tie for 3
Protein Production and Tapes 17
Rice Isotope Accelerator (RIA) 18
Priority: Tie for 7
Characterization and Imaging of Molecules Machines 19
Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV Upgrade 20
Energy Sources Network (ESN) Upgrade 20
National Energy Research Scientific Computing Center (NERSC) Upgrade 21
Transmission Electron Microscope (TEAM) 22

Mid-Term Priorities

Priority: 12
BITV 23
Priority: 13
Linear Collider 24
Priority: Tie for 14
Sphaleron Neutron Source (SNS) 2-4 MW Upgrade 24
Sphaleron Neutron Source (SNS) Second Target Station 25
Whole Proteome Analysis 26
Priority: Tie for 18
Next-Step Spherical Torus (NST) Experiment 27
Relativistic Heavy Ion Collider (RHIC) II 28

Far-Term Priorities

Priority: Tie for 21
National Synchrotron Light Source (NSLS) Upgrade 29
Super Neutron Beam 30
Priority: Tie for 23
Advanced Photon Source (APS) Upgrade 30
Advanced Light Source (ALS) Upgrade 31
Fusion Energy Contingency 32
High Flux Isotope Reactor (HFIR) Second Cold Source and Guide Hall 33
Integrated Beam Experiment (IBX) 34

Appendix: Sample Charge Letter to Advisory Committees
Office of Science Advisory Committees 36
About DOE’s Office of Science 42
Office of Science Contacts 43
Facilities

- Upgrade the Oak Ridge Leadership Computing Facility to provide more than 250 teraflops peak capability by the end of FY 2007, and 1,000 teraflops by the end of FY 2008.

- Acquire a 100 teraflop IBM Blue Gene P high-performance computer system at the Argonne National Laboratory in FY 2007, creating the Argonne Leadership Computing Facility, and increasing to a capability in the range of 250–500 teraflops by the end of FY 2008.

- Upgrade NERSC to a peak capacity in the range of 150 teraflops by the end of FY 2007, and to 500 teraflops peak capacity by the end of the decade.

- Evolve ESnet over a 5 year period to dual backbone rings at 40 Gb/sec with fault tolerant 10 Gb/sec connections to most major SC laboratories and higher bandwidth connections to NERSC, the LCFs, and other sites with exceptional data requirements.
Research

Advanced Scientific Computing Research Program

- Research efforts in applied mathematics and computer science are focused and strengthened to deliver the operating systems, programming models, software tools, and mathematical algorithms and libraries needed for scientists to make effective use of petascale computing

- The Scientific Discovery through Advanced Computing (SciDAC) program, will strengthen activities at the software centers initiated in FY 2006 for petascale computing. In addition, SciDAC will initiate research investments in applied mathematics and computer science to accelerate efforts in modeling and simulation on the petascale computing facilities

- The Research and Evaluation Prototype effort will be coordinated with the National Nuclear Security Administration (NNSA) and focused on the Defense Advanced Research Projects Administration (DARPA) High Productivity Computing Systems (HPCS) program partnership
Identify problems that can effectively utilize petascale computing

Currently, *most* applications scale to 1,000 processors, *some* scale to 10,000 processors, and a *few* will scale to 100,000 processors
Fusion

Largest plasma wave simulation for fusion based research

Using 4,096 processors of Cray XT3 at LCF (ORNL) largest, most-detailed simulation ever done of plasma control waves in a tokamak, the reactor that will eventually form the core of the multinational ITER reactor.
Combustion

Underlying science for improved fuel efficiency of gas turbines and technologies for transportation

Petascale computing will enable simulations in parameter spaces relevant to engines

A 50% increase in efficiency of automobiles could save 21% of U.S. oil consumption for transportation
Astrophysics

Discovery of a new instability important to core collapse supernovae – the supernova shock wave instability (SASI) and a plausible mechanism for generating the initial neutron star spin required to give birth to pulsars

10 TF: Hydrodynamics only
100 TF: Multifrequency neutrino transport
1 PF: Multifrequency and multiangle neutrino transport (pin down explosion mechanism and all observables)
Researchers at Argonne National Laboratory recently developed a *Portable, Extensive, Toolkit for Scientific* (PETSc) numerical library used in dozens of scientific applications world-wide.

PETSc encapsulates the complexity of underlying parallel algorithms and presents them in terms of numerical abstractions familiar to scientists. It has been used to extend fully compressible flow codes, most notably the *pressure-oriented implicit continuous Eulerian* (PCICE) scheme developed at INL.

Figure 1. Temperature distribution obtained with PCICE in a nozzle subject to flow through it. Courtesy of Richard Martineau, INL.
Researchers at Lawrence Livermore National Laboratory recently develop a suite of fast and scalable adaptive algorithms for modeling the interaction between fluids and embedded solid particles. Accurate simulations moving particles immersed in fluid or gas is computationally challenging.

This new algorithm based domain decomposition approach combines locally optimal representation of the dynamically evolving regions occupied by fluids.
Research Opportunities
Distributed Network Environment

Advanced Scientific Computing Research Program

- **Distributed Data Management**
 - Gigabit networks and services for interconnecting data analysis and management centers associated with Petascale computers and with experiments generating massive datasets

- **Cybersecurity**
 - Accelerate the development of approaches for operational cybersecurity
 - Scalable distributed authentication and authorization systems

- **End-to-End performance**
 - Inter-domain interfaces and issues

- **High performance middleware**
 - Network caching and computing
 - Fault tolerance and error handling

- **Partnerships**
 - Exploit collaborations among scientists and network/middleware researchers to increase scale and productivity of science in areas like bioinformatics and nanotechnology
 - Integrated testbeds and networks
ASCR Budget Comparison: Facilities and Research

Advanced Scientific Computing Research Program

Fiscal Year

Dollars (in Millions)

2004 2005 2006 2007 2008 2009 2010 2011

Facilities
Research

President's Budget
Out Years
ASCR Budget

User Facility Operations
- **FY 2006 Approp.**: 91,191
- **FY 2007 Request**: 157,294
- **FY 2008**: 164,790
- **FY 2009**: 169,790
- **FY 2010**: 174,790
- **FY 2011**: 185,000

Research
- **FY 2006 Approp.**: 143,493
- **FY 2007 Request**: 161,360
- **FY 2008**: 185,210
- **FY 2009**: 200,210
- **FY 2010**: 210,210
- **FY 2011**: 220,000

Total, ASCR
- **FY 2006 Approp.**: 234,684
- **FY 2007 Request**: 318,654
- **FY 2008**: 350,000
- **FY 2009**: 370,000
- **FY 2010**: 385,000
- **FY 2011**: 405,000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User Facility Operations</td>
<td>91,191</td>
<td>157,294</td>
<td>164,790</td>
<td>169,790</td>
<td>174,790</td>
<td>185,000</td>
</tr>
<tr>
<td>Research</td>
<td>143,493</td>
<td>161,360</td>
<td>185,210</td>
<td>200,210</td>
<td>210,210</td>
<td>220,000</td>
</tr>
<tr>
<td>Total, ASCR</td>
<td>234,684</td>
<td>318,654</td>
<td>350,000</td>
<td>370,000</td>
<td>385,000</td>
<td>405,000</td>
</tr>
</tbody>
</table>
FY 2006 ASCR Budget

Advanced Scientific Computing Research Program

- LCF: $53.7
- NERSC: $37.5
- Research and Evaluation Prototypes: $13.0
- Esnet: $19.0
- Distributed Network Environment Research: $13.6
- SciDAC: $38.1
- Computer Science: $24.3
- Applied Mathematics: $29.4
- SBIR/STTR: $6.3
FY 2007 ASCR Budget Request

Advanced Scientific Computing Research Program

- LCF ANL: $22.5
- LCF ORNL: $80.0
- NERSC: $54.8
- Applied Mathematics: $29.5
- Computer Science: $23.9
- SciDAC: $50.0
- Distributed Network Environment Research: $13.8
- Esnet: $22.7
- Research and Evaluation Prototypes: $13.0
- SBIR/STTR: $8.5
- Computer Science: $23.9
- SciDAC: $50.0
The Power of Partnerships

Today and Tomorrow

Advanced Scientific Computing Research Program

- BES: Methane Flames
- BER: GCM Performance
- FES: Plasma Core
- HEP: Weak Matrix Elements Performance of Supernova codes
- NP: Accelerator Design
- NE: Neutron Transport
- EM: Libraries & Algorithms
- NNSA: Improvements in Mesh Generation
- Industry: Diesel Combustion, Ultrafast Science
- Industry: Clouds Simulation of Microbes
- Industry: Full Simulation of Burning Plasma
- Industry: Increased Accuracy
- Industry: Elements beyond Fe
- Industry: LCLS System Design
- Industry: Advanced Fuel Cycles
- Industry: Groundwater Transport
- Industry: Science Based Materials
- Industry: Virtual Prototypes

ASCAC Meeting: March 15-16, 2006
Role of Advisory Committee

- Meetings of the full committee are public

- Provide advice to the office
 By means of written reports
 In response to charges

- Reports written by sub-panels
 Due two weeks before voting
 All sub-panel members need not be members of ASCAC
 Interim report (outline) due at the ½ way point

- Full meeting discusses reports and accepts or rejects by vote

- ASCR office supports the activities of the Committee

- There are currently two charges
Performance Measurement

Advanced Scientific Computing Research Program

CHARGE #1

The sub-panel should weigh and review the approach to performance measurement and assessment at these facilities, the appropriateness and comprehensiveness of the measures, and the science accomplishments and their effects on the Office of Science’s science programs. Additionally, the sub-panel should consider the evolution of the roles of these facilities and the computational needs over the next three – five years, so that SC programs can maintain their national and international scientific leadership.

In addition to the above, the sub-panel is asked to provide input for the Office of Management and Budget (OMB), evaluation of ASCR progress towards the long-term goals specified in the OMB Program Assessment Rating Tool (PART). See attachment. Note that the OMB guidelines specify ratings of excellent, good, fair, poor, or not acceptable. In addition to these ratings, comments on observed strengths or deficiencies in the management of any component or sub-component of ASCR’s portfolio and suggestions for improvement would be very valuable.

Interim report due: July 30, 2006
Draft report due: October 30, 2006
CHARGE #2

The sub-panel should weigh and review the organization, performance, expansion, and effectiveness of the current operations of ESnet. The sub-panel should consider the proposed evolution of ESnet, its appropriateness and comprehensiveness in addressing the data communication needs of SC that will enable scientists nationwide to extend the frontiers of science. Furthermore, the sub-panel needs to make suggestions and recommendations on the appropriateness and comprehensiveness of the networking research programs within ASCR with a view towards meeting the long-term networking needs of SC.

Interim report due: October 30, 2006
Draft report due: October 30, 2007
ASCR Staffing

Advanced Scientific Computing Research Program

<table>
<thead>
<tr>
<th></th>
<th>FY1996</th>
<th>FY2001</th>
<th>FY2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>$118M</td>
<td></td>
<td>$235M</td>
</tr>
<tr>
<td>Program Attributes</td>
<td>• Base Research • ACRTs • NERSC • ESnet</td>
<td>• Base Research • R&E Testbeds • SciDAC-2 • NERSC ESnet • LCF (at ORNL; at ANL in FY2007)</td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal</td>
<td>13</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IPAs</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Contractor</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Duties and Responsibilities Acquired Since FY1996

- IT Reporting
- New Program Activities
- Advisory Committee
- Laboratory Annual Appraisals
- Performance Measures
- Budget growth
- Peer review of laboratory activities (research and facilities)