ASCR Performance Measures

Thomas Ndousse
tndousse@er.doe.gov
301-903-9960
The Need for Performance Measures

• Government Performance and Result Act (GPRA) - (1993)
 - Requires agencies to develop a strategic plan, annual performance plan, and annual accountability report

• OMB criteria for assessing R&D investment
 - Requires agencies with research mission to use Performance Assessment Rating Tool (PART) to appraise for quality, relevance, and performance
PART Activities

- Activities in support of PART
 - Advisory committees
 - Committee of visitors
 - Peer-review of laboratory and university funded projects
 - Lehman reviews of major facilities
 - Strategic plans
 - Periodic external reviews of facilities and R&D programs
 - Annual progress reports for multi-year projects
 - Staff performance reviews
 - Workshops and conferences
OMB R&D Investment Criteria

• **Assessment Areas**
 - Quality – Largely determined by Independent Merit Reviews
 - Relevance – Determined by importance to a Presidential priority
 - Performance – Efficiency/effectiveness measures

• **Elements of PART**
 - Program purpose and design
 - Strategic planning
 - Program management
 - Program results

• **Performance Tracking and Reporting**
 - Quarterly performance measure reporting: **DOE Joule system**
 - Annual performance measure reporting: **OMB budget process**
Annual Performance Measures for PART

• Capability Computing at NERSC (weight: 50%)
 - Focus usage of the primary supercomputer at the NERSC on capability computing (Percentage (40%) of the computing time available at NERSC used for computations that require at least 1/8 of the total resource)

• Computational Science Capabilities (weight: 50%)
 - Improve computational science capabilities - Increase annual percentage in computational effectiveness (either by simulating the same problem in less time or simulating a larger problem in the same time)
Capability Computing Measures at NERSC

- **Performance Measure Process**
 - Establish IBM SP (Seaborg) as Primary NERSC supercomputer
 - Scale system software to allow applications to use 1/8 the total processors (512 processor in FY04 and 678 processors in FY06)
 - Provide PIs with incentives to scale existing code to use large number of processors
 - Collect NERSC usage statistics

<table>
<thead>
<tr>
<th>Year</th>
<th># Processors</th>
<th>Target 1/8 of Processors</th>
<th>Target % of Usage</th>
<th>Actual % usage by 1/8 Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Base line</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>4,096</td>
<td>512</td>
<td>50%</td>
<td>47.7%</td>
</tr>
<tr>
<td>2005</td>
<td>4,096</td>
<td>512</td>
<td>50%</td>
<td>67.5%</td>
</tr>
<tr>
<td>2006</td>
<td>6,080</td>
<td>768</td>
<td>40%</td>
<td>50.3% through Feb 2006</td>
</tr>
</tbody>
</table>

Primary NERC Supercomputer
- IMB SP (Seaborg)
- 380 Compute Nodes
- 6080 processors
Reflections on Capability Computing Measure

- A significant percentage of DOE science applications can use 1,000 CPUs or more and still do effective science.
- Scaling science applications to use 1,000 or more CPUs effectively requires innovative scheduling incentives, allocation discount, and intensive consulting support.
- High impact science applications that do not easily scale are adversely impacted by those that do.
- DOE funded the NCSa and NCSb systems to address jobs that run at smaller scale.
- Long running jobs may adversely impact capability measure.
- Utilization-based metric may not adequately capture the quality and science productivity on Seaborg.
Computational Science Capabilities Measure

- **Performance Measure**
 - Time-to-solution

- **Performance Measure Process**
 - Identify a target set code developed by ASCR PIs and a target system on which to run the code.
 - Record performance of the target code at beginning of the fiscal year on the target system.
 - Tune/scale the code during the year using advanced coding techniques and or new mathematical algorithms developed during year.
 - Execute the new code on target system with the same configuration at the end of the fiscal year.

- **Success**
 - The annual improvement in the code, when measured in time to solution, must be 50%.
PART Benefits and Challenges

• Benefits
 - Encourages dialog with OMB
 - Forces evaluation of program progress and effectiveness
 - Enables programs to set higher performance goals
 - Improves program management and strategic planning

• Challenges
 - Quantifiable and sensible performance measures of R&D activities are difficult to define
 - Scientific discoveries are unpredictable