Partnerships with other Offices

Dave Goodwin
Dave.Goodwin@Science.doe.gov
301-903-6474
Partnership Overview

• **Facilities:** Allocations, interagency peer review, and acquisition coordination.

• **Research:** SciDAC science applications and Global Nuclear Energy Partnership
NERSC Allocations
(CPU hours)

- 28 million (28%) Basic Energy Sciences.
- 25 million (25%) Fusion.
- 16 million (16%) Biological and Environmental Research.
- 16 million (16%) Nuclear Physics.
- 11 million (11%) High Energy Physics.
- 4 million (4%) ASCR.
- 100 million total.
Interagency Review of NERSC

• To determine “how well is NERSC Performing its mission”

• Reviewed planning, acquisition, budget/staffing (including skills mix), allocating, and DOE management

• May 17th, 18th, and 19th, 2005

• Favorable findings
Acquisition Coordination

- DoD and NSF to use some of the NERSC-5 benchmarks for their procurements

- DoD sent 1 observer to the NERSC-5 proposal evaluations and NSF sent 3 observers (from U of Illinois, Louisiana State, and U of Pittsburgh)
SciDAC

- **13 Science applications**: Quantum ChromoDynamics (QCD), High Energy Physics (HEP), Nuclear Physics (NP), Radiation Transport, HEP and NP with Petabytes, Astrophysics, Accelerators, Fusion, Climate, Groundwater Modeling, Turbulence, Materials, and Biology

- **Over 350 Letters of Intent (LOI)**
- **About 270 LOIs encouraged to submit proposals.**
- **230 Proposals received (and counting)**
Science Applications

Advanced Scientific Computing Research Program

- **Quantum ChromoDynamics (QCD)**
 - Adapt to additional hardware architectures
 - Manage very large data sets
 - Visualize complex data
 - SC High Energy Physics (HEP) and Nuclear Physics (NP) funding

- **High Energy Physics**
 - Test and refine the Standard Model
 - Test and refine understanding of neutrinos
 - SC HEP funding
Science Applications

Advanced Scientific Computing Research Program

- **Nuclear Physics**
 - Stockpile stewardship
 - Relativistic Heavy Ion Collider (RHIC)
 - SC NP and NNSA funding

- **Radiation Transport**
 - Weapons, engines, and reactors
 - 3D models
 - NNSA funding with SC NP review

- **HEP and NP with Petabytes**
 - Petabytes per year after data selection and compression
 - SC HEP and NP funding with the National Science Foundation (NSF) Review
Science Applications

Advanced Scientific Computing Research Program

- **Astrophysics**
 - Supernovae (dark energy), gamma bursts (acceleration mechanism), core collapse (nucleosynthesis), dark matter, and Cosmic Microwave Background (gravity waves and inflation)
 - SC HEP and NP funding with NNSA review

- **Accelerators**
 - International Linear Collider, Rare Isotope Accelerator, and Coherent Synchrotron Radiation (for nanotech)
 - SC HEP and NP funding with SC Basic Energy Sciences (BES) review

- **Fusion**
 - Success of International Thermonuclear Test Reactor (ITER) depends on simulations and modeling
 - SC Fusion Funding
Science Applications

Advanced Scientific Computing Research Program

• Climate
 ▪ El Nino Southern Oscillation (ENSO) and Artic Ocean
 ▪ SC Biological and Environmental Research (BER) and NSF funding

• Groundwater Modeling
 ▪ Subsurface reactive transport to simulate mobility
 ▪ SC BER funding

• Turbulence
 ▪ Large Eddy Simulations (LES) and viscosity modeling
 ▪ NNSA funding
Science Applications

Advanced Scientific Computing Research Program

- **Materials**
 - Complex quantum systems; e.g., nanoscience
 - NNSA funding with SC BES review

- **Biology**
 - Genomes To Life: Keep pace with sequencing; link gene, protein, and function catalogs to regulatory, structure, and metabolic relationships; and data from mass spec and FRET and cryoelectron microscopy
 - SC BER funding
Global Nuclear Energy Partnership (GNEP)

- Europe, Japan, Russia, and probably India. Was GNEI
- President Bush briefed on Jan 26th
- $10 billion DOE total over 5 years
- $28 billion DOE total over 10 years
- < 10 gigaflops previously to > 100 TF
- Simulations for reprocessing, fuel fab, reactors, and Yucca Mountain
GNEP Purpose

- Energy security: 103 present U.S. reactors (100 GWe; 20% of capacity) to increase to 1,000 U.S. reactors (> 1 TWe) by 2100 (vs 2000)
- Mitigate climate change (sustainability)
- Enable hydrogen economy: 300 reactors
- Yucca: 10 X increase in present 128 kiloton tech capacity (reduce heat 100X and rad 10X): reduce 200°C at the walls and 96°C between tunnels
- Secretary Bodman: Also for the Global War on Terrorism: to provide energy for Nation building
GNEP Plan

• Reprocessing for IAEA Fuel Cycle States

• Advanced Burner Reactor (ABR): Na cooled, fast neutron, 90 MWe demo on-line 2014 (for 1.2 GWe commercial on-line 2023)

• International Reactor Innovative and Secure (IRIS): 0.3 GWe Light Water Reactor for IAEA Reactor States; on-line 2017
Reprocessing

- U for re-enrichment/breeder (was $15 per ton, now $40, may go to $60)
- Tc to reduce Yucca rad (BES to assist).
- Cs/Sr for 300 year decay
- TRansUranics (TRU): Transmute/Energy recovery (3 TW-thermal-years X 10): Pu (1 kiloton X 10), Am, Np (rad), Cm
- Fission Products (100+ millirem per year for > 1 million years from 1,000 reactors)
U.S. Utility Companies

> 17 US reactors at 11 sites by 2015 (> 20 GWe; > $26 billion), 15 passively safe: 100 X safer (1 core damage per 2.5 million reactor years).

- $35 per MWHe bus-bar (capital, fuel, operating; v $49 for coal), 93% online (v 70% for coal), 60 year service life (v 40 years for coal).

- Japan forge single source for $100 million each reactor vessels: $2 million each to enter 50 month queue.

- $70 million each for NRC license.

- Up to $3 billion now (not JPN).