
Solver Algorithms R&D for Scalable
Applications & Architectures

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Take Home Points

Trilinos is a large and growing “project of projects”.
Software Engineering processes (when properly adapted)
can positively impact algorithms R&D.
New node architectures offer opportunities and challenges.
We prepared for them from the beginning.
We are working toward effective use today.

Highlighted ProjectsTrilinos:
40+ packages in repository. Multiple distribution groupings.
8.0 Release 8/312007. 1200 downloads in 5 months. 6000 since Mar ‘05
Growing external collaborations: ORNL, LBL, INL, Boeing, XOM.
Trilinos 9.0: Fuller vertical SW stack, fuller support for Windows, Mac, more customers.

TOPS-2:
Establishing ties to climate community:

• Implicit solvers in Homme (dycore component) for petascale systems (Kate Evans ORNL).
• Implicit POP (Wilbert Weijer LANL).

Fortran, PETSc interfaces ramping up.
Tramonto:

Tramonto 2.1: First public Release March 2007. 100 downloads. Dow API.
Proposals: R&D 100.
New scalable preconditioners for several state-of-the-art DFTs.
Peta-scalability of Tramonto.

Mantevo:
Mantevo*: Five microapps (phdMesh, HPCCG, pHPCCG, Beam, Prolego) + framework.
HPCCG: Publicly available. Part of Sequoia benchmark.

• “Closest thing to an unstructured FEM/FVM code in 500 semi-colons or fewer.”
• Ports to nVidia, Clovertown, Sun 8x8 core/threads, RedStorm, Sequoia RFP, …
• Rewritten in BEC, Qthreads.
• 25K core runs on Redstorm.

pHPPCG: Parametrized HPCCG - arbitrary int/float types, data structure base class.
phdMesh part of Trilinos…Beam exercises vertical stack in Trilinos…Prolego basic research.

* Greek: augur, guess, predict, presage

Libraries for Science & Engineering
Applications: Trilinos

Trilinos Contributors (past 3 years)
Chris Baker
Developer of Anasazi, RBGen

Ross Bartlett
Lead Developer of MOOCHO, Stratimikos, RTOp,
Thyra
Developer of Rythmos

Pavel Bochev
Lead Developer Intrepid

Paul Boggs
Developer of Thyra

Erik Boman
Lead Developer Isorropia
Developer Zoltan

Todd Coffey
Lead Developer of Rythmos

Karen Devine
Lead Developer Zoltan

Clark Dohrmann
Lead Developer of CLAPS

Carter Edwards
Lead Developer phdMesh

Michael Gee
Developer of ML, Moertel, NOX

Bob Heaphy
Lead developer of Trilinos SQA
Developer Zoltan

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, IFPACK, Tpetra
Developer of Amesos, Belos, EpetraExt

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros

Jonathan Hu
Developer of ML

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Developer of Thyra

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster
Developer WebTrilinos

Eric Phipps
Lead developer Sacado, Stokhos
Developer of LOCA, NOX

Dennis Ridzal
Lead Developer of Aristos, Intrepid

Marzio Sala
Lead Developer of Didasko, Galeri, IFPACK, WebTrilinos
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA, Capo

Paul Sexton
Developer of Epetra and Tpetra

Bob Shuttleworth
Developer of Meros.

Chris Siefert
Developer of ML

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos, RBGen and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Lead Developer Isorropia, FEI
Developer of Epetra, EpetraExt, AztecOO, Tpetra

Target Problems: PDES and more…

PDES

Circuits

Inhomogeneous
Fluids

And More…

Target Platforms: Any and All
(Now and in the Future)

Desktop: Development and more…
Capability machines:

Redstorm (XT3), Clusters
Roadrunner (Cell-based).
Multicore nodes.

Parallel software environments:
MPI of course.
UPC, CAF, threads, vectors,…
Combinations of the above.

User “skins”:
C++/C, Python
Fortran.
Web, CCA.

Motivation For Trilinos
Sandia does LOTS of solver work.
When I started at Sandia in May 1998:

Aztec was a mature package. Used in many codes.
FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many other
codes were (and are) in use.
New projects were underway or planned in multi-level preconditioners,
eigensolvers, non-linear solvers, etc…

The challenges:
Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

ASCI (now ASC) was forming software quality assurance/engineering
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

Evolving Trilinos Solution
Trilinos1 is an evolving framework to address these challenges:

Fundamental atomic unit is a package.
Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
Provides a common abstract solver API (Thyra package).
Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

Specifies requirements and suggested practices for package SQA.
In general allows us to categorize efforts:

Efforts best done at the Trilinos level (useful to most or all packages).
Efforts best done at a package level (peculiar or important to a package).
Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

Trilinos Package Summary

StokhosStochastic PDEs

RythmosTime Integration

AmesosDirect sparse linear solvers

Epetra, Teuchos, PlirisDirect dense linear solvers

AnasaziIterative eigenvalue solvers

Epetra, Jpetra, TpetraLinear algebra objects

Core
Thyra, Stratimikos, RTOpAbstract interfaces

Zoltan, IsorropiaLoad Balancing

PyTrilinos, WebTrilinos, Star-P, ForTrilinos, CTrilinos“Skins”

Teuchos, EpetraExt, Kokkos, Triutils, TPIC++ utilities, I/O, thread API

MOOCHO, AristosOptimization (SAND)

NOX, LOCANonlinear system solvers

MerosBlock preconditioners

ML, CLAPSMultilevel preconditioners

AztecOO, IFPACKILU-type preconditioners

AztecOO, Belos, KomplexIterative (Krylov) linear solvers

Solvers

MoertelMortar Methods

SacadoAutomatic Differentiation
Methods

phdMesh, IntrepidMeshing & Spatial Discretizations
Discretizations

Package(s)Objective

Registered Users by Type (2277 Total)

1310

397

270

247
53

University
Government
Personal
Industry
Other

Registered Users by Region (2277 Total)

823

733

234

325

104

32

26

Europe

US (except Sandia)

Sandia (includes
unregistered)
Asia

Americas (except US)

Australia/NZ

Africa

Trilinos Statistics

Stats: Trilinos Download Page 02/06/2008.

Trilinos Statistics by Rele

22

22

16

5.48

4.40

9

27

26

26

17

7.16

7.36

11

30

29

27

18

8.95

10.21

19

33

32

30

27

9.54

19.25

28

35

38

33

31

10.0

11.51

33

36

0 5 10 15 20 25 30 35 40

Packages in
repository

Limited release
packages

General release
packages

Source lines (100K)

Downloads (100s)

Automated
Regression Tested

packages

Developers

Counts

Release 8.0 (9/0
Release 7.0 (9/0
Release 6.0 (9/0
Release 5.0 (3/0
Release 4.0 (6/0

Trilinos Scope Changing

Six Capability Areas/Leaders:
Framework, Tools & Interfaces (J. Willenbring).
Discretizations (P Bochev).
Geometry, Meshing & Load Balancing (K. Devine).
Scalable Linear Algebra (M. Heroux).
Linear & Eigen Solvers (J. Hu).
Nonlinear, Transient & Optimization Solvers (A. Salinger).

Described in The Changing Scope of Trilinos, M. Heroux
Sandia Tech report SAND2007-7775.

SW Engineering in Scientific SW

Much to Learn from SW Engineering discipline, but…
Simple translation of techniques is inappropriate.
Important goal for Trilinos: Adapt industry techniques to
our needs.
One important step forward: A Lifecycle Model.

(Typical) Project Lifecycle

Project
Conception

Support &
Maintenance

Research &
Development Production

End
of

Life

Scientific Research and Life Cycle
Models

Life Cycle Models are generally developed from the point
of view of business software.

Little consideration is given to algorithmic development.

Traditional business execution environment is traditional
mainframe or desktop, not parallel computers.

Traditional development “techniques” are assumed.

Research Software needs a different
model

Research should be “informal”:
Allow external collaborators, students, post-docs, etc.
Allow changes of direction without seeking permission
Should use modern software development paradigms

• i.e. Lean/Agile methods
Must be verified more than validated

Production code must:
Have formality appropriate to risks,
Be Complete (documentation, testing, …),
Be “user proofed”,
Be platform independent (as necessary),
Be validated not just verified.

“Promotional” Model

Phase k Phase k+1Promotional
Event

•Lower formality
•Fewer Artifacts
•Lean/Agile

•Higher formality
•Sufficient Artifacts
•Bullet proof
•Maintainable

Trilinos Lifecycle Model

Three phases:
Research.
Production Growth.
Production Maintenance.

Each phase contains its own lifecycle model.
Promotional events:

Required for transition from one phase to next.
Signify change in behaviors and attitude.

Phase assigned individually to each package.

The Trilinos Software Lifecycle Model, James M. Willenbring and
Michael A. Heroux and Robert T. Heaphy, Proceeding of the
29th International Conference on Software Engineering, May
2007

Lifecycle Phase 1: Research

Conducting research is the primary goal.
Producing software is potentially incidental to
research.
Any software that is produced is typically a “proof
of concept” or prototype.
Software that is in this phase may only be released
to selected internal customers to support their
research or development and should not be treated
as production quality code.

Phase 1 Required Practices

The research proposal is the project plan.
Software is placed under configuration control as
needed to prevent loss due to disaster.
Peer reviewed published papers are primary
verification and validation.
The focus of testing is a proof of correctness, not
software.
Periodic status reports should be produced,
presentation is sufficient.
A lab notebook, project notebook, or equivalent is
the primary artifact.

Node Architecture Studies: Mantevo Project

Node Architectures

Intel Clovertown
AMD Barcelona
Sun Niagara2

Node Architecture Codes
HPCCG:

“Closest thing to an unstructured FEM/FVM code in 500 semi-colons or
fewer.”

pHPCCG:
Compile-time parametrized FP (float, double, etc) and int (32, 64, etc).

Epetra Benchmark Tests:
Trilinos Performance-determining kernels.

Vector Multi-update:
Basic kernel in explicit dynamics (generalized DGEMV).

Tramonto:
Polymer test case.

LAMMPS: Molecular Dynamics.

MPI-Only

LAMMPS Strong Scaling Speedup

0

1

2

3

4

5

6

7

8

1 2 4 8

of MPI tasks (cores)

strong eam
strong lj
strong rhodo

The incumbent: Always present.
Sometimes sufficient.
Hybrid: MPI-only + MPI/threads?

Programming Model Translation

CR4 MXV N=1e5, NZR=2

0.038
0.039
0.04

0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049

mpi*p
1*2

mpi*p
1*4

mpi*p
1*8

mpi*p
2*1

mpi*p
2*2

mpi*p
2*4

mpi*p
4*1

mpi*p
4*2

mpi*p
8*1

MPI*pthread

Been here before:
12-15 years ago: SMP nodes.
MPI vs.
MPI/OpenMP/Pthreads.

Lesson learned:
Nothing magic about
programming model.
For SMP model to matter:
Algorithms must exploit shared
memory.

AMD Barcelona vs Intel Clovertown
HPCCG on Barcelona

0

500

1000

1500

2000

2500

1 2 4 8

MPI Processes

75-cubed

100-cubed

pHPCCG Clovertown float vs double

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8

of cores

HPCCG float

HPCCG double

Barcelona HPCCG
Courtesy Kevin Pedretti

Bandwidth penalty.
Always an issue, but still
improvement with single core.
Multicore: Wasted cores.

AMD better balanced.
Page placement…

Barcelona HPCCG (fixed memory

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1 2 4 8

MPI processes

75-cubed
100-cubed

AMD Barcelona Memory Placement
HPCCG on Barcelona

0

500

1000

1500

2000

2500

1 2 4 8

MPI Processes

75-cubed

100-cubed

Barcelona HPCCG
Courtesy Kevin Pedretti

Poor page placement impact.
Memory policies: Need work.
I/O swap space.

pHPCCG Clovertown Results
pHPCCG float vs double

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8

of cores

HPCCG float

HPCCG double

Float: better rates and scaling.

pHPCCG Niagara Total
MFLOPS/s

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16 32 48 64

MPI Processes

Slow Float
Fast Float
Clovertown Float
Slow Double
Fast Double
Clovertown Double

Niagara2 Results

• Fast=Full memory
banks.

• Slow=Half populated
memory banks.

Multi-threading provides:
Latency-hiding.
Interesting architecture
blend.

Epetra Benchmark
Tests

Focused on core Epetra kernels:
Sparse MV, MM.
Dot products, norms, daxpy’s.

spMM:
Better performance.
Better core utilization.

Solver Kernel Performance: Clovertown
490K Eq, 12.25M NZ per core

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

1 2 4 8

Number of Cores

SpMV

SpMM2

SpMM4

SpMM8

NORM

DOT

AXPY

Epetra Kernels on Niagara2
Epetra Kernels Niagara2

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

MPI Processes

SpMV
SpMM2
SpMM4
Norm2
Dot
Update

24.3Update

14.0Dot

26.3Norm2

21.6SpMM4

29.8SpMM2

33.4SpMV

Speedup 64/1

Tramonto on Clovertown
275.9 66.9

20.6

13.0

9.4

12.7

10.3

7.7 7.6 7.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 2 4 6 8

MPI Processes

Setup Time

Solve Time

Tramonto Clovertown ResultsSuper-linear speedup
(Setup phase)

Sub-linear speedup
(Solve phase)

Setup (The application code itself): Excellent MPI-only.
Solve (Trilinos libraries): Much poorer.

Tramonto Niagara2 Results
Tramonto Niagara2 Timings

4176.2 686.8

160.4

57.4

38.6
29.3

22.3 18.6 18.2
10.9 14.8 13.6 12.5

102.0

49.5

28.4

14.1 10.7 8.7 7.9 7.0 7.0 7.9 7.6 8.1 9.1

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 12 16 24 32 36 48 52 56 64

MPI processes

Setup Time

Solve
Time

Super-linear/linear speedup
(Setup phase)

Linear/sublinear speedup
(Solve phase)

Vector Multi-update
(courtesy H.C. Edwards)

Cores compete for access to main memory
Consider: x[i] = f(a[i], b[i], c[i], d[i], …); parallel on ‘i’

Compare performance of ‘Array’ versus ‘Chunk’ data structures

x a b c d

x a b c d

x a b c d

x a b c d

x a b c d

Partitioned data for
parallel processing

Chunked
column

data

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

Chunked
row data

Chunked Data Structures Experiment
Clovertown – Scaling

Flat-Array 1,4,8 threads vs. Chunk-Row 1,4,8 threads

1.00E-05

1.00E-04

1.00E-03

1.00E-02

G
rin

d
Ti

m
e

2 5 10 20 50 100

Number of Arrays

Multiarray Add "Grind Time" on Clovertown
Chunk Size = 500

Flat-Array / 1 Thread

Flat-Array / 4 Thread

Flat-Array / 8 Thread

Chunk-Row / 1 Thread

Chunk-Row / 4 Thread

Chunk-Row / 8 Thread

log scale

Chunk-Row / 1 core
better than

Flat-Array / 8 cores

Chunked Data Structures Experiment
Barcelona – Scaling

Flat-Array 1,4,8 threads vs. Chunk-Row 1,4,8 threads

1.00E-05

1.00E-04

1.00E-03

1.00E-02

G
rin

d
Ti

m
e

2 5 10 20 50 100

Number of Arrays

Multiarray Add "Grind Time" on Barcelona
Chunk Size = 500

Flat-Array / 1 Thread

Flat-Array / 4 Thread

Flat-Array / 8 Thread

Chunk-Row / 1 Thread

Chunk-Row / 4 Thread

Chunk-Row / 8 Thread

log scale

Chunk-Row / 1 core
nearly same as

Flat-Array / 8 cores

Unnatural Data Layouts: Observations
Unnatural layouts are troublesome.
Have been around a long time: Dense BLAS

Actual compute layout different than user’s
Compute rich: Translation done in real time.

Sparse, vector computations much
more challenging:

Translation (from natural
to unnatural) cannot be done in real time.
Forces:

• User to deal with unnatural layout or
• Abstraction layer with temporal or spatial

overheads.
Unnatural layout may have fastest kernel
performance, but:

• Overhead of translation.
• Complexity of use.

Require careful interface design.

x a b c d

Natural layout
x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

Chunked
row layout
(unnatural)

Observations (So Far) for MPI
Applications

1. MPI-only is a legitimate approach and the default.
2. Multicore will (probably, almost for-sure, very, very likely)

change how we program the node.
Opinions on this are at both ends of spectrum and everywhere in
between.
Uncomfortable defendinng MPI but: Bold predictions of MPI-only
demise so far have proved false.

3. Simple programming model translation is ineffective.
4. Runtime environment is fragile: process/memory placement.
5. Bandwidth-intensive code problematic: Ineffective core use.

Opportunities (So Far) for MPI
Applications

Node architectures have the following trends:
Affinity for unit-stride memory access.
Essential benefit for using 32-bit float vs. 64-bit:

• Storage/bandwidth: halved/doubled, resp.
• Ops/sec: Double (increasing use of vector units, GPUS).

Opportunities for fine-grain shared memory parallel node
algorithms.

What we can do:
Access by unit stride if possible, even long vectors.
Explore the use of 32-bit float for steps not needing 64-bit.
Explore shared memory algorithms:

• Not just a simple recasting of MPI processes (unless load imbalance
an issue).

• Improved algorithm, scheduling, etc.

Library Preparations for New Node
Architectures (Decision Made Years Ago)

We knew node architectures would change…
Abstract Parallel Machine Interface: Comm Class.
Abstract Linear Algebra Objects:

Operator class: Action of operator only, no knowledge of how.
RowMatrix class: Serve up a row of coefficients on demand.
Pure abstract layer: No unnecessary constraints at all. Temp

Model Evaluator:
Highly flexible API for linear/non-linear solver services.

Templated scalar and integer types:
Compile-time resolution float, double, quad,… int, long long,…
Mixed precision algorithms.

Library Effort in Response to
Node Architecture Trends

Block Krylov Methods (Belos & Anasazi):
Natural for UQ, QMU, Sensitivity Analysis…
Superior Node and Network complexity.

Templated Kernel Libraries (Tpetra & Tifpack):
Choice of float vs double made when object created.
High-performance multiprecision algorithms.

Threaded Comm Class (Tpetra):
Intel TBB support, compatible with OpenMP, Pthreads, …
Clients of Tpetra::TbbMpiComm can access static, ready-to-work thread pool.
Code above the basic kernel level is unaware of threads.

Specialized sparse matrix data structures:
Sparse diagonal, sparse-dense, composite.

MPI-only+MPI/PNAS
Application runs MPI-only (8 flat MPI processes on dual quad-core)
Solver runs:

• MPI-only when interfacing with app using partitioned nodal address space (PNAS).
• 2 MPI processes, 4 threads each when solving problem.

Take Home Points
Trilinos is a large and growing “project of projects”.

Trilinos 9.0 (Sep 2008) will contain many new packages.
Trilinos has new strategic leadership in place to handle growth.

Software Engineering processes (when properly adapted) can
positively impact algorithms R&D.

Trilinos Lifecycle Model is important milestone for us.
New node architectures offer opportunities and challenges.

Characterization continues.
We prepared for them from the beginning.

Vast majority of solver code will transparently port to new nodes.
We are working toward effective use today.

Trilinos 9.0 will contain:
• Thread programming support.
• Full multi-precision support.
• Mixed precision algorithms.

Availability of Trilinos 9.0 will enable variety of node programming
approaches for new algorithm development.

For More Information

Trilinos:
http://trilinos.sandia.gov

Tramonto:
http://software.sandia.gov/tramonto

Mantevo:
http://software.sandia.gov/mantevo (under construction).

My website:
http://www.cs.sandia.gov/~maherou

Extra Slides

Fluid Density Functional Theories:
Tramonto

Collaborators

Laurie Frink:
Primary developer of Tramonto.
Expertise: computational modeling of inhomogeneous fluids.

Andy Salinger:
Other primary Tramonto developer.
Expertise: discretization methods and parallel application design.

My Role:
Solver algorithms.
Parallel implementation.

Complex fluid systems…

Cell membranes

Clay-polymer nanocomposites
(Univ. College London exclaim.org.uk)

Colloidal/Amphiphilic systems
(www.science.duq.edu)

Biofilms
(www.zetacorp.com) Porous Media

(www2.bren.ucsb.edu/~keller/micromodels.html)

Biological Macromolecules
(www.hmi.de/people/kroy/rota.html)

Problem characteristics
Interfacial fluids
Multiple length scales
Phase complexity

DFT Acronym
Quantum mechanical DFTs (QM-DFTs):

aka electronic DFTs.
Related but not discussed today.

Fluid DFTs (F-DFTs):
aka classical DFTs.
We focus on this.

Discrete Fourier Transforms (DFTs for F-DFTs):
Possible to use Fourier Transforms to work in frequency space.
FastTram: A version of Fourier Transform version of Tramonto (Mark Sears).
Restricted applicability: BCs, preconditioning.

Real-space approach: Use spatial variables.
We focus on this.
From this point on: DFT means real-space F-DFTs.

DFT for fluids

Ω[ρ(r)] = Fid + Fhs + FvdW + Fc + Fassoc + ρ(r)[V (r) −μ]∫

The free energy functional … (a) The theory is exact, but the
precise nature of the equations often cannot be derived.
(b) Approximate functionals have been developed often
as perturbations to a hard sphere reference system.

Ideal
gas

Hard
sphere

Dispersion
attractions

Associations
(H-bonding)

Coulomb
interactions

Legendre
Transform from
Canonical to
Grand canonical
ensemble

[Applied field]

δΩ
δρ(r) μ,T

= 0

We seek the the stationary states of the free energy functional with the
understanding that the thermodynamically relevant state should be found
at the global free energy minimum.

Properties of F-DFT systems
DFT - Integral equations of finite range

(matrix density is system size dependent)
PDE - matrix density independent of system size.

DFT- Inter-physics coupling dominates
PDE - Inter-nodal coupling dominates

DFT - Stencils based on physical constants
PDE - Stencils based on nearest neighbors

DFT - May have large numbers of DOF per node
HS (3D) 10+
Polymer (20 beads) 42+
Most DOFs are “constraints” on densities.

PDE - Usually a few DOFs per node

General Segregation Strategy

Observations:
Internodal coupling is weak.
Some DOFs have simple “one-way” dependence.

Idea:
Organize DOFs physics-first.
Reorder blocks of DOFs to expose one-way dependences.
Apply 2-by-2 block partitioning such that one-way dependencies
are in A11 block.
Use Schur complement on A22 block.

General Strategy

Identify and order DOFs in block so that easy to apply.
Implicitly (or explicitly in some instances) form Schur complement system:

Solve Schur system via preconditioned GMRES.
Solve finally for .

11A 1
11A −

1 1
2 22 21 11 12 2 2 21 11 1()Sx A A A A x b A A b− −= − = −

1x

Second class of Problems:
Self-assembly of lipid bilayers

8-2-8 Chain

A 2nd Case…CMS-DFT / polymers

ρα (r) = ρα
b

Nα

Gs(r)Gs
i(r)

e−βUα (r)
s=1

Nα

∑

Uα (r) =Vext (r)− cαγ (r − r')[ργ (r')− ργ
b]∫

γ
∑ dr'

Gs(r) = e−βUα ,s w(r − r')Gs−1(r')dr'∫
Gs

i(r) = e−βUα ,s w(r − r')Gs+1
i (r')dr'∫

G1 =GN
i = e−βU(r)

)|(|
4

1)(2 σδ
πσ

−= rrw

Chain density distribution

Mean field

Chain Architecture
(freely-jointed chains)

c(r) = crep (r) − uatt (r)
PRISM
Theory

RPM
Approx

Chandler, McCoy, Singer (1986);
McCoy et al. (1990s)

• developed for polymers
• chains are flexible
• 2nd order density expansion

Lipid Bi-Layer Problem

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

• Diagonal-like.
• One non-zero per row/col

in long dimension.
• Like Prolongation/restriction

Operators?

• 3rd block: CMS Field
• 4th block: Prim Densities
• Diagonal matrices.
• No spatial coupling.

• Polymer Bead Equations.
• Block Bi-diagonal.
• Akin to explicit time stepping.
• Easily invertible in parallel.

0

0 0
0 0

2n

• There is only ONE interesting block in this whole matrix.
• F describes CMS field dependence on primitive densities.
• 2.5 radius integral at each grid node (mesh independent).
•Not sparse, nor dense. Constant coefficient.

σ

Lipid Bi-Layer Problem

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

• F has strong overlap:
Distribute separate from rest of problem.

A11 A12

A21 A22

• Last layer of structure: 2-by-2 partitioning.
• A11 solve easily applied in parallel.
•Apply GMRES to S = A22 – A21*inv(A11)*A12
•GMRES sees 6.6x reduction in problem size.
• Reduction in size greater for longer chains.
• Still need a preconditioner for S.

Preconditioner for S

FA22 = D11

D21 D22

FA22 ≈ A22 =
D11

0 D22

• D11, D22 = O(1), D21 = O(1e-10)
• Ignore D21 for preconditioning.
• P(S) requires

• 2 diagonal scalings,
• matvec with F.

• All distributed operations.

Parallel Scaling - CMS-DFT

Scaling with chain length

Stats for Polymer A11 block

38 DOFs in A11 : 37 Epetra_CrsMatrix objects.
ApplyInverse call requires 38 parallel vector updates
interleaved with 37 matvecs.
This is for 18-length polymer chain.
100-length chain: 199 Epetra_CrsMatrices.

Summary

Emphasis on algorithms has impacted applications
work in a significant way.

Many complex 3D systems can be studied now.

Much more work to be done
• Parallel Partitioning
• DFTs with greater complexity
• Optimization of preconditioners
• Solution complexity and physical phases
• Design applications
• Coupled (multiscale) methods
• Other better approaches

Summary, cont.
New family of scalable solvers for complex fluid systems in Tramonto.
Properties:

No tuning parameters.
Robust to processor count increase.
5-20 times memory use reduction over previous approaches.
O(10)-O(100) reduced implicit problem size.
Nearly linear scalability in: processor count, mesh density,
polymer chain length.
Candidate for petascale class computing.

Enables:
Fundamentally new calculations for important bio problems. Quotes from Physical
Review Letters referees on computations using these solvers:

• “This is (to my knowledge) the first time [Fluid] DFT has been used to analyze the
important problem of pore structure in biological membranes.”

• “This appears to me to be a highly significant advance in theoretical biophyics, even by
the high standards of Physical Review Letters. I suspect that this Sandia group is the only
one in the world to have developed classical DFT methods sufficiently sophisticated to
deal with such a remarkably complex problem in colloidal physics…”

• “…I would then recommend at least a footnote that gives some introductory hint as to
how they have managed to cope numerically with such
complex structures; presumably a 3d finite element method with
all manner of tricks?

The “tricks” are the solvers.
Parallel Segregated Schur Complement Methods for Fluid Density Functional
Theories, M. Heroux, L. Frink, A. Salinger to appear in SIAM SISC.
Tramonto first public release this year.

Cell membranes

Colloidal/Amphiphilic systems
(www.science.duq.edu)

Biological Macromolecules
(www.hmi.de/people/kroy/rota.html)

http://software.sandia.gov/tramonto

