

Scientific Discovery through Advanced Computing Program: SciDAC Update

Steven L. Lee

DOE Program Manager, Office of Science Advanced Scientific Computing Research

August 14, 2012

Specific goals and objectives for the SciDAC Institutes:

- Tools and resources for lowering the barriers to effectively use state-of-the-art computational systems;
- Procedures for taking on computational grand challenges across different science application areas;
- Procedures for incorporating and demonstrating the value of basic research results from Applied Mathematics and Computer Science; and
- Plans for building up and engaging our nation's computational science research communities.

FY11 Program Funding – Office of Advanced Scientific Computing Research (ASCR)

- Up to \$13M/year for 5 years may be available to support between 1 and 5 SciDAC Institutes
- DOE National Laboratories, Universities, Industry and other organizations may apply

Timeline

- Issued February 23, 2011
- Letters of Intent (LOI), though not required, are strongly encouraged March 30, 2011
- Proposal due date May 2, 2011
- FY11 Awards for 3 SciDAC Institutes completed July 2011
- New SciDAC Institutes solicitation for Scientific Data Management, Analysis and Visualization
- ✓ FY12 Posted Sep 16; LOIs due Oct 12; Proposals due Nov 9; Awarded in Feb 2012

The four SciDAC Institutes are large team projects involving National Laboratory, University and Industry collaborators

	FASTMath Director – Lori Diachin	QUEST Director – Habib Najm	SDAV Director – Arie Shos <u>hani</u>	SUPER Director – Robert Lucas
	Scalable solvers & discretizations	Uncertainty Quantification	Scalable data management, analysis & visualization	Performance tools & code optimization
Lawrence Livermore (CA)		Sandia (CA)	Lawrence Berkeley (CA)	Univ of Southern CA
Argonne (IL)		Los Alamos (NM)	Argonne (IL)	Argonne (IL)
Lawrence Berkeley (CA)		Duke University (NC)	Lawrence Livermore (CA)	Lawrence Berkeley (CA)
Sandia (CA & NM)		MIT (MA)	Los Alamos (NM)	Lawrence Livermore (CA)
RPI (NY)		Univ of Southern CA	Oak Ridge (TN)	Oak Ridge (TN)
		Univ of Texas, Austin (TX)	Sandia (NM)	Univ of CA, San Diego (CA)
ſ			Univ of CA, Davis (CA)	Univ of Maryland (MD)
	FASTMath - Framework	orks, Algorithms &	Georgia Tech (GA)	Univ of North Carolina (NC)
	QUEST - Quantification of Uncertainty in		North Carolina St Univ (NC)	Univ of Oregon (OR)
	Extreme-Scale	Computations	Northwestern (IL)	Univ of Tenn, Knoxville (TN)
	<u>SDAV</u> - Scalable Data Management, Analysis & Visualization SUPER - Institute for Sustained Performance.		Ohio State Univ (OH)	Univ of Utah (UT)
			Rutgers Univ (NJ)	
	Energy & Resilie	ence	Univ of Utah (UT)	
			Kitware, Inc (NY)	Industry

FASTMath helps application scientists overcome two fundamental challenges Director: Lori Diachin at Lawrence Livermore National Laboratory

- 1. Improve the quality of their simulations
 - Increase accuracy
 - Increase physical fidelity
 - Improve robustness and reliability

- 2. Adapt computations to make effective use of Leadership Computing Facilities
 - Million way parallelism
 - Multi-/many-core nodes

FASTMath addresses both challenges by focusing on the interactions among mathematical algorithms, software design, and computer architectures

FASTMath encompasses three broad topical areas

Tools for Problem Discretization

- Structured grid technologies
- Unstructured grid technologies
- Adaptive mesh refinement
- Complex geometry
- High-order discretizations
- Particle
 methods
- Time integration

All FASTMath technologies will focus on performance engineering for multi-/many-core architectures

Data Locality

Hierarchical partitioning and local data ordering methods

Shared efficient data layouts in software packages to prevent re-organization

Code transformation systems, domain specific language extensions to gain performance. while maintaining reusability

Coordinated parallelism between different levels (MPI, node, instruction)

FASTMath Program Manager: S. Lee

See <u>http://www.fastmath-scidac.org</u>

SDAV Goals

- To actively work with application teams to assist them in achieving breakthrough science
- To provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community running on Leadership Class machines
- To use existing robust tools to the extent possible and develop/adapt tools on as as-needed basis

SDAV tools have been developed over many years – robust, well-documented. Tools are being enhanced in several ways:

- Scale tools for high-parallelization levels
- Adapt tools to take advantage of new hybrid hardware (CPUs + GPUs)
- Minimize data movement between nodes
- Adapt tools for in-situ processing and analysis
- Compress and index data for both in-situ and post-processing analysis

SDAV Goals

- To actively work with application teams to assist them in achieving breakthrough science
- To provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community running on Leadership Class machines
- To use existing robust tools to the extent possible and develop/adapt tools on as as-needed basis

Data Management In-Situ Processing & Code Coupling • ADIOS • Glean Indexing • FastBit In-Situ Data Compression • ISABELLA Parallel I/O & File Formats • PnetCDF	Data AnalysisStatistical & Data Mining• NU-MinebenchImportance-Driven Analysis• Domain-knowledge directed• Geometry-basedTopological Methods• In-Situ Topology• Feature-based analysis• High-frequency analysis & tracking	VisualizationParallel tools• Vislt• ParaViewVTK-m frameworkFlow Visualization methodsRenderingEnsembles, Uncertainty &Higher-Dimensional methodsSee http://sdav-scidac.org
BP-filesHDF5	SDAV Program Manager: Lucy Nowell	

QUEST objectives

- Deliver expertise, advice and state of the art UQ tools on advanced computational architectures
- Shepherd forward QUEST repertoire of UQ theory, algorithms, and software, and enhancing their effectiveness for relevant benchmark problems

QUEST vision

- 1. Well-founded setup of the UQ problem
- 2. Characterization of the input space given available data
- 3. Local and global sensitivity analysis
- 4. Adaptive dimensionality and order reduction
- 5. Forward and inverse propagation of uncertainty
- 6. Handling of application code failures, missing data & fault tolerance
- 7. Model comparison, validation, selection, and averaging

QUEST tools include: DAKOTA, UQTk, QUESO, GPMSA

QUEST Program Manager: S. Lee

See <u>http://quest-scidac.org</u>

SUPER – Institute for Sustained Performance, Energy and Resilience Director: Robert Lucas at University of Southern California

SUPER Goal

Ensure DOE's computational scientists can successfully exploit the emerging generation of high performance computing (HPC) systems.

Research Activities:

- Performance Portability Extend performance measurement, modeling and auto-tuning technology to petascale & heterogeneous computing systems
- Energy Efficiency Investigate application-level energy efficiency techniques
- Resilience Explore strategies to enable application resilience against faults
- Optimization Develop strategies to collectively optimize performance, energy efficiency, and resilience

Collaboration:

- Application Engagement Work on science applications for tool development
- Tool Integration Create end-to-end, integrated performance tool suite
- Outreach Web-based & hand-on tutorials for science community impact

SUPER Program Manager: Ceren Susut

See <u>http://super-scidac.org</u>

ASCAC - August 14-15, 2012 11

<u>Grand Challenge</u> Goal: Leverage U.S. leadership in advanced computing, modeling & simulation to deploy affordable, user-friendly, accessible platforms for broad use across America's energy sector

Educational Colloquiums – Tuesday, July 31

Panels - Wednesday AM, August 1

- DOE Assistant Secretaries Panel on DOE Applied Technology Programs (EERE, NE, NRAP, OE)
- Energy Innovation: Success Stories
- Energy Innovation: Potential and Challenges

Q&A session with Secretary Chu – Wednesday Lunch, August 1

Breakout Sessions – Wednesday PM through August 2

- DOE Applied Programs
- Current Users Grand Challenges
- Potential Users Grand Challenges

Outcome: Workshop Report due by November 1

Partnerships for Science

- SciDAC Application Partnerships with SC Offices (Randall Laviolette, Ceren Susut)
- DOE Applied Offices
- Industry

SciDAC-3 Principal Investigator Meeting

- Focused on PIs, Institutes and projects funded in this third round of SciDAC
- September 10 12 in Rockville, MD
- Conference approval is pending

New SciDAC-3 Program is currently comprised of SciDAC Institutes and Application Partnerships over the next 5 years: 2011 – 2016.

- "The overall portfolio & management of Institute awards is expected to cover a significant portion of DOE computational science needs on current and emerging computational systems"
- Basic research programs prepare the way for SciDAC-4 & Extreme-Scale Institutes

