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Outline

 Parallel Computing Trends and MPI+X.
* Reasoning about Parallelism.

e Programming Languages.

* Resilience.

Sandia
m National

Laboratories




;" Stein’s Law: If a trend cannot continue, it will stop.

Herbert Stein, chairman of the Council of Economic Advisers under Nixon and Ford.

What is Different: Old Commodity Trends Failing

» Clock Speed. Clock Frequency
— Well-known. pelet |34
— Related: Instruction-level | £, DTS o
Parallelism (ILP). ] el RAREREY
* Number of nodes. /‘}%'/ !
_ Connecting 100K nodes |
IS complicated. s 1904 100 1958 2000 2003 2004 2008 2008 2010 2012
— Electric bill is large. -
° Memory per core. Internfational Solid-State Circuits Conference (ISSCC 2012) Report
http://isscc.org/doc/2012/2012_Trends.pdf

— Going down (but some
hope in sight).
« Consistent performance.

— Equal work 2 Equal execution time.
» Across peers or from one run to the next.
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Big Concern: Energy Efficiency.

e Thread count.

— Occupancy rate.

— State-per-thread.
e SIMT/SIMD (Vectorization).
e Heterogeniety:

— Performance variability.

— Core specialization.

 Memory per node (not core).
— Fixed (or growing).

Take-away: Parallelism is
essential.

2= New Commodity Trends and Concerns Emerge

Core Count
70

60

50

Core Count
W -
o o
il il

r -
b

no
(=)
1

»

+ L 3 +
B 4;’3__)/‘;' i $ $
t L 2
ob—t—v——¢ ¢+ ¢ ¢ ¢ T | 3 %
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Year

Total Power Consumption

250
g‘ 200 L 4
k5 * * *
‘gz 150 4 * i
> g ¢ o . 3
S 100
el . ~
2 ¢ * ? *
o 3 < 4
*
~L_ * ¢ . A * 90
01l ® 8 o ¢ @ * + y | & *
1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year

International Solid-State Circuits Conference (ISSCC 2012) Report
http://isscc.org/doc/2012/2012_Trends.pdf




= LS
Challenge: Achieve Scalable 1B-way Concurrency

» 10'8 Ops/sec with 10° clock rates: 10° Concurrency.
* Question: What role (if any) will MPI play?

« Answer. Major role as MPI+X.
— MPI: Today’s MPI with several key enhancements.
— X! Industry-provided; represents numerous options.
 Why: MPI+X is leveraged, synergistic, doable.
— Resilience: Algorithms + MPI/Runtime enhancements.
— Programmability: There is a path.

e Urgent: Migration to manycore must begin in earnest.

— We can’t wait around for some magic exascale
programming model.

— We have to begin in earnest to learn about X options and
deploy as quickly as possible.
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' Reasons for SPMD/MPI Success?

 Portability? Standardization? Momentum?  Yes.
« Separation of Parallel & Algorithms

concerns? Big Yes.
* Preserving & Extending Sequential
Code Investment? Big, Big Yes.

 MPI was disruptive, but not revolutionary.
— A meta layer encapsulating sequential code.
* Enabled mining of vast quantities of existing code and logic.
— Sophisticated physics added as sequential code.
» Ratio of science experts vs. parallel experts: 10:1.

» Key goal for new parallel apps: Preserve these dynamics.
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Three Parallel Computing Design Points

* Terascale Laptop: Uninode/Manycore

» Petascale Deskside: Multinode-Manycore

e Exascale Center: Manynode-Manycore

Goal: Make
Petascale = Terascale + more

_ Common Element
Exascale = Petascale + more

Applications will not adopt an exascale programming

strategy that is incompatible with tera and peta scale. ) .
- ationa
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=" MPI+X Parallel Programming Model:
Multi-level/Multi-device

HPC Value-Added Inter-nodelinter-device (distributed)

parallelism and resource management Message Passing

network of l
computational
nodes Node-local control flow (serial)
Bro_ad_Co_mEuFity ________ £ _________________
Efforts 4 )
Intra-node (manycore)
computational parallelism and resource Threading ‘
node Wlth management
manycore CPUs \_ )
and / or l
GPGPU Stateless, vectorizable, efficient
computational kernels stateless kernels |
run on each core
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Incentives for MPI+X

» Almost all DOE scalable applications use MPI.
— MPI provides portabllity layer.
— Typically app developer accesses via conceptual layer.
— Could swap in another SPMD approach (UPC, CAF).
— Even dynamic SPMD is possible. Adoption expensive.
e Entire computing community is focused on X.
— It takes a community...
— Many promising technologies emerging.
— Industry very interested in programmer productivity.
« MPI and X interactions well understood.
— Straight-forward extension of existing MPI+Serial.
— New MPI features will address specific threading needs.

i
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Effective node-level parallelism: First priority

 Future performance is mainly from node improvements.
— Number of nodes is not increasing dramatically.

 Application refactoring efforts on node are disruptive:
— Almost every line of code will be displaced.
 All current serial computations must be threaded.

— Successful strategy similar to SPMD migration of 90s.
» Define parallel pattern framework.
* Make framework scalable for minimal physics.
* Migrate large sequential fragments into new framework.

* If no node parallelism, we fall at all computing levels.
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2D PDE on Regular Gric

(Standard Laplace)
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SPMD Patterns for Domain Decomposition

* Single Program Multiple Data (SPMD):
— Natural fit for many differential equations.

— All processors execute same code, different subdomains.
— Message Passing Interface (MPI) is portability layer.

e Parallel Patterns:
— Halo Exchange:

» Written by parallel computing expert:. Complicated code.
» Used by domain expert: DoHaloExchange() - Conceptual.

 Use MPI. Could be replace by PGAS, one-sided, ...
— Collectives:
» Dot products, norms.
e All other programming:
— Sequential!
— Example: 5-point stencil computation is sequential.
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2D PDE on Regular Grid (4™ Order Laplace)
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Thinking In Patterns

click to LOOK INSIDE!

* First step of parallel application design:

— Identify parallel patterns. PATTERNS
FOR PARALLEL

« Example: 2D Poisson (& Helmholtz!)

— SPMD:
» Halo Exchange.
» AlIReduce (Dot product, norms).
— SPMD+X:
* Much richer palette of patterns.
» Choose your taxonomy.

« Some: Parallel-For, Parallel-Reduce,
Task-Graph, Pipeline.
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' Thinking in Parallel Patterns

* Every parallel programming environment supports basic
patterns: parallel-for, parallel-reduce.
— OpenMP:
#pra
or (I=0; i<n; ++i)

— Intel TBB:
parallel_for(blocked range<int>(0, n, 100), loopRangeFn(...));
— CUDA:

loopBodyFn<<< nBlocks, blockSize >>> (...);
e Thrust, ... C.....do parallel SAXPY

° Cray AUtO’[aSking (Aprll 1989) gm:gilDOP:II;/I_Ai:g)RED(N,ALPHA, X,Y)
do10i=1,n
y(i) = y(i) + alpha*x(i)
10 continue
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Why Patterns

e Essential expressions of concurrency.
e Describe constraints.
 Map to many execution models.

« Example: Parallell-for.
— Can be mapped to SIMD, SIMT, Threads, SPMD.
— Future: Processor-in-Memory (PIM).

e Lots of ways to classify them.
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Domain Scientist’s Parallel Palette

* MPI-only (SPMD) apps:
— Single parallel construct.
— Simultaneous execution.
— Parallelism of even the messiest serial code.

* Next-generation PDE and related applications:

— Internode:
* MPI, yes, or something like it.
» Composed with intranode.
— Intranode:
* Much richer palette.
* More care required from programmer.

* What are the constructs in our new palette?
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Obvious Constructs/Concerns

 Parallel for:
forall (1, J) in domain {...}
— No loop-carried dependence.
— Rich loops.

— Use of shared memory for temporal reuse, efficient
device data transfers.

 Parallel reduce:
forall (i, J) in domain {
xnew(i, j) = ...;
delx+= abs(xnew(i, j) - xold(i, |));
}
— Couple with other computations.
— Concern for reproducibility.
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Other construct: Pipeline

« Seguence of filters.

e Each filter is:
— Sequential (grab element ID, enter global assembly) or
— Parallel (fill element stiffness matrix).

* Filters executed in seguence.

 Programmer’s concern:
— Determine (conceptually): Can filter execute in parallel?
— Write filter (serial code).
— Register it with the pipeline.
e Extensible:
— New physics feature.
— New filter added to pipeline.
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Other construct: Thread team

e Characteristics:
— Multiple threads.
— Fast barrier.
— Shared, fast access memory pool.
— Example: Nvidia SM, Intel MIC
— X86 more vague, emerging more clearly in future.

 Qualitatively better algorithm:
— Threaded triangular solve scales.

— Fewer MPI ranks means fewer iterations, better
robustness.

— Data-driven parallelism.

Sandia
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Programming Today for Tomorrow’s Machines

 Parallel Programming in the small:
— Focus: writing sequential code fragments.
— Programmer skills:
» 10%: Pattern/framework experts (domain-aware).
* 90%: Domain experts (pattern-aware)
e Languages needed are already here.
— MPI+X.
— Exception: Large-scale data-intensive graph?
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MPI+X Preserves Programmability

 MPI apps preserve sequential programmability via abstractions:
— Halo exchange, app-specific collectives.
— Domain scientists add new features: seqguential code expressions.

* Most X (TBB, CUDA, OpenMP*, ...) do too via patterns:

— Parallel-for, Parallel-reduce, task graph, prefix ops, etc.

— Basic MPI+X kernels: sequential code, mined from MPI-only code.
e Critical issues migrating to X:

— ldentifying latent node-level parallelism.

— ldentifying, replacing current, essential node-level sequentiality.

— Isolation of computation to stateless kernels.

— Abstraction of physics i,j,k from data structure i,j,k.

* Any beyond-MPI platform must also preserve programmability.
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With C++ as your hammer,
everything looks like your thumb.
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“Are C++ templates safe? No, but they are good.”

Compile-time Polymorphism

Templates and Sanity upon a shifting foundation

How can we:

* Implement mixed precision algorithms?

* Implement generic fine-grain parallelism?
o Support hybrid CPU/GPU computations?
» Support extended precision?

» Explore resilient computations?

C++ and templates most sane way.

25

Template Benefits:
— Compile time polymorphism.
— True generic programming.
— No runtime performance hit.
— Strong typing for mixed precision.
— Support for extended precision.
— Many more...
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' Resilience Problems: Already Here, Already Being
Addressed, Algorithms & Co-design Are Key

- G

» Already impacting performance: Performance variability.

— HW fault prevention and recovery introduces variability.

— Latency-sensitive collectives impacted.

— MPI non-blocking collectives + new algorithms address this.
* Localized failure:

— Now: local failure, global recovery.

— Needed: local recovery (via persistent local storage).

— MPI FT features + new algorithms: Leverage algorithm reasoning.
 Soft errors:

— Now: Undetected, or converted to hard errors.

— Needed: Apps handle as performance optimization.

— MPI reliable messaging + PM enhancement + new algorithms.

S Key to addressing resilience: algorithms & co-design. i) e
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Resilience Issues Already Here

e First impact of unreliable HW?
— Vendor efforts to hide it.
— Slow & correct vs. fast & wrong.

e Result:
— Unpredictable timing.

— Non-uniform execution across cores.

* Blocking collectives:
- = maxi{ti}

27

Patch Hyperbolic Integration Time
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Brian van Straalen, DOE Exascale Research
Conference, April 16-18, 2012. Impact of persistent
ECC memory faults.
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,;’-‘ Latency-tolerant Algorithms + MPI 3:

3 Recovering scalability
—+— GMRES c¢GS | | | |
—*— GMRES mGS
2.5 |- —>*— 1L.GMRES
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Hiding global communication latency in the GMRES algorithm on massively parallel machines,

P. Ghysels T.J. Ashby K. Meerbergen W. Vanroose, Report 04.2012.1, April 2012,
28 ExaScience Lab Intel Labs Europe

i

Up is good

Sandia
National
Laboratories



= <

Enabling Local Recovery from Local Faults

e Current recovery model:

Local node failure,
global kill/restart. e
.
i . 0 SR ,J?”W‘*“ . ,vft"‘i&.‘ﬁa
* Different approach: e “W‘%w,%‘
— App stores key recovery data in -1

persistent local (per MPI rank) s

storage (e.g., buddy, NVRAM),

and registers recovery function.
— Upon rank failure:

* MPI brings in reserve HW, assigns
to failed rank, calls recovery fn.

» App restores failed process state via
its persistent data (& neighbors’?).

 All processes continue.

Sandia
m National
Laboratories

29



= <

Local Recovery from Local Faults Advantages

e Enables fundamental algorithms work to aid fault recovery:
— Straightforward app redesign for explicit apps.

— Enables reasoning at approximation theory level for implicit apps:
* What state is required?
* What local discrete approximation is sufficiently accurate?
« What mathematical identities can be used to restore lost state?

— Enables practical use of many exist algorithms-based fault tolerant
(ABFT) approaches in the literature.

Sandia
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Every calculation matters Soft Error Resilience

=  New Programming Model Elements:

All Correct 43 [4sels | L10e6 « SW-enabled, highly reliable:
fffr'Z y[1] +=  Data storage, paths.
é.F?MV et 35 3&3 6.7e-15 3.7e+3 o Compute regionS.
bepace « Idea: New algorithms with minimal
QUI]+=1.0 N/IC N/A 7.7e-02  509e+5 usage of high reliability.
Subspace | * First new algorithm: FT-GMRES.
 Small PDE Problem: ILUT/GMRES « Resilient to soft errors.
) gfggcg result:35 lters, 343M « Outer solve: Highly Reliable
« 2 examples of a single bad op. * Inner solve: “bulk” reliability.
« Solvers: « General approach applies to many

— 50-90% of total app operations. algorithms.

— Soft errors most likely in solver.

* Need new algorithms for soft errors:
— Well-conditioned wrt errors.

— Decay proportional to number of errors. Sandia
31  — Minimal impact when no errors.
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Selective Reliability Enables Reasoning about
Soft Errors: FT-GMRES Algorithm

Input: Linear system Ax = b and initial guess X

fo:= b —AXo, B := |[Io]l2, G1 := 1o/ “Unreliably” computed
forj=1,2,... until convergence do . -
Inner solve: Solve for z in g = Az; Majority of computational cost.

Vis1 1= Az

fori=1,2,...,kdo > Orthogonalize vj 1
H(i,]) = G Vi+1, Vis1 == Vi — GiH(i, )

end for

HG+1,]) = [1vj]l2
Update rank-revealing decomposition of H(1:j, 1)

it H(j +1,/) is less than some tolerance then | 51y res true linear operator issues, AND
if H(1:/,1:j) not full rank then . '
) Can use some ““garbage” soft error results.
Try recovery strategies

else
Converged; return after end of this iteration

end if
else

Qi1 = Vi1 /H( +1,))
end if
yj:=argmin, |[H(1:j+1,1:j)y — Be4|l2 > GMRES projected problem
Xj =X +[z21,22,...,2]Y > Solve for approximate solution - Sanda

32 end for Laboratories
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Selective reliability enables “running through”

33

faults

> FT—GMRES\ can run through faults and still converge.
» Standard GMRES, with or without restarting, cannot.

Fault-Tolsrant GMAES, restarted GMAES, and nonrestaned GMRES
(detarministic faulty SpMVS In Inner soives)
1 1 1 1

1 1 1
—— FT-GMRES30.10)
GMAES(30), 10 restart cyciss
—*— GMAES(300)

107

'k

FT-GMRES vs. GMRES on
lll_Stokes (an ill-conditioned
discretization of a Stokes PDE).

Faut-Tolsrant GMAES, restarted GMAES, and nonrestaned GMRES
(detarministic faulty SpMVs In Innar soivas)
T T T

10” T T T T
—— FT—GMAES(30,10)
GMAES[S0), 10 restart cycles
—o— GMAEE({500)
w0t A
— el
- \/—r
10 .
W
.

10

FT-GMRES vs. GMRES on
mult_dcop_03 (a Xyce circuit
simulation problem).
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Summary

Node-level parallelism is the new commodity curve:

Tasks, threads, vectors.

Domain experts need to “think” in parallel.

Building a parallel pattern framework is an effective approach.

Most future programmers won'’t need to write parallel code.

Pattern-based framework separates concerns (parallel expert).

Domain expert writes sequential fragment. (Even if you are both).

Fortran can be used for future parallel applications, but:

Complex parallel patterns are very challenging (impossible).
Parallel features lag, lack of compile-time polymorphism hurts.

Resilience is a major front in extreme-scale computing.

Resilience with current algorithms base is not feasible.
Need algorithms-driven resilience efforts.
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Summary

 MPI+X Is and will be dominant platform for tera and peta scale.

 MPI+X will be a (dominant) platform for exascale:
— Natural fit for many science & engineering apps.
— Hierarchical composition matches tera, peta and exascale.
— Naturally leverages industry efforts.

» Ongoing efforts needed in MPI to address emerging needs.
— New MPI features address most important exascale concerns.
— Co-design from discretizations to low-level HW enables resilience.

« Migrating to emerging industry X platforms: Critical, urgent.

— Good preparation for beyond MPI:
e Isolation of computation to stateless kernels.
» Abstraction of data layout.

— Requires investment outside of day-to-day apps efforts.
. Sandia
;s — Essential now for near-term manycore success. i) Nl




36

Extra Slides
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Notable New MPI Features

* Non-blocking collectives #1009.

* Neighborhood collectives (aka, sparse) #258.
* Updated One-sided features #270.

e Shared memory window #284.

* Noncollective Comm Creation #286.

e Nonblocking Comm Dup #168.
 Fault-tolerance.

http://www.unixer.de/blog/index.php/2012/02/06/mpi-3-0-is-

coming-an-overview-of-new-and-old-features
Torsten Hoefler Blog
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http://www.unixer.de/blog/index.php/2012/02/06/mpi-3-0-is-coming-an-overview-of-new-and-old-features
http://www.unixer.de/blog/index.php/2012/02/06/mpi-3-0-is-coming-an-overview-of-new-and-old-features

WJDC

* New functional.
* Bonded systems.
» 552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.

Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems.
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How much MPI-specific code?

i

Tramonto

Functional
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dft_fill_wjdc.c
MPI-specific

code
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MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)




TBB Pipeline for FE assembly

Launch elem-data Compute stiffnesses Assemble rows of stiffness
from mesh - & loads - into global matrix

Serial Filter Parallel Filter Several Serial Filters in series

6[ 7] 8
FE Mesh /
E3 | E4
3 4 5 \

El E2

0

1 Each assembly filter assembles certain rows from a
4 stiffness, then passes it on to the next assembly filter
3

N

/]

S O

Element-stiffness
matrices computed
in parallel

~ 00 O1 &~

oOoNOoO O~ WwWDNEF O
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Alternative

TBB Pipeline for FE assembly

Launch elem-data Compute stiffnesses Assemble rows of stiffness
from mesh - & loads - into global matrix

Serial Filter Parallel Filter Parallel Filter

Each parallel call to the assembly

6 I 8 1 \ filter assembles all rows from the
FE Mesh . stiffness, using locking to avoid
E3 E4 S;ZTV © race conflicts with other threads.

3 4 5 1
Bl Assemble
0 1 2 4

+
4 Rows

7

6

_ Assemble
Rows

Element-stiffness
matrices computed
in parallel
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Sandia
m National

Laboratories




=

Finite Elements/Volumes/Differences
and parallel node constructs

 Parallel for, reduce, pipeline:
— Sufficient for vast majority of node level computation.

— Supports:
» Complex modeling expression.
 Vanilla parallelism.

— Must be “stencil-aware” for temporal locality.
e Thread team:

— Complicated.

— Requires true parallel algorithm knowledge.

— Useful in solvers.
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Reliability Model

« Can’t reason about code behavior without a model
e Current model: “Fail-stop”
— System tries to detect all soft faults
— Turn all detected soft faults into hard faults
» Our basic model: “Sandbox”
— Isolate unreliable computation in a box
— Reliable code invokes box as a function
» Additional desired features of a model
— Detection: report faults to application
— Transience: refresh / recompute unreliable data periodically
— Embed into type system: compiler can help you reason
« Our challenge goal:
» Turn all detected hard faults into soft faults
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Gradual Convergence Degradation

» Empirical observation: FT-GMRES convergence slows
gradually as fault rate increases.

Fault-Tolsrant GMAES: CoMVergence vs. fault raie,
witn 1a.l.lrgr EpMVs In e Inner soives {deterministc faults)

10’

—— FT-GMAEE{30.20) wih sior rts 0.000000 |
FT-GMAES{30.20) with smor rate 0.100000 [

—=— FT-GMAES{30.20) with snmor rats 0300000 ||
FT-GMRAES{50.20) wih Srror mte 0.500000

'k

1 1 1 1 1 1 1 1 1 1
1] 2 4 -] & 10 12 14 18 18 20 22
Qwier haration numbser

FT-GMRES on lll_Stokes problem,
with different fault rates in inner
solves’ SpMVs.

45

Faut-Toksrant GMAES: Convergence vs. fault rate,
win m.lrg,rsw\rs I e INner S0ves (detenminkstc raurts]
T

10°
—— I-'I'—GHF[ES{:IEI.Zm With arror fats 0.000000
FT-GMAES|30.20) with emor rabe 0100000
—#— FT-GMRES|30.20) wiih armor rate 0.300000
FT-GMAES|30.20) with emor rabe 0500000
10

1 1 1 1
] 4 4 <] B 10 12 14 16 18 20 22
Cater laration number

FT-GMRES on mult_dcop_03
problem, with different fault rates
in inner solves’ SpMVs.
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Selective Reliability Programming

« Standard approach: * New approach:
— System over-constrains reliability — System lets app control reliability
— “Fail-stop” model — Tiered reliability
— Checkpoint / restart — “Run through” faults
— Application is ignorant of faults — App listens and responds to faults
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— 4X over-decomposition, 1024 processors.
— 20% increase in aggregate computational cost (125 iters becomes 153).

— Can dynamic execution overcome this?

—
Challenges for Coarse Grain Dynamic Parallelism
Charon Timing Breakdown on TLCC Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)
Strong Scaling 28M Unk - -
rong Seaing rrnomn # Linear Solver Iterations
100% Charon minus solver
per Newton Step
o 80% 3
'E . Solve time due to iter w 441117 117 125 129
60% : & 4
.~ increase D
8 a0% | | =%
g Solve time due to iter s e

128 256 512 1024 2048 4096

# MPI Ranks

153

Observe: Iteration count increases with number of subdomains.
Dynamic parallelism implies over-decomposing.
Example:

Coarse grain dynamic parallelism degrades robustness!
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=
Opportunities for Fine Grain Dynamic Parallelism
Charon Timing Breakdown on TLCC Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)
Strong Scaling 28M Unk - -
rong Scating rrnown # Linear Solver Iterations
100% Charon minus solver
per Newton Step
o 80% o
-E 60% Solve time due to iter v 11 111 117 117 125 129
» increase E 1
S 40% -
E Solve time due to iter s e

128 256 512 1024 2048 4096

153

Observe: Iteration count increases with number of subdomains.

With scalable threaded smoothers (LU, ILU, Gauss-Seidel):
— Solve with fewer, larger subdomains.
— Better kernel scaling (threads vs. MPI processes).
— Better convergence, More robust,

Exascale Potential: Tiled, pipelined implemertation.

Three efforts:
— Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
— Decomposition by partitioning
— Multithreaded direct factorization

# MPI Ranks
4096 1 153
2048 2 129
1024 4 125
512 8 117
256 16 117
128 32 111

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and

Michael A. Heroux and Erik G. Boman, VECPAR 2010.
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