
Early Science at the OLCF on Titan

Bronson Messer

OLCF Center for Accelerated Application Readiness (CAAR)

ASCAC Meeting

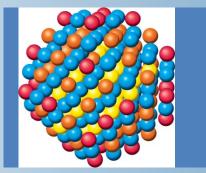
August 14, 2012

ORNL's "Titan" System

- Upgrade of Jaguar from Cray XT5 to XK6
- Cray Linux Environment operating system
- Gemini interconnect
 - 3-D Torus
 - Globally addressable memory
 - Advanced synchronization features
- AMD Opteron 6274 processors (Interlagos)
- New accelerated node design using NVIDIA multi-core accelerators
 - 2011: 960 NVIDIA x2090 "Fermi" GPUs
 - 2012: 14,592 NVIDIA K20 "Kepler" GPUs
- 20+ PFlops peak system performance
- 600 TB DDR3 mem. + 88 TB GDDR5 mem

Titan Specs

Compute Nodes	18,688
Login & I/O Nodes	512
Memory per node	32 GB + 6 GB
# of Fermi chips (2012)	960
# of NVIDIA K20 "Kepler" processor (2013)	14,592
Total System Memory	688 TB
Total System Peak Performance	20+ Petaflops



2 **OLGF 20**

Center for Accelerated Application Readiness (CAAR)

WL-LSMS

Illuminating the role of material disorder, statistics, and fluctuations in nanoscale materials and systems.

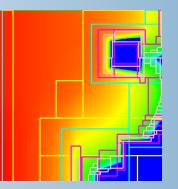
S3D

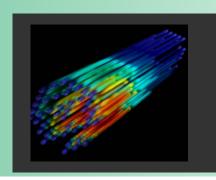
Understanding turbulent combustion through direct numerical simulation with complex chemistry.

CAM-SE Answering questions about specific climate change adaptation and mitigation scenarios; realistically represent features like precipitation patterns /

statistics and tropical

storms.


LAMMPS


A molecular description of membrane fusion, one of the most common ways for molecules to enter or exit living cells.

NRDF

Radiation transport – important in astrophysics, laser fusion, combustion, atmospheric dynamics, and medical imaging – computed on AMR grids.

Denovo

Discrete ordinates radiation transport calculations that can be used in a variety of nuclear energy and technology applications.

3 **DLCF 20**

CAAR Algorithmic Coverage

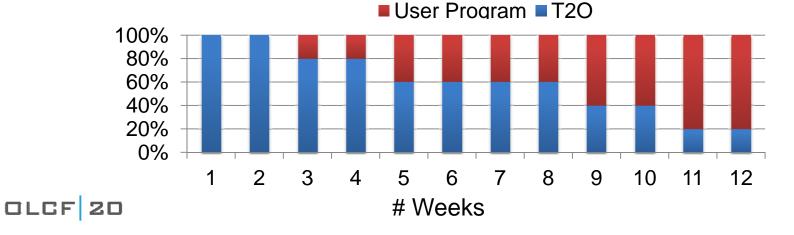
Code	FFT	Dense linear algebra	Sparse linear algebra	Particles	Monte Carlo	Structured grids	Unstructured grids
S3D		Х	Х	Х		Х	
CAM	Х	Х	Х	Х		Х	
LSMS		Х					
LAMMPS	Х			Х			
Denovo		Х	Х	Х	Х	Х	
NRDF			Х				X (AMR)

CAAR Implementation Coverage

Арр	Science Area	Algorithm(s)	Grid type	Programming Language(s)	Compiler(s) supported	Communication Libraries	Math Libraries
CAM-SE	climate	spectral finite elements, dense & sparse linear algebra, particles	structured	F90	PGI, Lahey, IBM	MPI	Trilinos
LAMMPS	Biology / materials	molecular dynamics, FFT, particles	N/A	C++	GNU, PGI, IBM, Intel	MPI	FFTW
S3D	combustion	Navier-Stokes, finite diff, dense & sparse linear algebra, particles	structured	F77, F90	PGI	MPI	None
Denovo	nuclear energy	wavefront sweep, GMRES	structured	C++, Fortran, Python	GNU, PGI, Cray, Intel	MPI	Trilinos, LAPACK, SuperLU, Metis
WL-LSMS	nanoscience	density functional theory, Monte Carlo	N/A	F77, F90, C, C++	PGI, GNU	MPI	LAPACK (ZGEMM, ZGTRF, ZGTRS)
NRDF	radiation transport	Non-equilibrium radiation diffusion equation	structured AMR	C++, C, F77	PGI, GNU, Intel	MPI, SAMRAI	BLAS, PETSc, Hypre, SAMRSolvers

Early Science on Titan

- Six CAAR applications
 - Early Titandev speedups of 1.5x to 3x relative to a dual-socket CPU node (XE6)
 - Performance with Kepler is expected to be 3-12X a dual-socket CPU node
- Other important community codes
 - Ported by user community often in collaboration with NVIDIA are realizing 1.5x to 6x speedups
- We will provide these code teams access to Titan following acceptance via one or more of our allocation programs
 - INCITE
 - Computational readiness review explicitly designed to ID "early science" codes
 - ALCC
 - DD



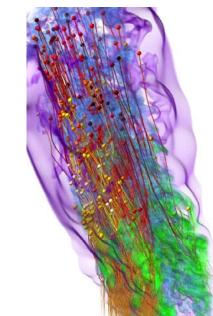
Transition to Operations (T2O)

- CAAR applications are key for early impact on Titan
 - Central to acceptance

7

- Heavy users in Q4 2012 for Kepler port and tune
- T2O: period between acceptance and full-user operations
 - Harden machine using mature codes running big jobs
 - CAAR apps will be initial codes to run in T2O
 - Other very ready codes may also run in T2O
 - Ramp up INCITE & ALCC over few-week period
 - Realized time table depends upon machine stability
 - Assurance of early impact in Q1-Q2 2013

Science Target Requirements


Application	First Titan Science Problem	Titan Core-Hours Needed
S3D	3-dimensional DNS of HCCI combustion in a high-pressure stratified turbulent ethanol/air mixture using detailed chemical kinetics (28 chemical species)	120M
Denovo	Neutron transport in reactor core, using 128 million spatial grid cells, 16 energy groups, 256 discrete ordinates; steady-state solution in less than 12 wall clock hours	14M
LAMMPS	Biological membrane fusion in coarse-grained MD within 5 wall clock days; 850,000,000 coarse-grained particles, roughly 1000 in particle number and spatial extent than current standard.	40M
WL-LSMSBoth the magnetization and the free energy for a single 250- atom iron supercell. magnetic materials. (5 million CPU-hours are required on Jaguar today to calculate only the free energy)		10M
CAM-SE	CCSM simulation w/ Mozart tropospheric chemistry with 101 constituents at high spatial resolution (1/8 degree); 100-year climate simulation @ 3.8 simulated years per wall clock day.	150M

Direct Numerical Simulation of Turbulent Combustion

Code Description

- Compressible Navier-Stokes equations
- 3D Cartesian grid, 8th-order finite difference
- Explicit 4th-order Runge-Kutta integration
- Fortran, 3D Domain decomposition, non-blocking MPI

DNS provides unique fundamental insight into the chemistryturbulence interaction

National Laboratory

Porting Strategy

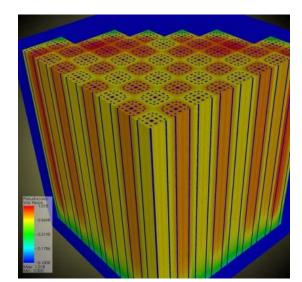
- Hybrid MPI/OpenMP/OpenACC application
- All intensive calculations can be on the accelerator
- Redesign message passing to overlap communication and computation
- 9 OLGF 20

Early Performance Results on XK6

- Refactored code was 2x faster on Cray XT5
- OpenACC acceleration with minimal overhead
- XK6 outperforms XE6 by 1.4x
 Science Target (20 PF Titan)

Increased chemical complexity for combustion:

- Jaguar: 9-22 species (H₂, syngas, ethylene)
- Titan: 30-100 species (ethanol, n-heptane, iso-octane)


OpenACC

DENOVO

3D Neutron Transport for Nuclear Reactor Design

Code Description

- Linear Boltzmann radiation transport
- Discrete ordinates method
- Iterative eigenvalue solution
- Multigrid, preconditioned linear solves
- C++ with F95 kernels

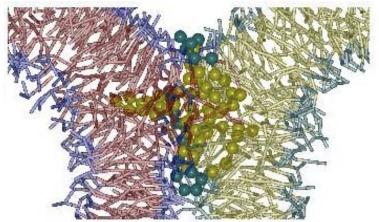
DENOVO is a component of the DOE CASL Hub, necessary to achieve CASL challenge problems

Porting Strategy

- SWEEP kernel re-written in C++ & CUDA, runs on CPU or GPU
- Scaling to over 200K cores with opportunities for increased parallelism on GPUs
- Reintegrate SWEEP into DENOVO
- 10 OLCF 20

Early Performance Results on XK6

- Refactored code was 2x faster on Cray XT5
- XK6 performance exceeds XE6 by 3.3x
 Science Target (20PF Titan)
- 3-D, Full reactor radiation transport for CASL challenge problems within 12 wall clock hours. This is the CASL stretch goal problem!


CUDA

LAMMPS

Large-scale, massively parallel molecular dynamics

Code Description

- Classical N-body problem of atomistic modeling
- Force fields available for chemical, biological, and materials applications
- Long-range electrostatics evaluated using a "particle-particle, particle-mesh" (PPPM) solver.
- 3D FFT in particle-mesh solver limits scaling

Insights into the molecular mechanism of membrane fusion from simulation. Stevens et al., *PRL* **91** (2003)

Porting Strategy

- For PPPM solver, replace 3-D FFT with grid-based algorithms that reduce interprocess communication
- Parallelism through domain decomposition of particle-mesh grid
- Accelerated code builds with OpenCL or CUDA

Early Performance Results on XK6:

- XK6 outperforms XE6 by 3.2x
- XK6 outperforms XK6 w/o GPU by 6.5x

Science Target (20PF Titan)

 Simulate biological membrane fusion in coarse-grained MD within 5 wall clock days

12 OLCF 20

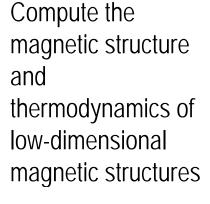
Wang-Landau LSMS

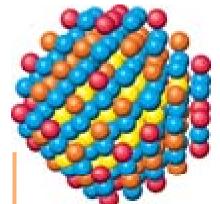
First principles, statistical mechanics of magnetic materials

Code Description

- Combines classical statistical mechanics (W-L)for atomic magnetic moment distributions with first-principles calculations (LSMS) of the associated energies.
- Main computational effort is dense linear algebra for complex numbers
- F77 with some F90 and C++ for the statistical mechanics driver.

Porting Strategy


- Leverage accelerated linear algebra libraries, e.g., cuBLAS + CULA, LibSci_acc
- Parallelization over (1) W-L Monte-Carlo walkers, (2) over atoms through MPI process, (3) OpenMP on CPU sections.
- Restructure communications: moved outside energy loop


Early Performance Results on XK6:

- XK6 outperforms XE6 by 1.6x
- XK6 outperforms XK6 w/o GPU by 3.1x

Science Target (20PF Titan)

Calculate both the magnetization and the free-energy for magnetic materials.

Libraries

CAM-SE

Community Atmosphere Model – Spectral Elements

Code Description

- Employs equal-angle, cubed-sphere grid and terrain-following coordinate system.
- Scaled to 172,800 cores on XT5
- Exactly conserves dry mass without the need for ad hoc fixes.
- Original baseline code achieves parallelism through domain decomposition using one MPI task per element

Porting Strategy

- Using realistic "Mozart" chemical tracer network, tracer transport (i.e., advection) dominates the run time.
- Use hybrid MPI/OpenMP parallelism
- Intensive kernels are coded in CUDA Fortran
- Migration in future to OpenACC
- 13 OLCF 20

Cubed-sphere grid of CAM spectral element model. Fach cube panel is divided into elements.

http://www-personal.umich.edu/~paullric/A CubedSphere.png

Early Performance Results on XK6:

- Refactored code was 1.7x faster on Cray XT5
- XK6 outperforms XE6 by 1.5x
- XK6 outperforms XK6 w/o GPU by 2.6x

Science Target (20PF Titan)

CAM simulation using Mozart tropospheric chemistry with 106 constituents at 14 km horizontal grid resolution

CUDA Fortran

How Effective are GPUs on Scalable Applications?

OLCF-3 Early Science Codes -- Performance Measurements on TitanDev

Application	XK6 vs. XE6 Performance Ratio [Titan Dev : Monte Rosa]
S3D Turbulent combustion	1.4
Denovo 3D neutron transport for nuclear reactors	3.3
LAMMPS Molecular dynamics	3.2
WL-LSMS Statistical mechanics of magnetic materials	1.6
CAM-SE Community atmosphere model	1.5

Cray XK6: Fermi GPU plus AMD 16-core Opteron CPU

XE6: 2X AMD 16-core Opteron CPUs (Monte Rosa - 1496 node XE6 @ CSCS)

We expect the results to be even better with the GK110 Kepler processor

- Hyper-Q
 - Fermi allows only a single work queue
 - Kepler allows 32 simultaneous work queues, allowing multiple CPU threads to connect to the GPU, removing false serialization.
 - Ameliorates "not enough work" problem
- GPUDirect
 - Enables GPUs within a single computer, or GPUs in different servers located across a network, to directly exchange data without needing to go to CPU/system memory.
 - Reduces CPU-GPU memory copy penalty for many applications

Both features are expected to significantly increase current application performance and to aid further application ports.

15 **DLCF 20**

We are not going it alone – Hybrid computing is now mainstream Over 10% of the Top500 systems use accelerators

- ORNL's Titan CPU / Nvidia GPU
- NCSA's Blue Waters CPU / Nvidia GPU
- TACC's Stampede CPU / Xeon Phi
- Georgia Tech's Keeneland CPU / Nvidia GPU
- CSCS (Switzerland) Tödi CPU / Nvidia GPU
- NUDT (China) Tianhe-1a CPU / Nvidia GPU
- NSCS (China) Nebulae CPU / Nvidia GPU
- Tokyo Tech (Japan) TSUBAME CPU / Nvidia GPU
- U. of Tsukuba (Japan) HA-PACS CPU / Nvidia GPU
- CEA (France) Tera-100 CPU / Nvidia GPU

Additional Applications from Community Efforts Current performance measurements on TitanDev

Application	XK6 vs. XE6 Performance Ratio [Titan Dev : Monte Rosa]
NAMD High-performance molecular dynamics	1.4
Chroma High-energy nuclear physics	6.1
QMCPACK Electronic structure of materials	3.0
SPECFEM-3D Seismology	2.5
GTC Plasma physics for fusion-energy	1.6
CP2K Chemical physics	1.5

The Accelerating Computational Science Symposium 2012 (ACSS 2012), held March 28– 30 in Washington, D.C. Sponsored by: OLCF, NCSA, and CSCS with 100 attendees.

Symposium summary at: http://www.olcf.ornl.gov/mediacenter/center-reports/

Training: Amplifying the Impact of Early Science

- **Strategy:** Provide conferences, workshops, tutorials, case studies, and lessons learned on tools and techniques for realizing hybrid architecture benefits. *Content will be formulated and field-tested via early-science experiences.*
- Objective: Users will be able to expose hierarchical parallelism, use compiler directive-based tools, analyze / optimize / debug codes, and use low-level programming techniques if required

Planned CY 2013 Training Events West Coast Titan Training Workshop (Jan/Feb 2013) East Coast Titan Training Workshop (Feb/March 2013) Object Oriented Programming Workshop (Feb 2013) 2013 OLCF User Meeting (April 2013) Tutorial Series (Spring/Summer)

- Compilers
- Performance Analysis Tools
- Debugging and Profiling
- Fall Titan Training (Fall 2013)

Summary

- CAAR and work by our colleagues at NVIDIA, CSCS, NCSA, and other organizations has produced a set of vanguard GPU-capable applications.
- More than a dozen codes are poised to make immediate use of Titan.
- Strong overlap with INCITE and ALCC awardees, combined with the flexibility afforded by our DD program, will allow us to facilitate first-in-class simulations immediately following Titan acceptance.

CAAR Plan

Comprehensive team assigned to each app

- OLCF application lead
- Cray engineer
- NVIDIA developer
- Other: other application developers, local tool/library developers, computational scientists
- Single early-science problem targeted for each app
 - Success on this problem is primary metric for success
- Particular plan-of-attack different for each app
 - WL-LSMS dependent on accelerated ZGEMM
 - CAM-SE- pervasive and widespread custom acceleration required

Multiple acceleration methods explored

- WL-LSMS CULA, MAGMA, custom ZGEMM
- CAM-SE– CUDA, directives
- Two-fold aim
 - Maximum acceleration for model problem
 - Determination of optimal, reproducible acceleration path for other applications

