Colorado State University

__ i‘ SAIMI: Separating the Algorithm
=1 from the Implementation Details

Michelle Mills Strout

with Christopher Krieger, Andrew Stone, Christopher Wilcox,
Amanreet Bajwa, and Samantha Wood

DOE ASCAC Meeting -- August 24, 2011

="—"-’-‘-::;_;_;,. U.S. DEPARTMENT OF

F’Z ENERGY SAIMlisfunded as a DOE Early Career Award #DE- SC3956

The Problem

(from the perspective of a compiler
on)
Scientific simulations need to run faster!

= while being easier to write, evolve, and maintain
m while using less energy
= while staying portable

Developers make them run faster by doing

performance tuning by hand

m Compilers great at low-level optimizations

m General purpose compilers struggle with automating higher-
level optimizations

After hand-tuning, the algorithm and
Implementation detalls are tangled!

22>, U.S. DEPARTMENT OF

9P ENERGY Colorado State University .

Matrix-Matrix Multiply Example:

Writing fast code Is hard!

Mac G4 1GHz, 1GB Mem, 32KB L1,256KB L2, IMB L3

w10000 [I I T T T3
Fg _ B Naive C code]
S 100 ~10 lines of code B A E
3 1
79!

100
k=
Q / .
E 10 -
o]
= z
o 1 =
= -
—]
5 i
3 o1 E
» .
0d T

001 256 512 1024 2048 4096 8192

N - Each matrix 1s NxN

. U.S. DEPARTMENT OF

) ENERGY Colorado State University .

Why writing fast code Is hard

In most prevalent programming models ...
m Schedules for computations specified with loops
m Storage allocation specified with array
declarations and accesses
Separation of the when and where the from
algorithm is an important idiom that needs
library and compiler support.

:.::l’”'-’-‘-'-:!.j_a,.‘_ U.S. DEPARTMENT OF

@ ENERGY Colorado State University .

Hand-tuning Example (Tiling)

Original Loop

for (I=0; i<11; i++) {
for (j=0; j<13; j++) {
Afi,jl = 1/2 * (A[i,j-1] + A[i-1,j-1] + A[i-1,j]);
} Tiled Loop

}

TiLB = -1; TiLB = ((int)ceild(tiLB,2) * 2);
for (Ti = TiLB; Ti <= 10; Ti += 2) {

e /’;;"}_”;Z”;%/;' TjLB = -2; TjLB = LB_SHIFT(TLB,3):
| G A A A A A A for (Tj = TjLB; Tj <= 12; Tj += 3) {
_ for (i= max(Ti,0);i<=min(Ti+2-1,10);i++) {
oA for (j= max(Tj,0);j<=min(T}j+3-1,12);j++) {
6 Ali,jl = 1/2 * (A[i,j-1] + A[i-1,j-1] + A[i-1,j]);
_ g }
7 A }
: ? | /] }

e U.S. DEPARTMENT OF

iiENERGYélHl

1 ;//i _//I l//
rol

T Colora(lo State Univ erSIty

Orthogonal Loop Scheduling
IS Possible: Chapel Example

Tiled Loop
D =[0..10, 0..12];
for (i,)) in tile(D,(2,3)) {
Ali,j] = 1/3+(A[i,j—1]+A[i-1,j-1]+A[i-1,j]);
}

tile I1s an iterator construct.

Iterators in Chapel enable the orthogonal
specification of the schedule to use when
visiting points in a domain.

The Domain construct in Chapel has some
limitations.

Colorado State University .

SAIMI - Separating Algorithm and
Implementation via programming Model Injection

Full Appication Keep code in existing general
’ purpose programming languages
bo@”"@s(mm_etq Source Annotate sub computations with
ST " pragmas to inject implementation
forachine A~ || for Machine B details
Focus on three “injectable”
programming models: expressions,
sparse polyhedral model, task
graphs due to sparse tiling

Show approach can be used on DOE
applications (e.g., CGPOP miniapp)

2P, U.S. DEPARTMENT OF

©) ENERGY Colorado State University -

Specifying Implementation
Detalls Orthogonally

Source-to-Source Algorithm Implementation Details
compilation tool Specification

OpenMP for loops (some static or dynamic, block or
restrictions) not, private and shared, ...

CUDA for loop (some unroll, vectorize, data
restrictions) movement, ...

ORIO, POET, ... for loop (some unroll, tile, various loop
restrictions) transformations, ...

SAIMI project focus

Mesa expressions lookup table optimization

IEGen for loops with inspector/executor

indirect accesses strategies specified using
Sparse Polyhedral
Framework (SPF)

Colorado State University .

Key SAIMI Components

Mesa transformation tool
m Algorithm: expressions
= Implementation details: look-up table optimization

Sparse Polyhedral Framework (SPF)

m Algorithm: loops with indirect array accesses

= Implementation details: inspector/executor
strategies

Evaluation within the context of applications
relevant to DOE

-'—"-’-‘-l:!.j_g,._ U.S. DEPARTMENT OF

%W ENERGY Colorado State University .

for

//

t
t

for (atoml = 0; atoml < vecAtoms.size ()
// ITterate atoms (inner loop)
for (atom2 = atoml; atom2 < vecAtoms.size (); ++atom2) {

Mesa: Lookup Tables for
Expressions as an Injectable

el

// Iterate steps (outer loop)

(step = 0; step < 1000; +4++4step) {
Iterate atoms (middle loop)

// Compute distance between atoms

; ++atoml) {

float fDistance = distance (atoml, atom2);

// Compute scattering angle

float fTheta = m_fStep x (float)(step + 1);

// Combine parameters to scatter
float rTheta = fDistance x fTheta;

// Optimize subexpression shown below

#pragma LUTOPTIMIZE
fintermediate = sinf(FOURPI % rTheta)

/

(FOURPI % rTheta);

U.S. DEPARTMENT OF

9 ENERGY

Colorado State University

Approach used In Mesa

Automate the tedious and error prone elements of look-up table
optimization via the Mesa tool (based on ROSE)

Help programmers to improve performance (5x to 7x on 3 real
applications) with clear knowledge of the effect on accuracy.

s, U.S. DEPARTMENT OF

WENERGY

- Mesa Code with | . Instrumented)
-profile profiling | ™ Executable Profile Data
Original A
Code . .
i o e ommied |, ezt L opime
pragmas P .) Output
—, Original Original
| ™ Executable Output
Compiler _

Colorado State University

Key SAIMI Components

Sparse Polyhedral Framework (SPF)
m Algorithm: loops with indirect array accesses

= Implementation details: inspector/executor
strategies

Evaluation within the context of applications
relevant to DOE

S U.S. DEPARTMENT OF

) ENERGY Colorado State University ..

Sparse Matrix Computations

Mesh :
3D undirected graph S parse M atrIX
' g E'E:l."l;: t A~
' - 2 - f ?

LR A T
. R, HD

HF_ gl W T

T - e

o pEh _ :
-'"'- i‘l'i‘-:: -:l"'-' h#" ﬂ-l-' - ¥ 1.“-.“‘“"- n

) m-;-q'- n - ‘n.
Cee R
SRR

http://mww.cise.ufl.edu/research/sparse/matrices/Pothen/commanche_dual.html

U.S. DEPARTMENT OF

&) ENERGY Colorado State Universi

Parallelizing Iterative Sparse Matrix
Computations

Break computation that sweeps over
mesh, or sparse maitrix, into chunks/sparse tiles

D,

Time

Full Sparse Tiled Task Graph
Iteration Space

p,. U.S. DEPARTMENT OF

D ENERGY Colorado State University ..

Experimental Results for Blue
Ice

14 / 52.88
nnz/row = 52.
WT=2 T=2, avg par= 31.9
nT=1 T=1,avg par=47.8
12
nnz/row = 64.2 nnz/row = 6.99 nnzfrow = 74.3
T=2, avg par = 125 T=2, avg par= 42.8 T=2, avg par= 6.9
10 T=1,avg par=16.7 T=1,avgpar=428 |~ -2Vgpar=316
nnz/row = 72.1
T=2, avg par= 5.7
T=1,avg par=16.6
a 8
3
=] nnz/row = 65.0
g T=2, avgpar= 45
= T=1,avg par=6.0
w 6
nnz/row = 41.5
T=2, avg par= 4.0
T=1,avg par=4.8
4
0 -
2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 B 16 2 4 8 16
Wing22K Cone Cant CCSphere thermal2 Spherel50 pwtk

number of threads

Sparse Polyhedral Framework:
An Injectable Programming Model

Specifying sparse
computations
for (c=1; c<=2; c++) {
for (I=0; I<N; i++) {
Z[i] += f(I's neighbors);
}
}

Specifying transformations
like full sparse tiling

{le,1] — [t,c,i] |t =0O(c, 1)}

. U.S. DEPARTMENT OF

& ENERGY Colorado State Urlix-’ersity 1

Key SAIMI Components

Evaluation within the context of applications
relevant to DOE

Colorado State University

Evaluating the Research

Apply separate and composed injectable
programming models to existing DOE-
relevant apps

m Evaluate programmer control and tangling
m Evaluate performance

Current Applications
m SAXS: Small Angle X-ray Scattering
m CGPOP: Miniapp for Parallel Ocean Program

= Matrix Powers Kernel: (CACHE project
related)

:_;'_f_{-_f_;i‘,__ U.S. DEPARTMENT OF

&) ENERGY Colorado State UI]ix-fersity ,

SAXS Project

http://www.cs.colostate.edu/hpc/SAXS/

SAXS: Small X-ray Scattering

Improved Reconstructed
= Data =*Model

o molecule
"% data input | Generator \

0 .05 .10 .15 .20

\ Validated

model

0 .05 .10 .15 .20
q

With molecular dynamics and SAXS, biochemists are investigating
structure of proteins that interact with DNA.

CGPOP Miniapp Released July 2011

http://www.cs.colostate.edu/hpc/cgpop/

Introduction

The Parallel Ocean Program (POP), developed at Los Alamos National Laboratory, is an important multi-agency
code used for global ocean modeling and is a component within the Community Earth System Model (CESM).
The motivation for creating a miniapp for the POP developer team is that it will enable them to ensure the
performance portability of the most critical portion of the application while also testing new programming models.
The CGPOP miniapp is the conjugate gradient solver from LANL POP 2.0, which is the performance bottleneck
for the full POP application. The CGPOP miniapp is written in Fortran90 with MPI and is about 3000 source lines
of code (SLOC), whereas the POP application is 71,000 SLOC.

Download

e Release 1.0 [.tgz (281 MBs)]
o Tile files [.tgz (1.3 GBs)]

Resources

Techical report with installation instructions [PDF]
e Doxygen Documentation
o GoogleCode Page

Contributors

e Andrew Stone [webpage]
o John Dennis [webpage]
e Michelle Strout [webpage]

Acknowledgements

o This work was supported by Department of Energy Early Career Award
#DE-SC3956.

« This work was financially supported through National Science
Foundation Cooperative Grant NSF01 which funds the National Center
for Atmospheric Research (NCAR), and through the grant: #OCI-
0749206.

U.S. DEPARTMENT OF

D ENERGY Colorado State Universi

Variants of Matrix Powers Kernel

communication avoiding [Mohiyuddin 2009] full sparse tiling

-

L L AR AR J
sjeep]
x\H) LRSI
A0 / 4 N L LA o am
1 23 28 33

full sparse tiling variants

XX XXX

Parameters: sparse tile width and height, graph
partitioner, etc.

5 U.S. DEPARTMENT OF

) ENERGY Colorado State University -.

Conclusions

Scientific computing needs detangling of
simulation codes!

Complete rewrites are not feasible so gradual
approaches need to be developed

Pragmas already have buy-in and can be
used to orthogonally specify implementation
details with minimal tangling

The concept of SAIMI should direct future
programming model development

Colorado State University -.

SAIMI Crew

Chris Krieger — Task graph programming model

Andy Stone — Orthogonal grid and algorithm
specifications for geoscience applications leveraging
polyhedral model and SPF

Chris Wilcox — Mesa and look up table optimizations

Amanreet Bajwa — Creation of tile dependence graph
for moldyn

Alum: Alan LaMielle — IEGen prototype
Alum: Jon Roelofs — IEGenCC tool

‘-'—"-’-‘-l:!_j_a,._ U.S. DEPARTMENT OF

W ENERGY Colorado State Urlix-’ersity .

	SAIMI: Separating the Algorithm from the Implementation Details
	The Problem �(from the perspective of a compiler person)
	Matrix-Matrix Multiply Example:�Writing fast code is hard!
	Why writing fast code is hard
	Hand-tuning Example (Tiling)
	Orthogonal Loop Scheduling �is Possible: Chapel Example
	SAIMI - Separating Algorithm and Implementation via programming Model Injection
	Specifying Implementation Details Orthogonally
	Key SAIMI Components
	Mesa: Lookup Tables for Expressions as an Injectable Programming Model
	Approach used in Mesa
	Key SAIMI Components
	Sparse Matrix Computations
	Parallelizing Iterative Sparse Matrix Computations
	Experimental Results for Blue Ice�IBM Power 5+, 1.9GHz, 1.9MB L2 cache, 36MB L3 cache
	Sparse Polyhedral Framework: An Injectable Programming Model
	Key SAIMI Components
	Evaluating the Research
	SAXS Project
	CGPOP Miniapp Released July 2011
	Variants of Matrix Powers Kernel
	Conclusions
	SAIMI Crew

