
1

SAIMI: Separating the Algorithm
from the Implementation Details

Michelle Mills Strout
with Christopher Krieger, Andrew Stone, Christopher Wilcox,

Amanreet Bajwa, and Samantha Wood

DOE ASCAC Meeting -- August 24, 2011

SAIMI is funded as a DOE Early Career Award #DE-SC3956

The Problem
(from the perspective of a compiler
person)
 Scientific simulations need to run faster!

 while being easier to write, evolve, and maintain
 while using less energy
 while staying portable

 Developers make them run faster by doing
performance tuning by hand
 Compilers great at low-level optimizations
 General purpose compilers struggle with automating higher-

level optimizations

 After hand-tuning, the algorithm and
implementation details are tangled!

2

Matrix-Matrix Multiply Example:
Writing fast code is hard!

3

~10 lines of code

~1000 lines of code

Why writing fast code is hard

 In most prevalent programming models …
 Schedules for computations specified with loops
 Storage allocation specified with array

declarations and accesses
 Separation of the when and where the from

algorithm is an important idiom that needs
library and compiler support.

4

Hand-tuning Example (Tiling)

5

Original Loop

TiLB = -1; TiLB = ((int)ceild(tiLB,2) * 2);
for (Ti = TiLB; Ti <= 10; Ti += 2) {
TjLB = -2; TjLB = LB_SHIFT(TjLB,3);
for (Tj = TjLB; Tj <= 12; Tj += 3) {

for (i= max(Ti,0);i<=min(Ti+2-1,10);i++) {
for (j= max(Tj,0);j<=min(Tj+3-1,12);j++) {
A[i,j] = 1/2 * (A[i,j-1] + A[i-1,j-1] + A[i-1,j]);

}
}

}
}

for (i=0; i<11; i++) {
for (j=0; j<13; j++) {
A[i,j] = 1/2 * (A[i,j-1] + A[i-1,j-1] + A[i-1,j]);

}
}

Tiled Loop

Orthogonal Loop Scheduling
is Possible: Chapel Example

 tile is an iterator construct.
 Iterators in Chapel enable the orthogonal

specification of the schedule to use when
visiting points in a domain.

 The Domain construct in Chapel has some
limitations.

6

D = [0..10 , 0..12];
for (i,j) in tile(D,(2,3)) {
A[i,j] = 1/3∗(A[i,j−1]+A[i−1,j−1]+A[i−1,j]);

}

Tiled Loop

SAIMI - Separating Algorithm and
Implementation via programming Model Injection

 Keep code in existing general
purpose programming languages

 Annotate sub computations with
pragmas to inject implementation
details

 Focus on three “injectable”
programming models: expressions,
sparse polyhedral model, task
graphs due to sparse tiling

 Show approach can be used on DOE
applications (e.g., CGPOP miniapp)

7

Full Application

Source to Source
Compilation Tool

Optimized Code
for Machine A

Optimized Code
for Machine B

Specifying Implementation
Details Orthogonally
Source-to-Source
compilation tool

Algorithm
Specification

Implementation Details

OpenMP for loops (some
restrictions)

static or dynamic, block or
not, private and shared, …

CUDA for loop (some
restrictions)

unroll, vectorize, data
movement, …

ORIO, POET, … for loop (some
restrictions)

unroll, tile, various loop
transformations, …

8

Mesa expressions lookup table optimization
IEGen for loops with

indirect accesses
inspector/executor
strategies specified using
Sparse Polyhedral
Framework (SPF)

SAIMI project focus

Key SAIMI Components

 Mesa transformation tool
 Algorithm: expressions
 Implementation details: look-up table optimization

 Sparse Polyhedral Framework (SPF)
 Algorithm: loops with indirect array accesses
 Implementation details: inspector/executor

strategies
 Evaluation within the context of applications

relevant to DOE

9

Mesa: Lookup Tables for
Expressions as an Injectable
Programming Model

10

Approach used in Mesa
 Automate the tedious and error prone elements of look-up table

optimization via the Mesa tool (based on ROSE)
 Help programmers to improve performance (5x to 7x on 3 real

applications) with clear knowledge of the effect on accuracy.

Compiler

Code with
profiling Profile Data

Optimized
Output

Mesa
-profile

Mesa
-optimize

Original
Code
with

pragmas

Instrumented
Executable

Optimized
Code

Optimized
Executable

Original
Executable

Original
Output

Key SAIMI Components

 Mesa transformation tool
 Algorithm: expressions
 Implementation details: look-up table optimization

 Sparse Polyhedral Framework (SPF)
 Algorithm: loops with indirect array accesses
 Implementation details: inspector/executor

strategies
 Evaluation within the context of applications

relevant to DOE

12

Sparse Matrix Computations

13

http://www.cise.ufl.edu/research/sparse/matrices/Pothen/commanche_dual.html

Mesh
Sparse Matrix

14

Parallelizing Iterative Sparse Matrix
Computations

Task GraphFull Sparse Tiled
Iteration Space

Break computation that sweeps over
mesh, or sparse matrix, into chunks/sparse tiles

15

Experimental Results for Blue
Ice
IBM Power 5+, 1.9GHz, 1.9MB L2 cache, 36MB L3 cache

Sparse Polyhedral Framework:
An Injectable Programming Model

 Specifying sparse
computations
for (c=1; c<=2; c++) {
for (i=0; i<N; i++) {
Z[i] += f(i’s neighbors);

}
}

 Specifying transformations
like full sparse tiling

16

Key SAIMI Components

 Mesa transformation tool
 Algorithm: expressions
 Implementation details: look-up table optimization

 Sparse Polyhedral Framework (SPF)
 Algorithm: loops with indirect array accesses
 Implementation details: inspector/executor

strategies
 Evaluation within the context of applications

relevant to DOE

17

Evaluating the Research

 Apply separate and composed injectable
programming models to existing DOE-
relevant apps
 Evaluate programmer control and tangling
 Evaluate performance

 Current Applications
 SAXS: Small Angle X-ray Scattering
 CGPOP: Miniapp for Parallel Ocean Program
 Matrix Powers Kernel: (CACHE project

related)
18

SAXS Project

19

SAXS: Small X-ray Scattering

With molecular dynamics and SAXS, biochemists are investigating
structure of proteins that interact with DNA.

http://www.cs.colostate.edu/hpc/SAXS/

CGPOP Miniapp Released July 2011

20

http://www.cs.colostate.edu/hpc/cgpop/

21

Variants of Matrix Powers Kernel

Parameters: sparse tile width and height, graph
partitioner, etc.

communication avoiding [Mohiyuddin 2009]

full sparse tiling variants

full sparse tiling

irregular cache blocking

Conclusions

 Scientific computing needs detangling of
simulation codes!

 Complete rewrites are not feasible so gradual
approaches need to be developed

 Pragmas already have buy-in and can be
used to orthogonally specify implementation
details with minimal tangling

 The concept of SAIMI should direct future
programming model development

22

SAIMI Crew

 Chris Krieger – Task graph programming model
 Andy Stone – Orthogonal grid and algorithm

specifications for geoscience applications leveraging
polyhedral model and SPF

 Chris Wilcox – Mesa and look up table optimizations
 Amanreet Bajwa – Creation of tile dependence graph

for moldyn
 Alum: Alan LaMielle – IEGen prototype
 Alum: Jon Roelofs – IEGenCC tool

23

	SAIMI: Separating the Algorithm from the Implementation Details
	The Problem �(from the perspective of a compiler person)
	Matrix-Matrix Multiply Example:�Writing fast code is hard!
	Why writing fast code is hard
	Hand-tuning Example (Tiling)
	Orthogonal Loop Scheduling �is Possible: Chapel Example
	SAIMI - Separating Algorithm and Implementation via programming Model Injection
	Specifying Implementation Details Orthogonally
	Key SAIMI Components
	Mesa: Lookup Tables for Expressions as an Injectable Programming Model
	Approach used in Mesa
	Key SAIMI Components
	Sparse Matrix Computations
	Parallelizing Iterative Sparse Matrix Computations
	Experimental Results for Blue Ice�IBM Power 5+, 1.9GHz, 1.9MB L2 cache, 36MB L3 cache
	Sparse Polyhedral Framework: An Injectable Programming Model
	Key SAIMI Components
	Evaluating the Research
	SAXS Project
	CGPOP Miniapp Released July 2011
	Variants of Matrix Powers Kernel
	Conclusions
	SAIMI Crew

