
1

SAIMI: Separating the Algorithm
from the Implementation Details

Michelle Mills Strout
with Christopher Krieger, Andrew Stone, Christopher Wilcox,

Amanreet Bajwa, and Samantha Wood

DOE ASCAC Meeting -- August 24, 2011

SAIMI is funded as a DOE Early Career Award #DE-SC3956

The Problem
(from the perspective of a compiler
person)
 Scientific simulations need to run faster!

 while being easier to write, evolve, and maintain
 while using less energy
 while staying portable

 Developers make them run faster by doing
performance tuning by hand
 Compilers great at low-level optimizations
 General purpose compilers struggle with automating higher-

level optimizations

 After hand-tuning, the algorithm and
implementation details are tangled!

2

Matrix-Matrix Multiply Example:
Writing fast code is hard!

3

~10 lines of code

~1000 lines of code

Why writing fast code is hard

 In most prevalent programming models …
 Schedules for computations specified with loops
 Storage allocation specified with array

declarations and accesses
 Separation of the when and where the from

algorithm is an important idiom that needs
library and compiler support.

4

Hand-tuning Example (Tiling)

5

Original Loop

TiLB = -1; TiLB = ((int)ceild(tiLB,2) * 2);
for (Ti = TiLB; Ti <= 10; Ti += 2) {
TjLB = -2; TjLB = LB_SHIFT(TjLB,3);
for (Tj = TjLB; Tj <= 12; Tj += 3) {

for (i= max(Ti,0);i<=min(Ti+2-1,10);i++) {
for (j= max(Tj,0);j<=min(Tj+3-1,12);j++) {
A[i,j] = 1/2 * (A[i,j-1] + A[i-1,j-1] + A[i-1,j]);

}
}

}
}

for (i=0; i<11; i++) {
for (j=0; j<13; j++) {
A[i,j] = 1/2 * (A[i,j-1] + A[i-1,j-1] + A[i-1,j]);

}
}

Tiled Loop

Orthogonal Loop Scheduling
is Possible: Chapel Example

 tile is an iterator construct.
 Iterators in Chapel enable the orthogonal

specification of the schedule to use when
visiting points in a domain.

 The Domain construct in Chapel has some
limitations.

6

D = [0..10 , 0..12];
for (i,j) in tile(D,(2,3)) {
A[i,j] = 1/3∗(A[i,j−1]+A[i−1,j−1]+A[i−1,j]);

}

Tiled Loop

SAIMI - Separating Algorithm and
Implementation via programming Model Injection

 Keep code in existing general
purpose programming languages

 Annotate sub computations with
pragmas to inject implementation
details

 Focus on three “injectable”
programming models: expressions,
sparse polyhedral model, task
graphs due to sparse tiling

 Show approach can be used on DOE
applications (e.g., CGPOP miniapp)

7

Full Application

Source to Source
Compilation Tool

Optimized Code
for Machine A

Optimized Code
for Machine B

Specifying Implementation
Details Orthogonally
Source-to-Source
compilation tool

Algorithm
Specification

Implementation Details

OpenMP for loops (some
restrictions)

static or dynamic, block or
not, private and shared, …

CUDA for loop (some
restrictions)

unroll, vectorize, data
movement, …

ORIO, POET, … for loop (some
restrictions)

unroll, tile, various loop
transformations, …

8

Mesa expressions lookup table optimization
IEGen for loops with

indirect accesses
inspector/executor
strategies specified using
Sparse Polyhedral
Framework (SPF)

SAIMI project focus

Key SAIMI Components

 Mesa transformation tool
 Algorithm: expressions
 Implementation details: look-up table optimization

 Sparse Polyhedral Framework (SPF)
 Algorithm: loops with indirect array accesses
 Implementation details: inspector/executor

strategies
 Evaluation within the context of applications

relevant to DOE

9

Mesa: Lookup Tables for
Expressions as an Injectable
Programming Model

10

Approach used in Mesa
 Automate the tedious and error prone elements of look-up table

optimization via the Mesa tool (based on ROSE)
 Help programmers to improve performance (5x to 7x on 3 real

applications) with clear knowledge of the effect on accuracy.

Compiler

Code with
profiling Profile Data

Optimized
Output

Mesa
-profile

Mesa
-optimize

Original
Code
with

pragmas

Instrumented
Executable

Optimized
Code

Optimized
Executable

Original
Executable

Original
Output

Key SAIMI Components

 Mesa transformation tool
 Algorithm: expressions
 Implementation details: look-up table optimization

 Sparse Polyhedral Framework (SPF)
 Algorithm: loops with indirect array accesses
 Implementation details: inspector/executor

strategies
 Evaluation within the context of applications

relevant to DOE

12

Sparse Matrix Computations

13

http://www.cise.ufl.edu/research/sparse/matrices/Pothen/commanche_dual.html

Mesh
Sparse Matrix

14

Parallelizing Iterative Sparse Matrix
Computations

Task GraphFull Sparse Tiled
Iteration Space

Break computation that sweeps over
mesh, or sparse matrix, into chunks/sparse tiles

15

Experimental Results for Blue
Ice
IBM Power 5+, 1.9GHz, 1.9MB L2 cache, 36MB L3 cache

Sparse Polyhedral Framework:
An Injectable Programming Model

 Specifying sparse
computations
for (c=1; c<=2; c++) {
for (i=0; i<N; i++) {
Z[i] += f(i’s neighbors);

}
}

 Specifying transformations
like full sparse tiling

16

Key SAIMI Components

 Mesa transformation tool
 Algorithm: expressions
 Implementation details: look-up table optimization

 Sparse Polyhedral Framework (SPF)
 Algorithm: loops with indirect array accesses
 Implementation details: inspector/executor

strategies
 Evaluation within the context of applications

relevant to DOE

17

Evaluating the Research

 Apply separate and composed injectable
programming models to existing DOE-
relevant apps
 Evaluate programmer control and tangling
 Evaluate performance

 Current Applications
 SAXS: Small Angle X-ray Scattering
 CGPOP: Miniapp for Parallel Ocean Program
 Matrix Powers Kernel: (CACHE project

related)
18

SAXS Project

19

SAXS: Small X-ray Scattering

With molecular dynamics and SAXS, biochemists are investigating
structure of proteins that interact with DNA.

http://www.cs.colostate.edu/hpc/SAXS/

CGPOP Miniapp Released July 2011

20

http://www.cs.colostate.edu/hpc/cgpop/

21

Variants of Matrix Powers Kernel

Parameters: sparse tile width and height, graph
partitioner, etc.

communication avoiding [Mohiyuddin 2009]

full sparse tiling variants

full sparse tiling

irregular cache blocking

Conclusions

 Scientific computing needs detangling of
simulation codes!

 Complete rewrites are not feasible so gradual
approaches need to be developed

 Pragmas already have buy-in and can be
used to orthogonally specify implementation
details with minimal tangling

 The concept of SAIMI should direct future
programming model development

22

SAIMI Crew

 Chris Krieger – Task graph programming model
 Andy Stone – Orthogonal grid and algorithm

specifications for geoscience applications leveraging
polyhedral model and SPF

 Chris Wilcox – Mesa and look up table optimizations
 Amanreet Bajwa – Creation of tile dependence graph

for moldyn
 Alum: Alan LaMielle – IEGen prototype
 Alum: Jon Roelofs – IEGenCC tool

23

	SAIMI: Separating the Algorithm from the Implementation Details
	The Problem �(from the perspective of a compiler person)
	Matrix-Matrix Multiply Example:�Writing fast code is hard!
	Why writing fast code is hard
	Hand-tuning Example (Tiling)
	Orthogonal Loop Scheduling �is Possible: Chapel Example
	SAIMI - Separating Algorithm and Implementation via programming Model Injection
	Specifying Implementation Details Orthogonally
	Key SAIMI Components
	Mesa: Lookup Tables for Expressions as an Injectable Programming Model
	Approach used in Mesa
	Key SAIMI Components
	Sparse Matrix Computations
	Parallelizing Iterative Sparse Matrix Computations
	Experimental Results for Blue Ice�IBM Power 5+, 1.9GHz, 1.9MB L2 cache, 36MB L3 cache
	Sparse Polyhedral Framework: An Injectable Programming Model
	Key SAIMI Components
	Evaluating the Research
	SAXS Project
	CGPOP Miniapp Released July 2011
	Variants of Matrix Powers Kernel
	Conclusions
	SAIMI Crew

