
ARCHITECTURE-AWARE ALGORITHMS
FOR SCALABLE PERFORMANCE AND
RESILIENCE ON HETEROGENEOUS
ARCHITECTURES

THE EXTREME-SCALE ALGORITHMS &
SOFTWARE INSTITUTE (EASI)

Jack Dongarra
University of Tennessee and
Oak Ridge National Laboratory

ASCAC Meeting
August 2010

Research supported by DOE ASCR

Four DOE Math/CS Institutes

  CACHE - Communication Avoidance and Communication
Hiding at the Extreme Scale
  Goal: simplify algorithm specification, orchestration of data

movements, mapping to complex computer architectures, portable
performance

  Lead by Erich Strohmaier – LBNL, ANL, UCB, & Colorado SU

  Nonlinear Algorithms to Circumvent the Memory
Bandwidth Limitations of Implicit PDE Simulations
  Goal: Efficient, scalable implicit solution of nonlinear PDEs
  Lead by Barry Smith – ANL, BNL, ORNL, U of Chicago & U of Kansas

  I/O Coordination to Improve HEC System Performance: A
Marriage of Analytical Modeling, Control Theory
  Goal: Extend the scalability of checkpoint/restart and reduce the stress on

the I/O system and resultant failures
  Lead by Pat Teller – U Texas El Paso

  EASI

Extreme-scale Algorithms & Software Institute -
EASI

  Architecture-aware Algorithms for Scalable
Performance and Resilience on Heterogeneous
Architectures

  EASI Team
  Lead PI: Al Geist (ORNL)

  Ron Brightwell (SNL)
  Jim Demmel (UC Berkeley)
  Jack Dongarra (UTK/ORNL)
 George Fann (ORNL)
  Bill Gropp (UIUC)
 Michael Heroux (SNL)

EASI Goals:

  Study and characterize the application-architecture performance gaps that we can
address in the near-term and identify architecture features that future systems may
want to incorporate.

  Develop multi-precision and architecture-aware implementations of Krylov, Poisson,
Helmholtz solvers, and dense factorizations for heterogeneous multi-core systems.

  Explore new methods of algorithm resilience, and develop new algorithms with these
capabilities.

  Develop runtime support for adaptable algorithms that are dealing with resilience,
scalability, and performance.

  Demonstrate architecture-aware algorithms in full DOE applications on large-scale
DOE architectures

  Distribute the new algorithms and runtime support through widely used software
packages.

  Establish a strong outreach program to disseminate results, interact with colleagues
and train students and junior members of our community.

EASI uses co-design to provide both
near and long-term Impact:

 Integrated team of math, CS, and application experts working
together to create new:

Architecture-aware algorithms and associated runtime to enable many
science applications to better exploit the architectural features of DOE’s
petascale systems.

Applications team members immediately incorporate new algorithms
providing Near-term high impact on science

Numerical libraries used to disseminate the new algorithms to the wider
community providing broader and longer-term impact.

EASI Project Overview
Addressing Heterogeneity and Resilience

Runtime

Algorithms

Heterogeneous programming API
Robust multi-precision algorithms
Hybrid programming
Resilient algorithms
Communication optimal algorithms
Auto-tuned BLAS (API)
New parallelization methods

Architecture Heterogeneous, multi-core, extreme-scale

Deliver codes
to community
through:
ScaLAPACK
Trilinos
Open MPI
MPICH2
MADNESS
HOMME Task placement and scheduling

Memory management
Architecture-aware MPI

Krylov
Poisson
Helmholtz
Dense NLA
BLAS

HOMME
MADNESS
Charon

Workshops
Training
Publications

Applications

Research Areas in Institute

MPI
Shared-memory
Processor affinity
Memory affinity

Community
Outreach

EASI Budget

  Duration: 3 years.
 Started in Fall of 2009 for Labs
 Spring/Summer 2010 for Universities (no idea why the lag)

  Total funding over 3 years $7.425M
 ORNL $1M/year
 SNL $1M/year
 UTK $150K/year
 UCB $150K/year
 UIUC $150K/year

LSMS

  The Locally-Self-Consistent Multiple-Scattering
(LSMS) Code is a first-principles computer model
that simulates the interactions between electrons
and atoms in magnetic materials.

  LSMS is a real-space multiple scattering, Green-
function-based method.

  First app to reach TeraFlop and PetaFlop

Complex Multiplication

  The product (a + bi) ·∙ (c + di) normally requires
4 multiplications and 2 additions
  Real part = a ·∙ c – b ·∙ d
  Imaginary part = a ·∙ d + b ·∙ c

  But it can be calculated in the following way.
  k1 = c ·∙ (a + b)
  k2 = a ·∙ (d － c)
  k3 = b ·∙ (c + d)
  Real part = k1 － k3
  Imaginary part = k1 + k2

  Resulting in 1 less multiplication and 3 more additions
  Can be applied to matrices resulting in a 25% reduction in

operation count for ZGEMM.
  Remove 2·∙n3 operations in exchange for adding 3·∙n2 operations.

No Free Lunch

  Need extra storage, 2n2

  The imaginary part may be contaminated by
relative errors much larger than those for
conventional multiplication.
 However if the errors are measured relative to

 ||A||*||B|| then they are just as small as for
conventional multiplication. – N. Higham

0

50

100

150

200

250

300

350

400

256 1024 1792 2560

ZGEMM on Nvidia Fermi

Matrix size

G
flo

p/
s

Nvidia C2050 (Fermi): 448 CUDA cores @ 1.15GHz,
theoretical SP peak is 1.03 Tflop/s, DP peak 515 GFlop/s)

3 mults & 5 adds
Version of
ZGEMM

Conventional call
To ZGEMM
4 mults & 2 adds

Matrix size

Develop robust multi-precision algorithms
13

•  Idea Goes Something Like This…
•  Exploit 32 bit floating point as much as possible.

  Especially for the bulk of the computation

•  Correct or update the solution with selective use of 64 bit
floating point to provide a refined results

•  Intuitively:
  Compute a 32 bit result,
  Calculate a correction to 32 bit result using selected higher precision

and,
  Perform the update of the 32 bit results with the correction using high

precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough
 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

Mixed-Precision Iterative Refinement
  Iterative refinement for dense systems, Ax = b, can work this way.

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when
using DP fl pt.

  It can be shown that using this approach we can compute the solution to 64-bit
floating point precision.

  Requires extra storage, total is 1.5 times normal;
  O(n3) work is done in lower precision
  O(n2) work is done in high precision
  Problems if the matrix is ill-conditioned in sp; O(108)

Results for Mixed Precision Iterative
Refinement for Dense Ax = b

•  Single	
 precision	
 is	
 faster	
 than	
 DP	
 because:	

  Higher	
 parallelism	
 within	
 floa2ng	
 point	
 units	

•  4 ops/cycle (usually) instead of 2 ops/
cycle

  Reduced	
 data	
 mo2on	
 	

•  32 bit data instead of 64 bit data

  Higher	
 locality	
 in	
 cache	

•  More data items in cache

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo

p/
s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
 3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Ax = b

Single Precision

Double Precision

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo

p/
s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
 3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Ax = b

Single Precision

Mixed Precision

Double Precision

Sparse Direct Solver and Iterative Refinement

18

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

Sparse Iterative Methods (PCG)

19   Outer/Inner Iteration

  Outer iteration in 64 bit floating point and inner iteration in
32 bit floating point

Inner iteration:
In 32 bit floating point Outer iterations using 64 bit floating point

20

2	

 6,021 18,000 39,000 120,000 240,000	

Matrix size	

Condition number	

Machine:���
 Intel Woodcrest (3GHz, 1333MHz bus)���

Stopping criteria:���
 Relative to r0 residual reduction (10-12)	

Speedups for mixed precision ���
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP ���
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)���

(Higher is better)	

Iterations for mixed precision ���
SP/DP iterative methods vs DP/DP ���
(Lower is better)	

2	

2	

2	

Mixed Precision Computations for
Sparse Inner/Outer-type Iterative Solvers

Intriguing Potential

21

  Exploit lower precision as much as possible
  Payoff in performance

  Faster floating point
  Less data to move

  Automatically switch between SP and DP to match the desired
accuracy
  Compute solution in SP and then a correction to the solution in DP

  Potential for GPU, FPGA, special purpose processors
  Use as little you can get away with and improve the accuracy

  Applies to sparse direct and iterative linear systems and
Eigenvalue, optimization problems, where Newton’s method is
used.

Correction = - A\(b – Ax)

Communication Avoiding Algorithms

  Goal: Algorithms that communicate as little as possible

  Jim Demmel and company have been working on algorithms that obtain a provable
minimum communication.

  Direct methods (BLAS, LU, QR, SVD, other decompositions)
  Communication lower bounds for all these problems

  Algorithms that attain them (all dense linear algebra, some sparse)
  Mostly not in LAPACK or ScaLAPACK (yet)

  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx
  Communication lower bounds, and algorithms that attain them (depending on sparsity

structure)
  Not in any libraries (yet)

  For QR Factorization they can show:

22

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R! R!

D1!

D2!

D3!

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

D0!

D1!

D2!

D3!

D0!

Communication Reducing QR
Factorization

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16 cores.

Matrix size 51200 by 3200

GMRES speedups on 8-core Clovertown

25

Communication-avoiding iterative methods

  Iterative Solvers:
  Dominant cost of many apps (up to 80+% of runtime).

  Exascale challenges for iterative solvers:
  Collectives, synchronization.

  Memory latency/BW.

  Not viable on exascale systems in present forms.

  Communication-avoiding (s-step) iterative solvers:
  Idea: Perform s steps in bulk (s=5 or more):

  s times fewer synchronizations.

  s times fewer data transfers: Better latency/BW.

  Problem: Numerical accuracy of orthogonalization.

  TSQR Implementation:
  2-level parallelism (Inter and intra node).

  Memory hierarchy optimizations.

  Flexible node-level scheduling via Intel Threading
Building Blocks.

  Generic scalar data type: supports mixed and extended
precision.

TSQR capability:
  Critical for exascale solvers.
  Part of the Trilinos scalable multicore

capabilities.
  Helps all iterative solvers in Trilinos

(available to external libraries, too).
  Staffing: Mark Hoemmen (lead, post-doc,

UC-Berkeley), M. Heroux
  Part of Trilinos 10.6 release, Sep 2010.

LAPACK – Serial, MGS –Threaded modified Gram-Schmidt

Developing heterogeneous, multi-core-
aware algorithms and software

  Dense solvers for multicore/GPUs – MAGMA Project
•  MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);

•  MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, to allow
scientists to effortlessly port any LAPACK-relying software components to take advantage of new
architectures

•  MAGMA - to leverage years of experience in developing open source LA software packages and
systems like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g.
communication avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

•  MAGMA uses HYBRIDIZATION methodology based on
–  Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them

–  Properly SCHEDULING tasks' execution over
multicore and GPU hardware components

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
 tasks for GPUs)

One-Sided Dense Matrix Factorizations
(LU, QR, and Cholesky)‏

CUDA implementation:
  a_ref points to the GPU memory
  GPU kernels are started asynchronously which results in overlapping
 the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU

Commodity Accelerator (GPU)

 MATLAB code LAPACK code Hybrid code
(1) B = B – A*A' ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ...) cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ...)‏

 cublasGetMatrix(nb, nb, 4, dA(j, j), *lda, hwork, nb)
(2) B = chol(B, 'lower') spotrf_(“L”, &nb, hA(j, j), lda, info) cublasSgemm('N', 'T', j, ...)
(3) D = D – C*A' sgemm_(“N”, “T”, &j, ...) spotrf_(“L”, &nb, hwork, &nb, info)
 cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda)‏

(4) D = B\D strsm_(“R”, “L”, “T”, “N”, &j, ...) cublasStrsm('R', 'L', 'T', 'N', j, ...)‏

Example: Left-Looking Hybrid
 Cholesky factorization

SP Cholesky on Multicore + Multi GPUs

29

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000

G
flo

p/
s

Matrix sizes

Parallel Performance of the hybrid SPOTRF (4 Opteron 1.8GHz and 4 GPU TESLA C1060 1.44GHz)
1CPU-1GPU 2CPUs-2GPUs 3CPUs-3GPUs 4CPUs-4GPUs

Simulation of the shallow-water equation using the HOMME for test
 case 6. The geopotential height is shown above for 14 simulated
 days.

Improved accuracy using high-order time stepping is illustrated as the simulation
 evolves over time. The error of the implicit Jacobian-Free-Newton-Krylov fully
 implicit method and the hybrid Krylov deferred correction implicit methods from
 orders 2 to order 8 are shown. These are more accurate than existing time-stepping
 methods in HOMME. This simulation was performed using more than 4000 cores on
 ORNL’s Cray XT-5

High Order Pseudo-Parallel Time Stepping
With Application to Climate Dynamics

Toward Accurate Long Term Predictions

G. Fann, J. Jia, J. Hill, K. Evans ORNL
M. Taylor SNL

EASI Runtime Research Overview

Develop the supporting Architecture Aware
Runtime required by the above algorithms.

 Look at issues such as process placement,
memory affinity, thread scheduling and data
movement typically out of the control of the
application but which have dramatic effects on
efficiency and performance on multi-core sockets
and large-scale systems.

Extending MPI for Hierarchical Architectures

  Today the only “defined” communicator is MPI_COMM_WORLD
which assumes a flat architecture (i.e. architecture unaware)

  We have extended the MPI interface and runtime to enable
existing MPI algorithms to discover and take advantage of
the hardware hierarchy and multi-core shared memory.

 Defined new architecture aware MPI communicators
MPI_COMM_NODE
MPI_COMM_SOCKET
MPI_COMM_NETWORK
MPI_COMM_CACHE

Broader Impact and Standardization

Goal: Distribute the new algorithms and runtime support through
widely used software packages

Open MPI and MPICH are the two most widely used MPI libraries. 	

In the past month we have gotten these MPI extensions officially
accepted as a branch of the Open MPI source tree.

Standardization efforts: Ron Brightwell is an area lead in the MPI-3
forum. He has begun formal discussions with the forum about getting
these features into the standard by showing their advantages to
future architecture aware algorithms

Current Status - UIUC

  PI: William Gropp
  Startup delayed due to delays in funding

 Funding arrived in July, 2010

  Graduate students have joined the project
 Elena Caraba
 Vivek Kale

  Two major areas of focus:
 Portable Hybrid MPI
 Robust and Reliable Iterative Methods

Improving
HPC

Software

Jack Dongarra and Pete Beckman

http://www.exascale.org

www.exascale.org

Performance of Countries

0

1

10

100

1,000

10,000

100,000
20

00

20
02

20
04

20
06

20
08

20
10

To
ta

l P
er

fo
rm

an
ce

 [
Tf

lo
p/

s]

US

Performance of Countries

0

1

10

100

1,000

10,000

100,000
20

00

20
02

20
04

20
06

20
08

20
10

To
ta

l P
er

fo
rm

an
ce

 [
Tf

lo
p/

s]
 US

EU

Performance of Countries

0

1

10

100

1,000

10,000

100,000
20

00

20
02

20
04

20
06

20
08

20
10

To
ta

l P
er

fo
rm

an
ce

 [
Tf

lo
p/

s]
 US

EU

Japan

Performance of Countries

0

1

10

100

1,000

10,000

100,000
20

00

20
02

20
04

20
06

20
08

20
10

To
ta

l P
er

fo
rm

an
ce

 [
Tf

lo
p/

s]
 US

EU

Japan

China

Potential System Architecture
with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system memory
is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Factors that Necessitate Redesign

  Steepness of the ascent from terascale to
petascale to exascale

  Extreme parallelism and hybrid design

  Preparing for million/billion way parallelism

  Tightening memory/bandwidth bottleneck

  Limits on power/clock speed implication on
multicore

  Reducing communication will become much more
intense

  Memory per core changes, byte-to-flop ratio
will change

  Necessary Fault Tolerance

  MTTF will drop

  Checkpoint/restart has limitations

Software infrastructure does not exist today

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Average Number of Cores Per
Supercomputer for Top20

Systems

A Call to Action

  Hardware has changed dramatically while software ecosystem
has remained stagnant

  Previous approaches have not looked at co-design of multiple
levels in the system software stack (OS, runtime, compiler,
libraries, application frameworks)

  No global evaluation of key missing components
  Need to exploit new hardware trends (e.g., manycore,

heterogeneity) that cannot be handled by existing software
stack, memory per socket trends

  Emerging software technologies exist, but have not been fully
integrated with system software, e.g., UPC, Cilk, CUDA, HPCS

  Community codes unprepared for sea change in architectures

www.exascale.org

IESP Goal

Build an international plan for developing
the next generation open source software
for scientific high-performance computing

Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment
Workshops:

www.exascale.org

International Community Effort

  We believe this needs to be an international
collaboration for various reasons including:
 The scale of investment
 The need for international input on requirements
 US, Europeans, Asians, and others are working on their

own software that should be part of a larger vision for
HPC.

 No global evaluation of key missing components
 Hardware features are uncoordinated with

software development

www.exascale.org

IESP Executive Committee

  Jack Dongarra, UTK & ORNL
  Pete Beckman, ANL
  Patrick Aerts, NWO Netherlands
  Franck Cappello, INRIA, France
  Thom Dunning, NCSA
  Thomas Lippert, Juelich, Germany
  Satoshi Matsuoka, TiTech, Japan
  Paul Messina, ANL
  Anne Trefethen, Oxford, UK
  Mateo Valero, BSC, Spain

www.exascale.org

45

Roadmap Purpose

  The IESP software roadmap is a planning instrument
designed to enable the international HPC
community to improve, coordinate and leverage
their collective investments and development efforts.

  After we determine what needs to be accomplished,
our task will be to construct the organizational
structures suitable to accomplish the work

www.exascale.org

Roadmap Components

www.exascale.org

4.2.4 Numerical Libraries

  Technology drivers
  Hybrid architectures
  Programming models/languages
  Precision
  Fault detection
  Energy budget
  Memory hierarchy
  Standards

  Alternative R&D
strategies
  Message passing
  Global address space
  Message-driven work-queue

  Recommended research agenda
  Hybrid and hierarchical based

software (eg linear algebra split across
multi-core / accelerator)

  Autotuning

  Fault oblivious sw, Error tolerant sw

  Mixed arithmetic

  Architectural aware libraries

  Energy efficient implementation

  Algorithms that minimize
communications

  Crosscutting considerations
  Performance

  Fault tolerance

  Power management

  Arch characteristics

4.2.4 Numerical Libraries

Energy aware

Fault tolerant

Heterogeneous sw

Self adapting for precision

Scaling to billion way

2010	
 2011	
 2012	
 2013	
 2014	
 2015	
 2016	
 2017	
 2018	
 2019	

Com
plexity	
 of	
 system

	

Architectural transparency

Self Adapting for performance

Numerical Libraries
Structured grids
Unstructured grids
FFTs
Dense LA
Sparse LA
Monte Carlo
Optimization

Language issues
Std: Fault tolerant

Std: Energy aware

Std: Arch characteristics Std: Hybrid Progm

What Next? (1/3)
Moving from “What to Build” to “How to Build”

  Technology
 Refining the roadmap for software and algorithms on

extreme-scale systems
 Setting a prioritized list of software components for

Exascale computing as outlined in the Roadmap
 Assessing the short-term, medium-term and long-term

software and algorithm needs of applications for peta/
exascale systems

www.exascale.org

What Next? (2/3)
Moving from “What to Build” to “How to Build”

  Organization
 Developing a governance, management, and

organizational structure for the IESP
 Exploring ways for funding agencies to coordinate their

support of IESP-related R&D so that they complement
each other

 Exploring how laboratories, universities, and vendors
can work together on coordinated HPC software

 Creating a plan for working closely with HW vendors
and application teams to co-design future architectures

www.exascale.org

What Next? (3/3)
Moving from “What to Build” to “How to Build”

  Execution
 Developing a strategic plan for moving forward with

the Roadmap
 Creating a realistic timeline for constructing key

organizational structures and achieving initial goals
 Exploring community development techniques and risk

plans to ensure key components are delivered on time
 Exploring key components of any needed Intellectual

Property agreements

www.exascale.org

Example Organizational Structure:
Incubation Period (today):

  IESP provides coordination internationally, while
regional groups have well managed R&D plans and
milestones

IESP

US-DOE EC-EESI JP US-NSF

www.exascale.org

EC and G8 Related

www.exascale.org

  G8 has a call out for “Interdisciplinary Program on
Application Software towards Exascale Computing for
Global Scale Issues”
  10 million € over three years
 An initiative between Research Councils from Canada,

France, Germany, Japan, Russia, the UK, and the USA
  Proposals preselected due August 25th

  EC FP7 Exa-scale computing, software and
simulation
 Announcement due September 28, 2010
  25 million €

Where We Are Today:

  SC08 (Austin TX) meeting to generate interest

  Funding from DOE’s Office of Science & NSF Office of
Cyberinfratructure and sponsorship by Europeans and Asians

  US meeting (Santa Fe, NM) April 6-8, 2009

  65 people

  European meeting (Paris, France) June 28-29, 2009

  Outline Report

  Asian meeting (Tsukuba Japan) October 18-20, 2009

  Draft roadmap

  Refine Report

  SC09 (Portland OR) BOF to inform others

  Public Comment; Draft Report presented

  European meeting (Oxford, UK) April 13-14, 2010

  Refine and prioritize roadmap

  Explore governance structure and management models

  Maui Meeting October 18-19, 2010

  Kobe Meeting - Spring 2011

Nov 2008

Apr 2009

Jun 2009

Oct 2009

Nov 2009

55

Apr 2010

Oct 2010

Next Steps

  Revise and extend initial draft
  Build management and collaboration plans
  Work with funding agencies to plan research

activities

  Roadmap available at:
  www.exascale.org

