

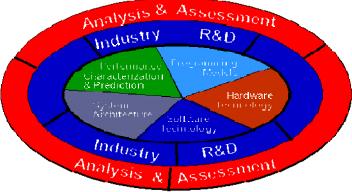
DARPA HPCS Program

FASTOS Recompete

Petascale Tools Workshop

Fred Johnson 08/14/2007

DARPA HPCS Program and the DOE Office of Science

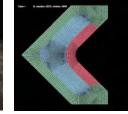

High Productivity Computing Systems HPCS

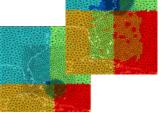
Goal:

Provide a new generation of economically viable high productivity computing systems for the national security and industrial user community (2010)

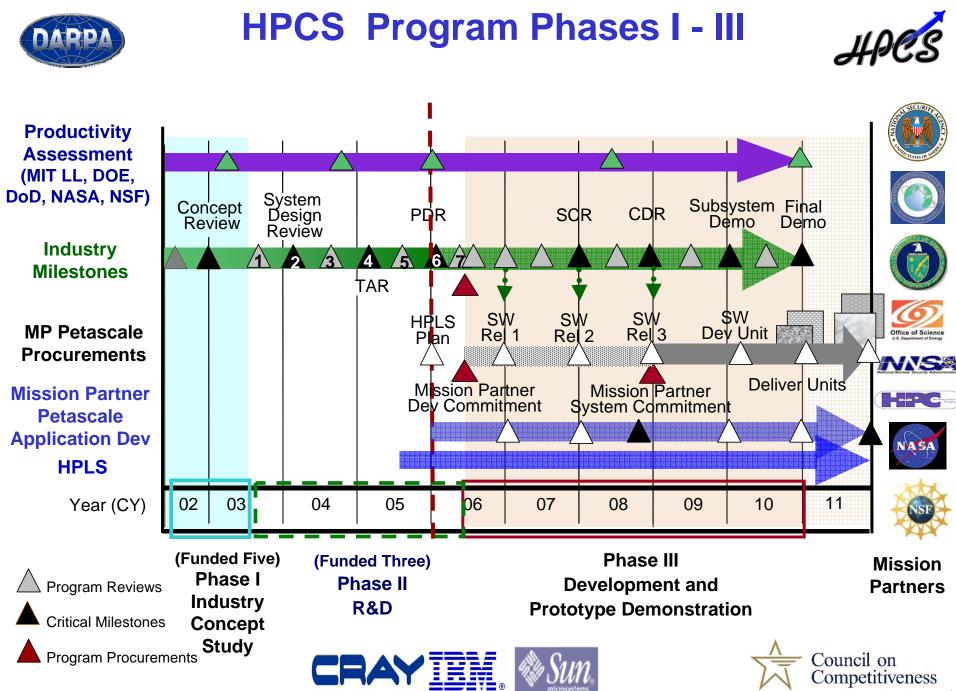
Impact:

- **Performance** (time-to-solution): speedup critical national security applications by a factor of 10X to 40X
- **Programmability** (idea-to-first-solution): reduce cost and time of developing application solutions
- **Portability** (transparency): insulate research and operational application software from system
- Robustness (reliability): apply all known techniques to protect against outside attacks, hardware faults, & programming errors


HPCS Program Focus Areas



Applications:



 Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant modeling and biotechnology

Fill the Critical Technology and Capability Gap Today (late 80's HPC technology).....to.....Future (Quantum/Bio Computing)

- Involved from Phase I, day 1
 - Proposal review team
 - Progress review team
- Phase II
 - Proposal, Progress review teams
 - Mission partner
 - Support for Execution time productivity (Bob Lucas, USC/ISI
 - Support for Development time productivity (Jeremy Kepner, MIT/LL)
 - For further info and HPC Challenge results:
 - http://www.highproductivity.org/
 - Next Generation Programming models—Cray/Chapel, IBM/X10, SUN/Fortress (Rusty Lusk, ANL)
- Phase III
 - Four year \$13M/year budget commitment
 - Focus as much as possible on system software ecosystem, details TBD
 - Petascale application development
- Post HPCS
 - Competitive procurement(s)

- New Program Manager, Charlie Holland
- Phase III Vendors Selected
 - Cray, IBM
 - 90% of Cray funding to come from HPCS Mission Partners (NSA, DOE/SC, NNSA)
 - No separate productivity funding
- FY07/FY08 Senate Appropriations Issue

FASTOS Recompete

Operating and Runtime Systems for Extreme Scale Scientific Computation

Advanced Scientific Computing Research Program

- Dates/Participation
 - Announcement posted 3/7
 - Preproposals due 4/6; 58 received, 34 encouraged
 - Final proposals due 6/11; 30 received and reviewed
 - Panel review 7/11-12

• Topics

- OS framework/kernel/virtualization 11
- Input/Output/Storage 6
- Fault tolerance/RAS 6
- Programming model runtime —
- Misc —

3

4

Operating and Runtime Systems for Extreme Scale Scientific Computation

- Panel Reviewers
 - Govt (NSF, NSA, DOE, DOD, NASA)-12, Univ/Lab-3, Industry-3
- Status
 - Awards to be made in FY2008
 - Will be funding limited

Software Development Tools for Petascale Computing Workshop — Washington, DC, August 1-2, 2007

The times they are a changin [Bob Dylan 1964]

Background Details

Advanced Scientific Computing Research Program

- Community input to planning process for FY08 CS budget increase
- Joint with NNSA/Thuc Hoang
- Steering committee members—Jeff Vetter, ORNL, Bronis de Supinski, LLNL, and Bart Miller, U Wisc
- 55 attendees (invitation only)
 - DOE Lab 25
 - University 10
 - Govt 12
 - Industry 6
 - Europe 2

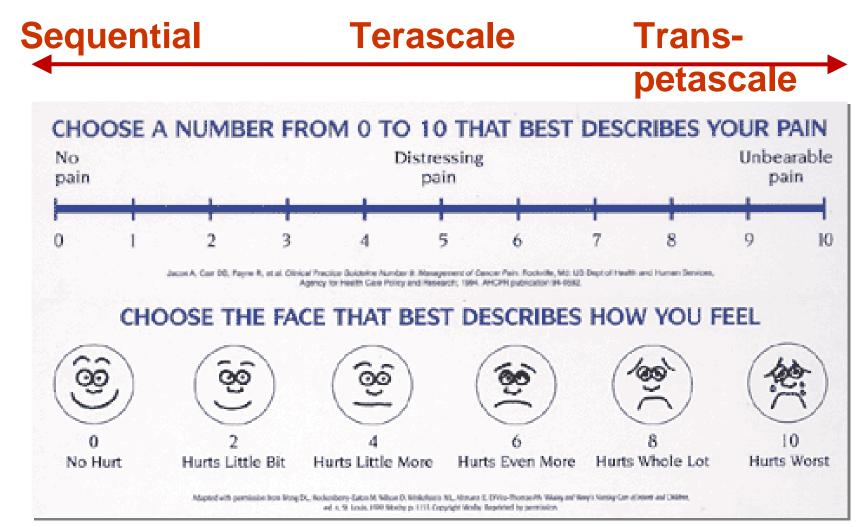
ASCAC Meeting: August 14-15, 2007

Workshop Agenda

- Talks by petascale application developers
 - Brian Pudliner, LLNL; Robert Harrison, ORNL;
 John Daly, LANL
- Platform talks
 - Bob Meisner, Fred Johnson
- Tools issue/challenge overview
 - Bart Miller– We've been here before, but ...
- Poster Session

Workshop Agenda

- Breakout Sessions/co-chairs
 - Performance Tools: Dan Reed, RENCI and Bernd Mohr, Juelich
 - Correctness Tools: Susan Coghlan, ANL and Curtis Janssen, SNL
 - Scalable Tool Infrastructure: Jeff Hollingsworth, U Maryland and Al Geist, ORNL
 - Development Environments: Craig Rasmussen, LANL and Rod Oldehoeft, Krell
- Final report with findings and recommendations due 8/31
- More details: www.csm.ornl.gov/workshops/Petascale07


U.S. Department of Energy

Application Developer Quotes

- John Daly, LANL (41 M hours in Jan-April)
 - Science codes always in development
 - Today's wish list
 - Lightweight massively parallel debugging
 - Low overhead memory debugging
 - Tomorrow's wish list
 - Resource aware job scheduling and task migration
 - Runtime protection against data corruption
- Brian Pudliner, LLNL
 - Most codes rely on timing systems built on top of TAU/PAPI
 - Totalview doesn't cut it at terascale, don't expect to see it at petascale
 - Some codes have 30+ 3rd party libraries
 - Autoconf inline tests drive us nuts when cross compiling
 - Top needs
 - Debugging at scale, memory debugging, memory use characterization
 - Thread correctness, topology characterization/optimization
 - Seriel, parallel, thread performance analysis tools

On Performance Tools ...

Petascale Requirements

Advanced Scientific Computing Research Program

Increased automation

- anomaly detection
- correlation and clustering
- data reduction
- Abstraction support
 - detail/complexity hiding
- Runtime adaptation
 - task topologies, ...
- Heterogeneity
 - programming models: explicit and implicit
 - hardware

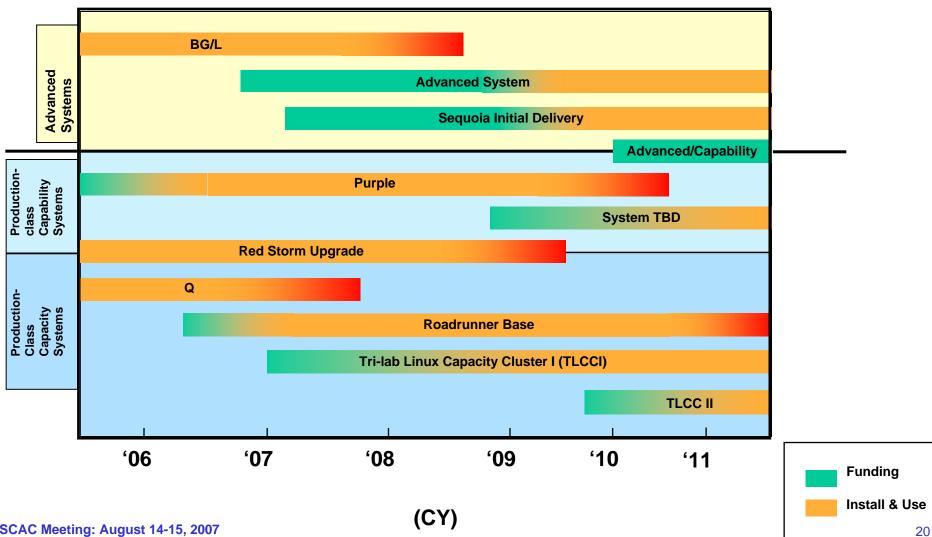
Findings

Advanced Scientific Computing Research Program

Petascale is not terascale scaled up

- higher complexity, heterogeneity

- Tool Infrastructure reuse is uncommon, stove piped tools make this hard
- At "peta-scale" tools must handle:
 - 100k cores soon (and up to 1M cores in the future).
 - 2 GB executable & large number of dll's.
 - Support multiple architectures in a single node



Backup Slides

ASC Platform Strategy

Advanced Scientific Computing Research Program

ASCAC Meeting: August 14-15, 2007

ASCR Future Computing Facility Upgrades

Advanced Scientific Computing Research Program

• ALCF

NERSC

- 100 teraflop IBM Blue Gene/P delivered by end of FY 2007
- 250-500 teraflop upgrade to IBM Blue Gene/P in late 2008
- LCF Oak Ridge
 - -Cray XT4 upgraded to 250 TF by end of 2007
 - –1 Petaflop Cray Baker system to be delivered by end of 2008
 - 100+ teraflop Cray XT4 in operation by October 2007

U.S. Department of Energy

Petascale Requirements

- Fault tolerance/resilience
- Education and training
- Multi-level instrumentation
- Memory and I/O analysis
- Performability
 - hybrid/integrated performance and reliability
- Presentation and insight
 - scalable visualization
- Performance modeling and prediction
- Scaling of known methods and techniques
 - million-way parallelism and beyond

- Crucial interactions
 - users/staff/developers critical
 - education and training
 - feedback
- Insufficient integration
 - among tools
 - component reuse
- No general pathway for release quality tools
 - hardening, documentation, training, support, ...

- Tool Infrastructure reuse is uncommon, stove piped tools make this hard
- At "peta-scale" tools must handle:
 - 100k cores soon (and up to 1M cores in the future).
 - 2 GB executable & large number of dll's.
 - Support multiple architectures in a single node.
- Applications & systems will be more dynamically adaptable, and tools will need to handle this
- Tools need communication abstractions beyond TCP/IP sockets.
- The costs of supporting tools for multiple platforms and operating systems is straining tool developers
- Going to petascale will increase the need for anomaly detection and (dynamic) data reduction