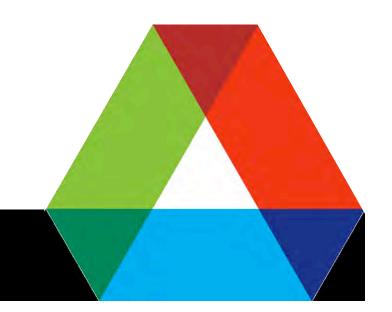


Argonne's Leadership Computing Facility: Petascale Computing for Science

Rick Stevens


Argonne National Laboratory

The University of Chicago

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

A Brief History of Petaflops Computing

- 1994 Petaflops I (Pasadena)
- 1995 Summer Study (Bodega)
- 1996 Architecture Workshop (Bodega)
- 1996 Software Workshop (Bodega)
- 1996 Petaflops Frontier 2 (Annapolis)
- 1997 Layered SW Workshop (Oxnard)
- 1997 Algorithms Workshop (Williamsburg)
- 1998 Petaflops-sys Operations Workshop
- 1999 Petaflops II (Santa Barbara)
- 2002 WIMPS (Bodega)
- 2003 HECRTF Roadmap (Washington)

Thomas Sterling, Paul Messina, and Paul H. Smith

NU NUR

CARLES IN THE REAL

A DOMESTICS

National community has been engaged for more than a decade on the problem of petascale computing

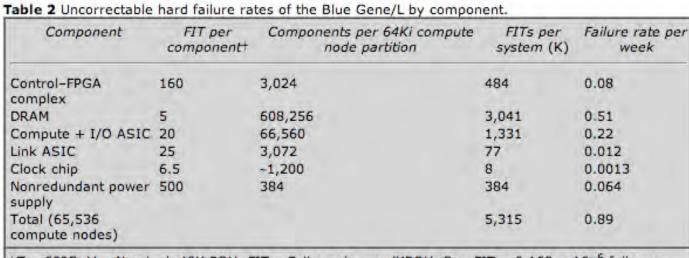
Desired Modes of Impact for Petascale Computing

- 1. Generation of significant datasets via simulation to be used by a large and important scientific community
 - Providing a high-resolution first principles turbulence simulation dataset to the CFD and computational physics community
- 2. Demonstration of new methods or capabilities that establish feasibility of new computational approaches that are likely to have significant impact on the field
 - Demonstration of the design and optimization of a new catalyst using first principles molecular dynamics and electronic structure codes
- 3. Analysis of large-scale datasets not possible using other methods
 - Computationally screen all known microbial drug targets against the known chemical compound libraries
- 4. Solving a science or engineering problem at the heart of a critical DOE mission or facilities design or construction project
 - Designing a passively safe reactor core for the Advanced Burner Reactor Test Facility

DOE Leadership Computing Facility Strategy

- DOE selected the ORNL, ANL and PNNL team (May 12, 2004) based on a competitive peer review of four proposals to develop the DOE SC Leadership Computing Facilities
 - ORNL will develop a series of systems based on Cray's XT3 and XT4 architectures with systems @ 250TF/s in FY07 and @1000TF/s in FY08/FY09
 - ANL will develop a series of systems based on IBM's BlueGene @ 100TF/s in FY07 and up to 1000TF/s in FY08/FY09 with BG/P
 - PNNL will contribute software technology for programming models (Global Arrays) and parallel file systems
 - The Leadership Class Computing (LCC) systems are likely to be the most powerful civilian systems in the world when deployed
- DOE SC will make these systems available as capability platforms to the broad national community via competitive awards (e.g. INCITE and LCC Allocations)
 - Each facility will target ~20 large-scale production applications teams
 - Each facility will also support order 100 development users
- DOE's LCC facilities will complement the existing and planned production resources at NERSC
 - Capability runs will be migrated to the LCC, improving NERSC throughput
 - NERSC plays an important role in training and new user identification

Why Blue Gene?



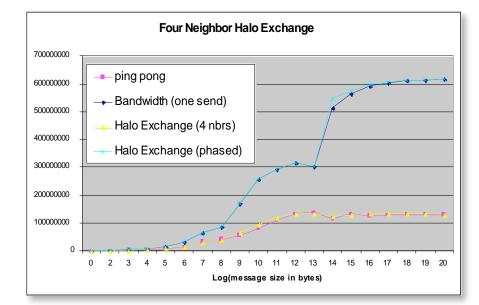
- In the National Leadership Computing Facility proposal the ORNL, ANL, PNNL, et. al. team proposed a multi-vendor strategy to achieve national leadership capabilities
- Possible systems capable of 500TF to 1 PF peak performance deployable in FY08/FY09
 - Cray XT3/XT4, IBM Power5/6, IBM Blue Gene L/P
 - Clusters (Intel, AMD, PPC, Cell?)
 - DARPA HPCS design points considered but not available in time
- Decision factors
 - Suitable for DOE applications \Rightarrow adequate coverage
 - Feasibility demonstrated at scale \Rightarrow acceptable level of risk
 - Acceptable reliability \Rightarrow user acceptance and operational efficiency
 - Acceptable power consumption \Rightarrow acceptable TCO
 - Cost \Rightarrow acceptable TPC

Leadership Science Platform Mix

- Assumptions
 - DOE will invest in multiple platforms, to avoid risk and unneeded duplication of specific capabilities
 - Users will migrate to platforms were they can get the most science for the least effort
 - We have limited ability to predict the success and ultimate adoption of unfielded systems
 - More specialized (limited application suitability) systems will need to have a cost (TCO) advantage to add value to the fleet of systems
 - The lower the overall risk to the program the better

Failure Rates and Reliability of Large Systems

+T = 60 °C, V = Nominal, 40K POH. *FIT* = Failures in ppm/KPOH. One FIT = 0.168 × 16⁻⁶ fails per week if the machine runs 24 hours a day.


			Failures per	Failures per
System		MTBF	Month per	Month per
Scale TFs	CPU Type	(Days)	System	TF
3	IA64	1.3	24	8
10.7	IA64	1.1	28.3	2.7
1.7	x86	4.5	6.7	3.9
17.2	x86	0.7	45.1	2.6
15	Power 5	1.1	19	1.3
114	Blue Gene	6.9	4.3	0.038
365	Blue Gene	7.5	4	0.011
1000	Blue Gene P	7	4.3	0.004

Theory

Experiment

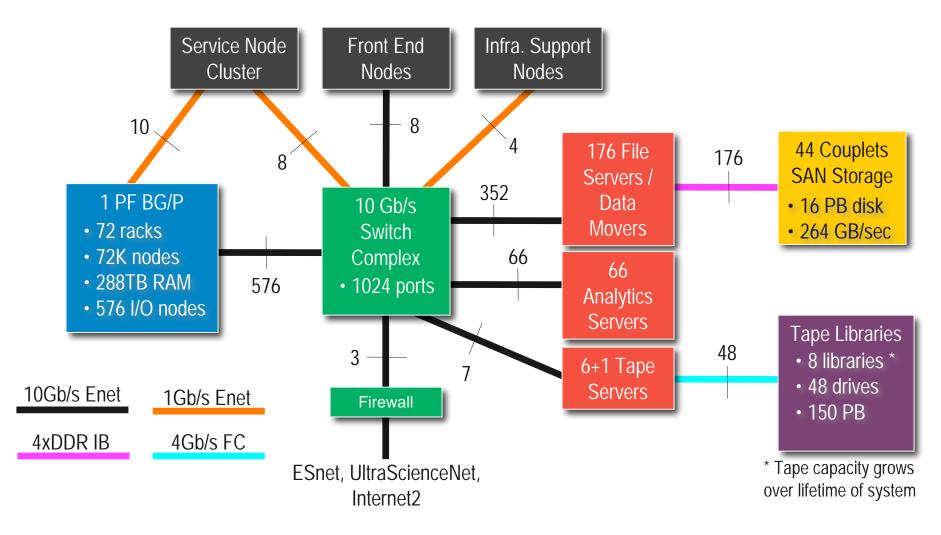
Some Good Features of Blue Gene

- Multiple links may be used concurrently
 - Bandwidth nearly 5x simple "pingpong" measurements
- Special network for collective operations such as Allreduce
 - Vital (as we will see) for scaling to large numbers of processors
- Low "dimensionless" message latency
- Low relative latency to memory
 - Good for unstructured calculations
- BG/P improves
 - Communication/Computation overlap (DMA on torus)
 - MPI-I/O performance

Smaller is Better

	s/f	r/f	s/r	Reduce	Reduce for 1PF
BG/P	2110	9	233	12us	12us
BG/P (one link)	2110	42	50	12us	12us
ХТ3	7920	10	760	2slog p	176us
Generic Cluster	13500	34	397	2slog p	316us
Power5 SP	3200	6	529	2slog p	41us

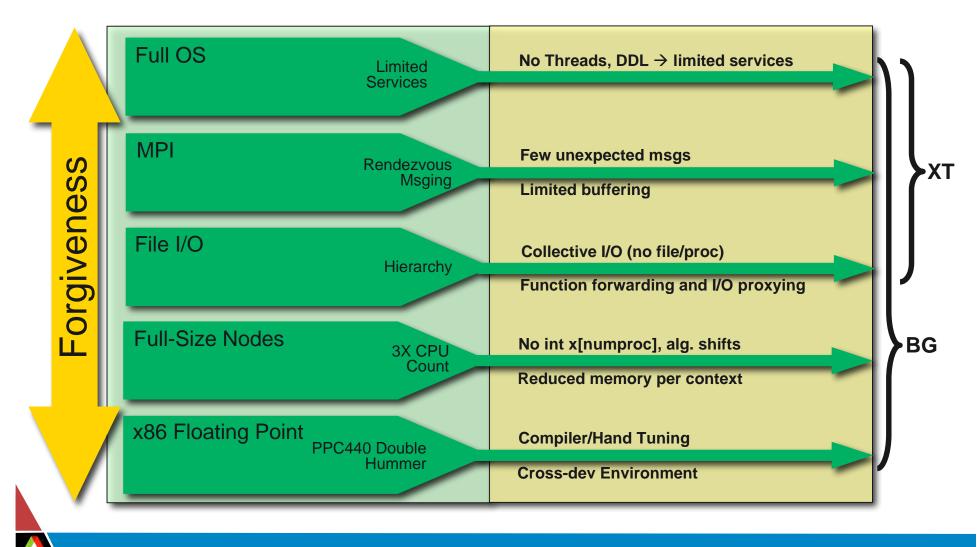
Decision to choose Blue Gene is Supported by


- Blue Gene has been fielded within a factor of 3 of PF goal
 - No other system is close to this scale (lower risk to scale to PF)
- Applications community has reacted positively, though the set is still limited it is larger than expected, and some applications are doing extremely well
 - For those applications that can make the transition, the BG platform provides outstanding scientific opportunity, many can, some can't
- Blue Gene has been remarkably reliable at scale
 - The overall reliability appears to be several orders of magnitude better than other platforms for which we have data
- Power consumption is 2x-4x better than other platforms
 - Lower cost of ownership and window to the future of lower power
- System Cost
 - The cost of the system is significantly lower than other platforms

BlueGene/P has a strong System family resemblance 72 Racks Rack Cabled 8x8x16 11 32 Node Cards Puts processors + memory + network interfaces on the same chip 1 PB/s Node Card 144 TB (32 chips 4x4x2)32 compute, 0-4 IO cards 14 TF/s 2 TB Compute Card High packaging 1 chip, 1x1x1 density 435 GF/s Chip 64 GB • 13.9TF in 15 sq ft of 4 processors floor space (1 rack) 13.9 GF/s Low system power 2 GB DDR 13.6 GF/s requirements 8 MB EDRAM

• 31KW per rack

Petascale System Architecture



Challenges and Choices to Achieve Leadership-Class Capability

Commodity Linux Clusters

Extreme-scale Cray XT and IBM BG

Software Environment

Compute / Development

Resource Mgmr / Scheduler / Workflow	Cobalt, Kepler		
User Mgmt, Ticket system, Accounting	ANL UserBase/Accting System		
Other compilers, IDEs	UPC, Eclipse		
IBM Math Libraries, Tools, Compilers	ESSL, MASS/V, HPC Toolkit, IBM xl*		
Community Math Libraries	FFTW, PETSc, BLAS, LAPACK		
Performance, & Debugging Tools	TAU, Kojak, PAPI		
Parallel I/O Libraries	HDF5, pNetCDF		
MPI, MPI-IO, GAs	MPICH, ROMIO, ARMCI		
Low-level MSG Layer & Collectives	IBM, MPICH Nemesis		
Low-level HW Drivers	IBM		
CN & ION Kernels; CIOD	ZeptoOS (Linux) and ZOID, IBM CN and coid		
Home Directory File System	GPFS		

Community

IBM/Vendor

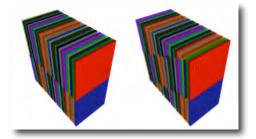
Blue Gene Applications Analysis Strategy

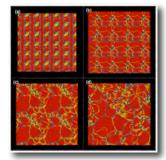
- Over 80 applications have been ported to BG/L
- In many cases the application runs within 1 or 2 days
- Typical issues
 - **Memory footprint** [512MB node on BG/L \Rightarrow 4GB node on BG/P]
 - **Scalability** [impact of collectives, torus loading, load balancing, I/O]
 - Libraries [FFT, BLACS, etc.]
 - Single node performance [compiler optimization, double hummer]
 - Memory hierarchy management [blocking, prefetch, fusing ops, etc.]
- Initial tests are done to confirm correctness, then weak scaling and then strong scaling limits determined, etc.
 - Work then focuses on improving scaling and performance
- We believe applications are self-selecting for BG
 - Highly portable, well understood codes, aggressive user/developers
- In a multi-architecture DOE environment we believe user driven application self-selection is the most efficient path forward
- Due to the effort required to achieve leadership level performance we believe general HPC benchmarks are of extremely limited utility

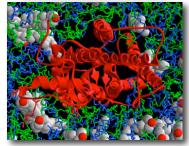
Example Applications Ported to BG/L

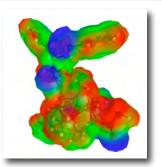
• The following lists codes ported to date on BG/L evidencing the strong community interest and potential scientific ROI.

General Domain	Code	Institution	General Doman	Code	Institution
Astro Physics	Enzo	UCSD/SDSC	Material Sciences	ALE3D	LLNL
Astro Physics	Flash	UC/Argonne	Material Sciences	LSMS	LLNL
Basic Physics	CPS	Columbia	Molecular Biology	mpiBLAST	Argonne
Basic Physics	QCD kernel	IBM	Molecular dynamics	MDCASK	LLNL
Basic Physics	QCD	Argonne	Molecular Dynamics	Amber	UCSF
Basic Physics	QMC	CalTech	Molecular dynamics	APBS	UCSD
Basic Physics	QMC	Argonne	Molecular Dynamics	Blue Matter	IBM
BioChemistry	BGC.5.0	NCAR	Molecular Dynamics	Charmm	Harvard
BioChemistry	BOB	NCAR	Molecular dynamics	UMD	CalTech
CAE/FEM Stucture	PAM-CRASH	ESI	Molecular Dynamics	NAMD	UIUC/NCSA
CFD	Miranda	LLNL	Molecular Dynamics	Qbox	LLNL
CFD	Raptor	LLNL	Molecular Dynamics	Shake & Bake	Buffalo
CFD	SAGE	LLNL	Molecular Dynamics	MDCASK	LLNL
CFD	TLBE	LLNL	Molecular dynamics	Paradis	LLNL
CFD	sPPM	LLNL	Nano-Chemistry	DL_POLY	Argonne
CFD	mpcugles	LLNL	Neuroscience	pNEO	Argonne
CFD	Nek5	Argonne	neutron transport	SWEEP3D	LArgonne
CFD	Enzo	Argonne	Nuclear Physics	QMC	Argonne
CFD	TLBE	LLNL	Quantum Chemistry	CPMD	IBM
Financial	KOJAK	NIC, Juelich	Quantum Chemistry	GAMESS	Ames/lowa State
Financial	Nissei	NIWS	Seismic wave propogatio	SPECFEM3D	GEOFRAMEWORK.org
Finite Element Solvers	HPCMW	RIST	Transport	SPHOT	LLNL
Fusion	GTC	PPPL	Transport	UMT2K	LLNL
Fusion	Nimrod	Argonne	Weather & Climate	MM5	NCAR
Fusion	Gyro	GĂ	Weather & Climate	POP	Argonne

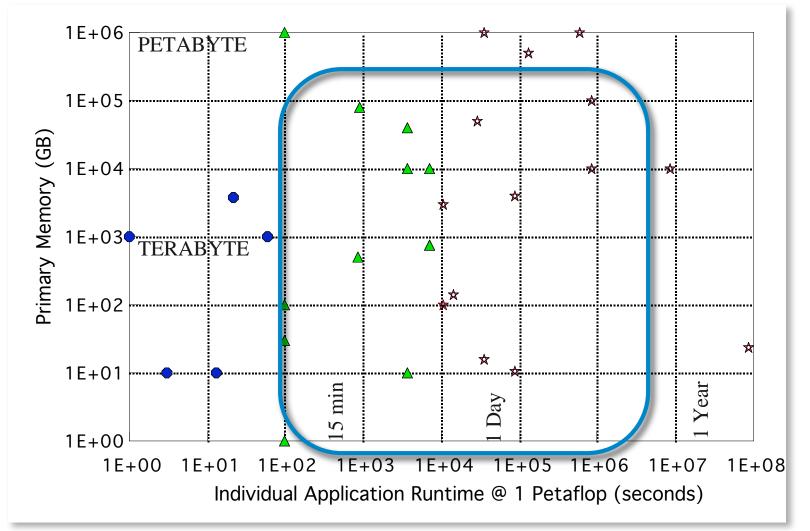

DOE Applications Drivers and Example Codes


- Computational Materials Science and Nanoscience
 - Electronic structure, First Principles \Rightarrow Qbox, LSMS, QMC
 - (mat) Molecular dynamics \Rightarrow CPMD, LJMD, ddcMD, MDCASK
 - Other materials \Rightarrow ParaDIS
- Nuclear Energy Systems
 - Reactor core design and analysis \Rightarrow NEK5, UNIC
 - Neutronics, Materials, Chemistry \Rightarrow QMC, Sweep3D, GAMESS
- Computational Biology/Bioinformatics
 - (bio) Molecular dynamics \Rightarrow NAMD, Amber7/8, BlueMatter
 - Drug Screening \Rightarrow DOCK5, Autodock
 - Genome-analysis \Rightarrow mpiBLAST, mrBayes, CLUSTALW-mpi
- Computational Physics and Hydrodynamics
 - Nuclear Theory \Rightarrow GFMC
 - Quantum chromo dynamics \Rightarrow QCD, MILC, CPS
 - Astrophysics/Cosmology \Rightarrow FLASH, ENZO
 - Multi-Physics/CFD \Rightarrow ALE3D, NEK5, Miranda, SAGE




Example Leadership Science Applications

- Qbox FPMD solving Kohn-Sham equations, strong scaling on problem of 1000 molybdenum atoms with 12,000 electrons (86% parallel efficiency on 32K cpus @ SC05), achieved 190 TFs recently on BG/L
- ddcMD many-body quantum interaction potentials (MGPT), 1/2 billion atom simulation, 128K cpus, achieved > 107 TFs on BG/L via fused dgemm and ddot
- BlueMatter scalable biomolecular MD with Lennard-Jones 12-6, P3ME and Ewald, replica-exchange 256 replicas on 8K cpus, strong scaling to 8 atoms/node
- GAMESS ab initio electronic structure code, wide range of methods, used for energetics, spectra, reaction paths and some dynamics, scales O(N⁵-N⁷) in number of electrons, uses DDI for communication and pseudoshared memory, runs to 32,000 cpus
- FLASH3 produced largest weakly- compressible, homogeneous isotropic turbulence simulation to date on BG/L, excellent weak scaling, 72 million files 156 TB of data


Communication Needs of the "Seven Dwarves"

These seven algorithms taken from "Defining Software Requirements for Scientific Computing", Phillip Colella, 2004

			Tree/C	Tree/Combine	
1.	Molecular dynamics (mat)	Algorithm	Scatter/Gather	Reduce/Scan	Send/Recv
2. 3.	 Reactor analysis/CFD Fuel design (mat) Reprocessing (chm) 	Structured Grids 3, 5, 6, 11	Optional	X _{LB}	x
4. 5. 6.		Unstructured Grids 3, 4, 5, 6, 11		X _{LB}	X
o. 7. 8.	Repository optimizations Molecular dynamics (bio)	FFT 1, 2, 3, 4, 7, 9	Optional		X
o. 9. 10.	Genome analysis QMC QCD	Dense Linear Algebra 2, 3, 5	Not Limiting	Not Limiting	X
11.	Astrophysics	Sparse Linear Algebra 2, 3, 5, 6, 8, 11		X	x
	Blue Gene Advantage	Particles N-Body 1, 7, 11	Optional	X	X
	avanago	Monte Carlo 4, 9		*	X

Legend: Optional – Algorithm can exploit to achieve better scalability and performance. Not Limiting – algorithm performance insensitive to performance of this kind of communication. X – algorithm performance is sensitive to this kind of communication. X_{LB} – For grid algorithms, operations may be used for load balancing and convergence testing

Petaflops Applications Coverage

D:\PETAFLOP\PETAALGS.PPT

Scalable Software Testbed

- The ALCF BG system provides a unique opportunity for the computer science community to test ideas for next generation operating systems and scalable systems software
- ALCF could allocate a fraction (up to 5%) for competitively awarded computer science proposals aimed at advancing petascale software projects
- ALCF will be configured to permit testbed users to try new operating systems and file systems
- It is anticipated that the software environment on the ALCF will be open source and available to the development community for enhancement and improvement

ALCF Science Community

Leadership Science Teams

Addressing the most computationally challenging science problems.

Annual DOE call for proposals. Scientific and technical peer review.

~20 teams at full production (~200 people), consuming ~90% of the available cycles.

Computer Science Testbed Teams

Scaling up the next generation of systems software and numerical algorithms.

Proposals solicited and selected jointly with DOE CS Program Manager.

~5 Teams at full production (25 people), consuming ~5% of the available cycles.

Application Development Teams

Scaling up the next generation of science codes.

ALCF technical review of project requests.

~60 Teams at full production (120 people), consuming ~5% of the available cycles.