

### Basic Research Integration with Applied Programs EPACT Section 994

**Daniel A Hitchcock** 

Daniel.Hitchcock@Science.doe.gov 301-903-6767



### Energy Policy Act Requirements (EPACT)

- The Energy Policy Act of 2005 (EPACT), Section 994, requires the Department of Energy (DOE) to:
  - periodically review all of the science and technology activities of the Department in a strategic framework that takes into account both the frontiers of science to which the Department can contribute and the national needs relevant to the Department's statutory missions; and
  - develop a plan to improve coordination and collaboration in research, development, demonstration, and commercial application activities across Department organizational boundaries
- Plan is due to Congress August 8, 2006



# **Organization of DOE**





### **EPACT Report Sections**

- Integration Activities and Processes
  - identifies how the applied technology and science programs are currently coordinating activities
- Significant Crosscutting Scientific and Technical Issues
  - summarizes the scientific and technical issues and research questions that span more than one program or major office of the Department based on the results of the S&T Program Reviews
- Strategies for Implementation



# **Crosscutting Technical Issues**

- Highly Crosscutting
  - Radiation-Resistant Materials\*
  - Energy Storage
  - Advanced Mathematics for Optimization of Complex Systems, Control Theory, and Risk Assessment\*\*
  - Building Synergies With Work-for-Others, Laboratory Directed Research and Development (LDRD), and DOE University-Sponsored Research

#### U.S. Department of Energy



### **Crosscutting Technical Issues**

#### Energy Related

- Superconductivity
- Power Electronics/Switching
- Grid Control\*
- Wind Power\*
- Catalysis for Energy Efficiency and Renewable Energy
- Nuclear Fuel Materials and Design
- Catalysis for Hydrogen Production from Nuclear Energy
- Risk Assessments for Geologic Carbon Sequestration\*
- Gasification and Combustion Modeling and Computational System Dynamics\*
- Advanced Sensors and Controls for Gasification and Combustion Systems\*
- High Performance Materials for Advanced Fossil Energy Processes



# **Crosscutting Technical Issues**

- National Nuclear Security
  - Innovative Materials for Safeguards and Security
  - Nuclear Test Detection\*
  - Remote Sensing and Analysis of Radioactive Materials and Nuclear Weapons



# **Crosscutting Technical Issues**

#### Environmental Management

- Chemistry and Separations for Radioactive Waste
- Modeling, Simulation, and Scaling Issues for Environmental Management\*
- Predicting High Level Waste System Performance over Extreme Time Horizons\*



#### Advanced Mathematics for Optimization of Complex Systems, Control Theory, and Risk Assessment

#### Office of Science

#### **Carbon Sequestration**



#### **Nuclear Power Systems (GNEP)**



**Electric Power Grid** 



#### **Advanced Combustion Systems**





### Advanced Mathematics for Optimization of Complex Systems, Control Theory, and Risk Assessment

- Characteristics
  - Many control points or interacting subsystems
  - Stochastic loads or inputs
  - Complex interconnections
- Example Questions
  - How many sensors are needed? Where?
  - Is control system stable?
  - Can we evaluate risk systematically?
  - How do we optimize system?
- Currently organizing workshop to further define opportunity and critical issues