

A New Paradigm for DOE Applied Mathematics

Sandy Landsberg DOE Office of Science Advanced Scientific Computing Research

March 27, 2012

Applied Mathematics - Landsberg 1

DOE Applied Mathematics paradigm now

The DOE Applied Mathematics program supports basic research leading to fundamental mathematical advances and computational breakthroughs across DOE and Office of Science missions; analysis and development of robust mathematical models, algorithms and software for enabling predictive scientific simulations of DOE-relevant complex systems.

DOE Applied Mathematics paradigm now

- Targeted solicitations & unsolicited proposals addressing mathematical topic areas with DOE-relevance
- Size of research projects:
 - Single PI / Two-person team (<\$250K) : ~20% of all projects
 - Medium-size teams, 3-5 researchers (\$250K-\$1M): ~75% of all projects
 - Large- size teams, 5+ researchers (>\$1M): ~5% of all projects

New DOE Applied Mathematics paradigm

Support the research and development of applied mathematical models, methods and algorithms for understanding natural and engineered systems related to DOE's mission ... Support ASCR Challenge: Discover new applied mathematics, computer science, and networking tools for the ultra-low power, multicore-computing future and data-intensive science

Long-term goals:

- Mathematics research that 5-10+ years out will impact DOE mission efforts: DOE Applications, SciDAC Partnerships, and Exascale Co-Design
- New Mathematical Multifaceted • **Integrated Capability Centers** (MMICCs) directly enhances impact of applied math on DOE mission

- Cross-cutting mathematics projects: addresses foundational, algorithmic and extremescale mathematical challenges
- High-risk, high-payoff: new mechanism to bring in highly innovative research

New Applied Mathematics Paradigm

Applied Mathematics:

Mathematical Multifaceted Integrated Capability Centers (MMICCs)

Background

- 2005 Multiscale Mathematics solicitation
- 15 projects awarded under Multiscale Mathematics • and Optimization of Complex Systems (ending 8/2012)
- 7 projects awarded under Mathematics for Complex Distributed Interconnected Systems (ending 8/2012)
- 7 projects awarded under ARRA Multiscale Mathematics and Optimization of Complex Systems (ending 8/2012)

Exploratory Applied Mathematics Projects

- Workshop: Sept 13-15, 2011; Workshop report, "A Multifaceted Mathematical Approach for Complex Systems" March 2012.
- Applied Math Summit 3/7/2012.

New Paradigm ۲

- Holistically address mathematics for increasingly complex DOE-relevant systems for scientific discovery, design, optimization and risk assessment.
- Broader view of the problem as a whole, and devise solution strategies that attack the problem in "its entirety" by building fundamental, multidisciplinary mathematical capabilities
- Enable applied mathematics researchers to work together in large, collaborative teams to more effectively address application problems earlier in the problem solving process.

Summit Discussion (3/7/2012)

- What are the pro's and con's of this new paradigm? Are there examples of other centers that we can learn from?
- What should the MMICCs focus on, e.g. themes?
- How close to, or removed from, an application should the center be?
- Can a MMICC focus on foundational and computational mathematics effectively for multiple domain applications?
- How might they change over time?
- How will this be received within the applied mathematics community? How should this be socialized?
- How do you measure success of a center?
- After this meeting what should be the next step in accomplishing this paradigm shift.

Summit Summary – Key Points(3/7/2012)

- MMICCs are a good idea but note that long-term crosscutting mathematics projects have been mainstay of success of DOE Applied Mathematics program.
- MMICCs structure should have clear relevance and impact to DOE mission areas
- If successful, MMICCs will grow entire Applied Math program
- MMICCs: Let the applicants define a "Grand Challenges".
 - Grand Challenges for MMICCs include defining one or more DOE-relevant scientific or engineering challenges; these are then abstracted into a set of mathematical research challenges that must be addressed through an multifaceted, integrated, iterative process.

Summit Summary – Key Points(3/7/2012)

- Extended discussion of MMICCs themes:
 - Is it feasible to focus on more than one application?
 - Yes, MMICCs should focus on mathematical abstractions of science problems, but also ensure that results, e.g. models, methods and algorithms, will have long-term science impact.
 - Areas that are ripe for investment:
 - Materials & Chemistry for Energy Applications
 - Complex Engineered Systems e.g. power grid with a focus on real time, predictive capabilities
 - Fluid-structures interactions, but choose illustrative example carefully
 - SC Facilities, e.g. light sources (Note: math challenges not well articulated)
 - Areas that already have a lot of investment:
 - Fusion
 - Accelerator modeling
 - Climate
 - CFD,
 - Nuclear weapons design code

Summit Summary – Key Points(3/7/2012)

- Binding pre-applications are a good idea; won't waste applicants' time and reviewers' time
- Center director is critical for success; identify key senior staff; allow flexibility of junior staff and collaborations
- Socialization with Applied Mathematics community is important; it will be challenging and take time.
- MMICCs will need to:
 - Address the *long-term mathematical challenges* one or more DOE grand challenges of increasing complexity and that require new multifaceted, integrated processes across multiple mathematical disciplines.
 - Identify *a set of mathematics research challenges that represent abstractions* of the grand challenges. These abstractions would then be optimally addressed through a multifaceted, integrated approach.
 - Have *potential impact* to the DOE mission *in the 5-10+ year timeframe* by transitioning to SciDAC Partnerships, SciDAC Institutes, Co-Design Centers, and/or directly to DOE application scientists.

Questions?

Sandy.Landsberg@science.doe.gov

Applied Mathematics - Landsberg 11