Understanding Climate Change: A Data-Driven Approach

Alok Choudhary, Northwestern University Nagiza F. Samatova, NC State and ORNL

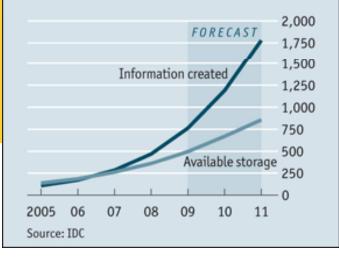
> choudhar@eecs.northwestern.edu samatova@cs.ncsu.edu

Science and Society Transformed by Data

Overload

Global information created and available storage Exabytes

Science



MA

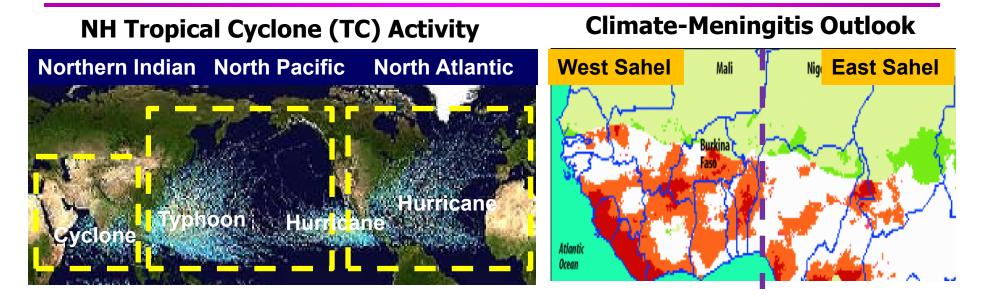
16 December 2011 | \$10

DATA-INTENSIVE SCIENTIFIC DISCOVERY

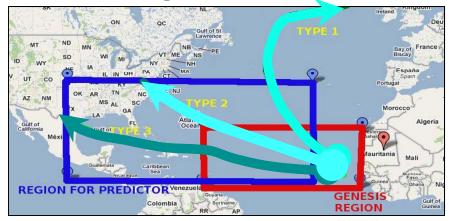
2

Science

Example Use Cases: Extreme Events Prediction



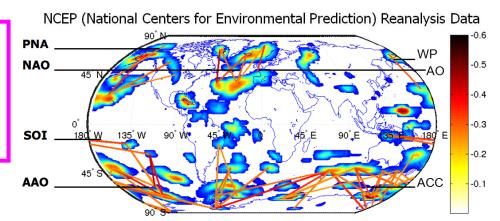
Forecasting NA Hurricane Tracks



Climate System Complexity

The Complexity of Climate Systems Comes from Interconnections.

Climate systems are complex because of non-linear coupling of its subsystems (e.g., the ocean and the atmosphere).



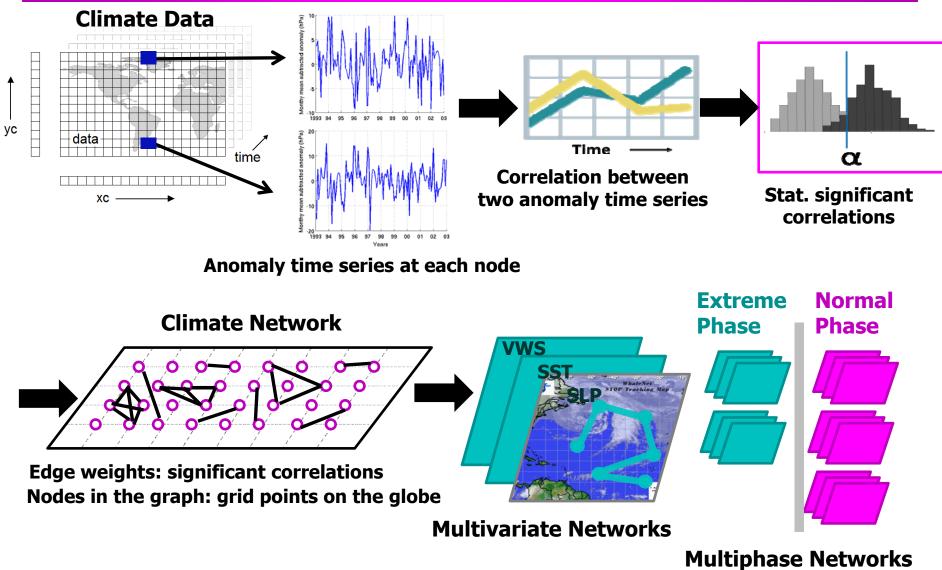
Challenge:

How to "connect the dots", that is, to construct *predictive phenomenological m*odels explaining **structure-dynamics-function relationships** in the complex climate system.

From Simplicity to Complexity

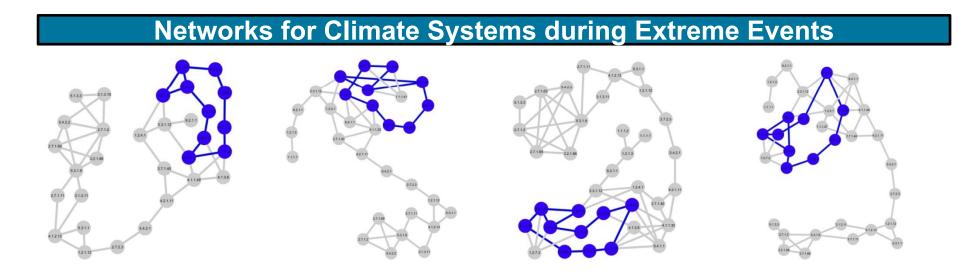
Science 3 September 2010: 1125.

Modeling a Climate System as a Network

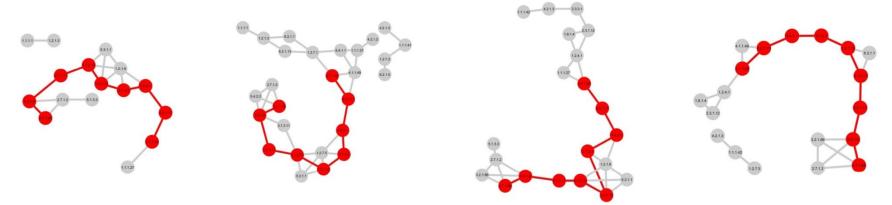


Slide 5

Subgraphs Common to Extreme Event Climate Networks



Networks for Climate Systems during Normal Events

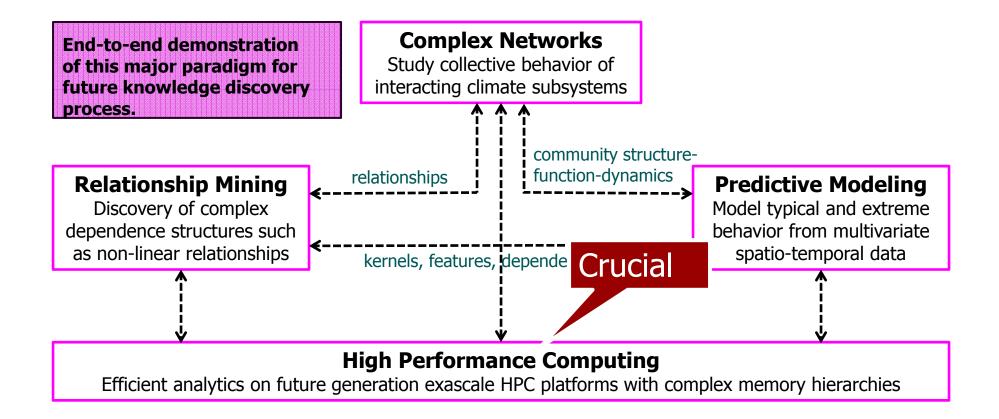


Identifying patterns in the evolution of the climate system – Example : Analysis of Decadal Trends in Climate

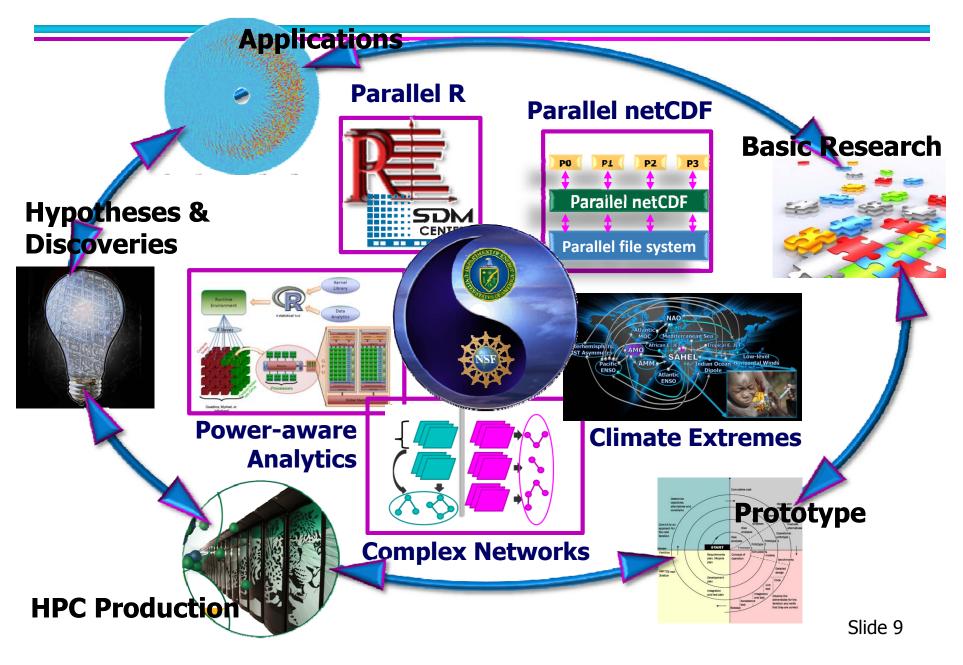


Enabling Transformative Computer Science Research

Enabling large-scale data-driven science for complex, multivariate, spatio-temporal, non-linear, and dynamic systems:

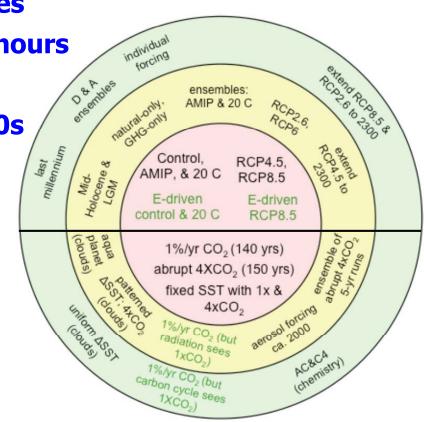


A Complementary Interplay of R&D Portfolios



Illustrative Case for HPC: CMIP3 \rightarrow CMIP5

- Coupled Model Inter comparison Project
- Spatial resolution: 1 0.25 degrees
- Temporal resolution: 6 hours 3 hours
- Models: 24 37
- Simulation experiments: 10s 100s
 - Control runs & hindcast
 - Decadal & centennial-scale forecasts
- Covers 1000s of simulation years
- 100+ variables
- 10s of TBs to 10s of PBs



Summary of CMIP5 model experiments, grouped into three tiers

Scaling I/O and Analytics

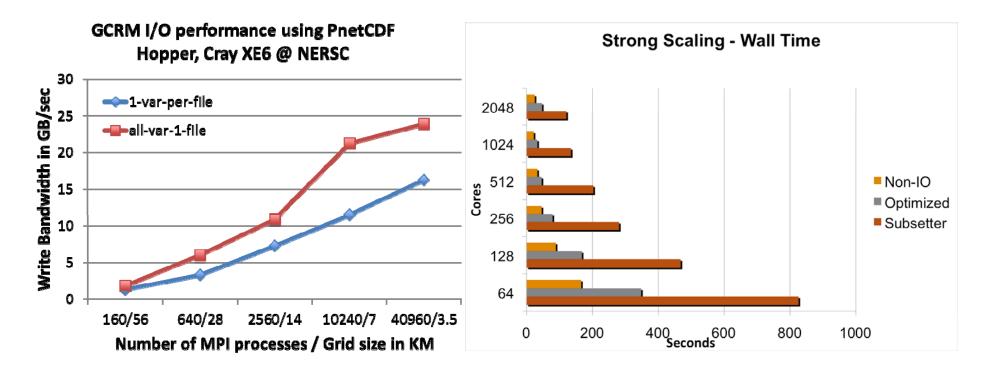
- Global Cloud Resolving Model (GCRM)
 - Simulate circulation associated with large convective clouds
 - Developed by David Randell (Colorado State U) & Karen Schuchardt (PNNL)
- Geodesic grid model
- 1.4 PB data per simulation
 - 4 km resolution, 3 hourly, 1 simulated year
 - 1.5 TB per checkpoint
- Parallel NetCDF I/O library outreaches climate community under NSF Expeditions in Computing project

I/O was previously a major bottleneck: The only reason execution at this scale became possible was due to I/O scaling.

Illustrative Results

• Improved I/O throughput

- Using PnetCDF optimizations, massive scalability
- For 3.5 km grid resolution, grid size is 41.9M cells with 256 vertical layers
- Data analysis read and simulation checkpoint



Taking Climate Science to the Next Level with HPC-Illustration

- Our HPC goals are enabling data analysis at:
- Higher spatial or temporal resolution
 - Precipitation extremes analysis
 - Network-based hurricane prediction
 - Estimation of spatiotemporal dependence

Higher data dimensionality

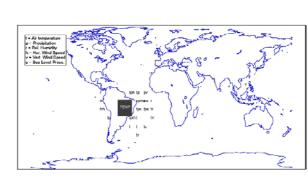
- Bayesian analysis of multi-model ensembles
- Sampling-based statistical methods
- Multivariate quantile analysis

• Greater complexity per data point

- Estimation of complex dependence structures
- Handling non-stationarity
- Multi-resolution analysis
- Shorter response time
 - Interactive hypothesis testing

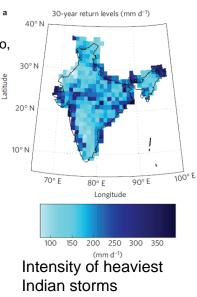
Significant correlations for hurricane prediction

(Sencan, Chen, Hendrix, a Pansombut, Semazzi, Choudhary, Kumar, Melechko, and Samatova, 2011)



Prediction of land climate using ocean climate variables

(Chatterjee, Steinhaeuser, Banerjee, Chatterjee, and Ganguly, 2012)



idian storms (Ghosh, Das, Kao, and Ganguly, 2011)

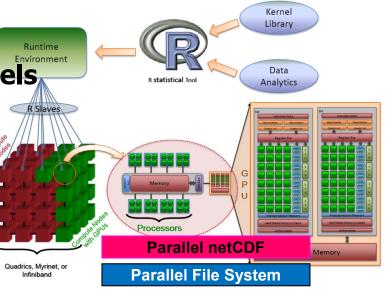
Enabling Large-scale Analytics: An HPC Library of Data Analysis Kernels

Performance typically dominated by a few computational kernels.

Application	Top 3 Kernels			
Application	Kernel 1 (%)	Kernel 2 (%)	Kernel 3 (%)	(%)
K-means	Distance (68)	Center (21)	minDist (10)	99
Fuzzy K-means	Center (58)	Distance (39)	fuzzySum (1)	98
BIRCH	Distance (54)	Variance (22)	Redist (10)	86
НОР	Density (39)	Search (30)	Gather (23)	92
Naïve Bayesian	probCal (49)	Variance (38)	dataRead (10)	97
ScalParC	Classify (37)	giniCalc (36)	Compare (24)	97
Apriori	Subset (58)	dataRead (14)	Increment (8)	80
Eclat	Intersect (39)	addClass (23)	invertC (10)	
SVMlight	quotMatrix (57)	quadGrad (38)	quotUpdate (Runtime

Library of highly optimized, scalable kernels

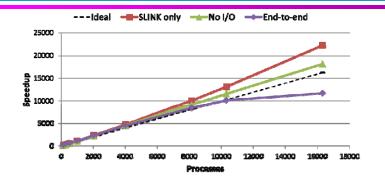
- Flexibility to define custom analytics pipelines
- High scalability
- Integrate into a software framework (e.g. R)
- MPI, OpenMP, CUDA, Parallel I/O



Scalable & Power-aware Data Analytics Representative Data Analytics Kernels

Parallel hierarchical clustering

- Speedup of 18,000 on 16k processors
- I/O significant at large scale

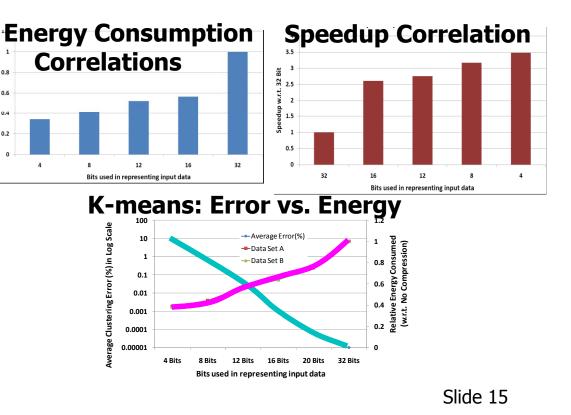


Power-aware analytics

- Reduced bit fixed-point representations
- Pearson correlation
 - 2.5-3.5 times faster
 - 50-70% less energy

K-means

~44% less energy with an error of only 0.03% using 12-bit representation



Data Mining and Analytics – Broader Impact

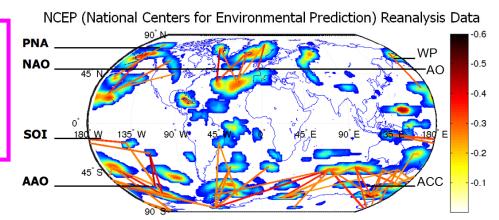
Illustrative Applications	Feature, data reduction, or analytics task	Data analysis kernels
Chemistry, Climate, Combustion, Cosmology, Fusion, Materials science, Plasma	Clustering	k-means, fuzzy k-means, BIRCH, MAFIA, DBSCAN, HOP, SNN, Dynamic Time Warping, Random Walk
Biology, Climate, Combustion, Cosmology, Plasma, Renewable energy	Statistics	Extrema, mean, quantiles, standard deviation, copulas, value-based extraction, sampling
Biology, Climate, Fusion, Plasma	Feature selection	Data slicing, LVF, SFG, SBG, ABB, RELIEF
Chemistry, Materials science, Plasma, Climate	Data transformations	Fourier transform, wavelet transform, PCA/SVD/EOF analysis, multidimensional scaling, differentiation, integration
Combustion, Earth science	Topology	Morse-Smale complexes, Reeb graphs, level set decomposition
Earth science	Geometry	Fractal dimension, curvature, torsion
Biology, Climate, Cosmology, Fusion	Classification	ScalParC, decision trees, Naïve Bayes, SVMlight, RIPPER
Chemistry, Climate , Combustion, Cosmology, Fusion, Plasma	Data compression	PPM, LZW, JPEG, wavelet compression, PCA, Fixed-point representation
Climate	Anomaly detection	Entropy, LOF, GBAD
Climate, Earth science	Similarity / distance	Cosine similarity, correlation (TAPER), mutual information, Student's t-test, Eulerian distance, Mahalanobis distance, Jaccard coefficient, Tanimoto coefficient, shortest paths
Cosmology	Halos and sub-halos	SUBFIND, AHF

Examples and Results

Climate System Complexity

The Complexity of Climate Systems Comes from Interconnections.

Climate systems are complex because of non-linear coupling of its subsystems (e.g., the ocean and the atmosphere).



Challenge:

How to "connect the dots", that is, to construct *predictive phenomenological m*odels explaining **structure-dynamics-function relationships** in the complex climate system.

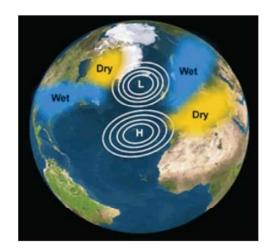
From Simplicity to Complexity

Science 3 September 2010: 1125.

What are Climate Indices?

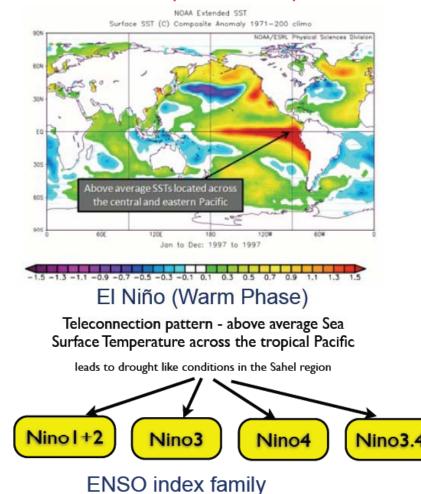
Climate indices are defined to quantify climatic phenomena

Many of them are defined in terms of teleconnection patterns or dipoles

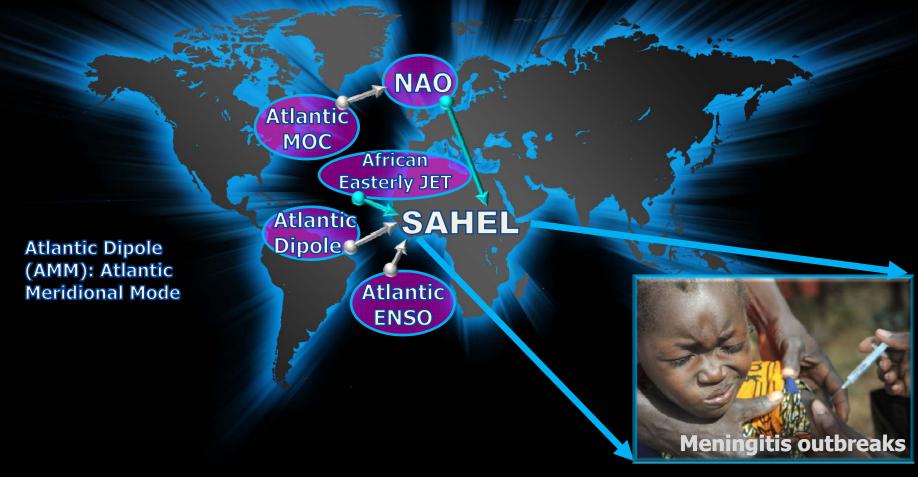


North Atlantic Oscillation

Dipole - difference in sea level pressure between the azores and a region near Iceland

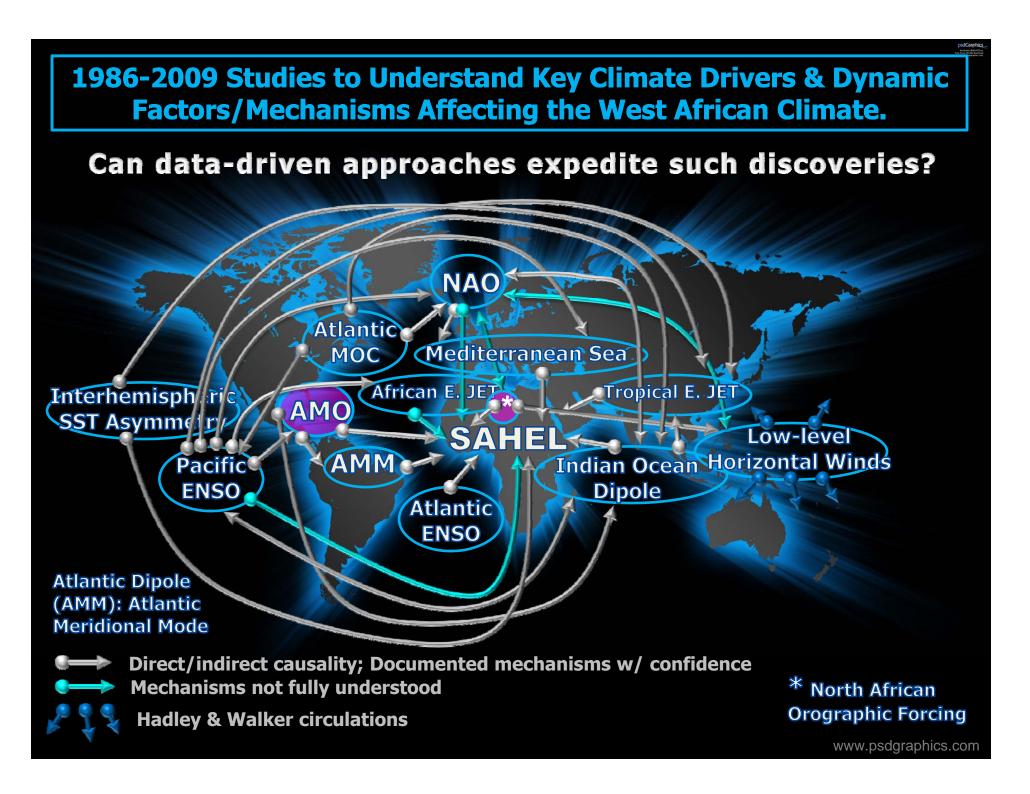


Cold phase of the Atlantic Dipole is associated with weak increased low-level outflow from the south Atlantic ocean basin (cold SST anomalies) and, hence, positive rainfall anomalies in Sahel.

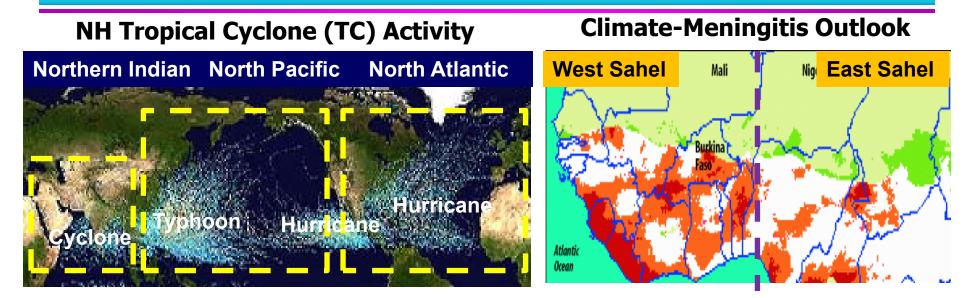


Direct/indirect causality; Documented mechanisms w/ confidence
 Mechanisms not fully understood

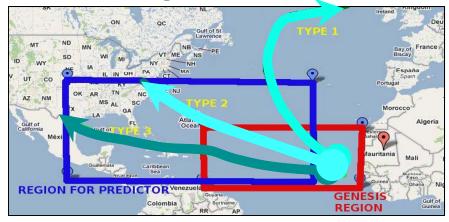
www.psdgraphics.com



Example Use Cases: Extreme Events Prediction

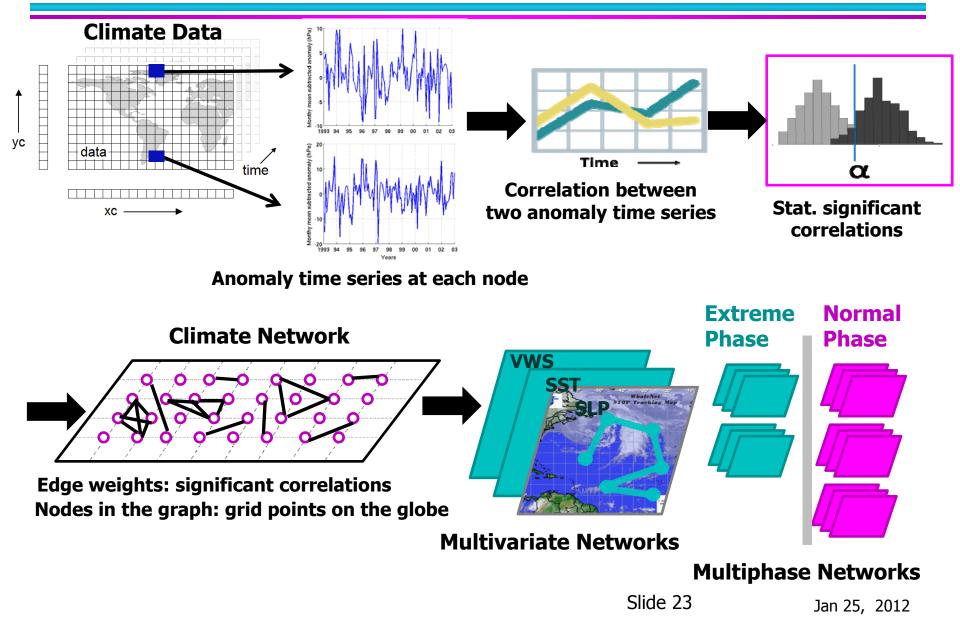


Forecasting NA Hurricane Tracks

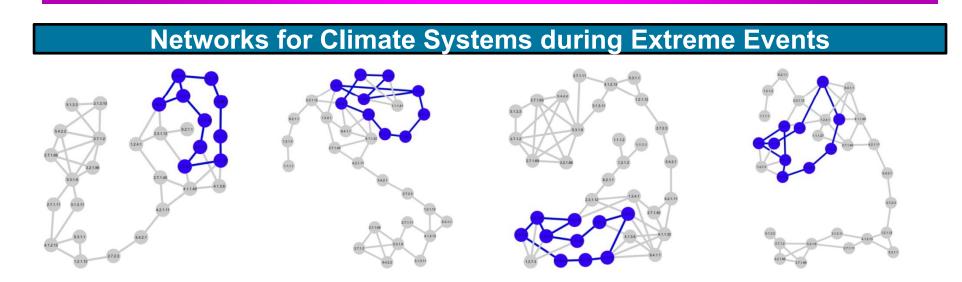


Jan 25, 2012

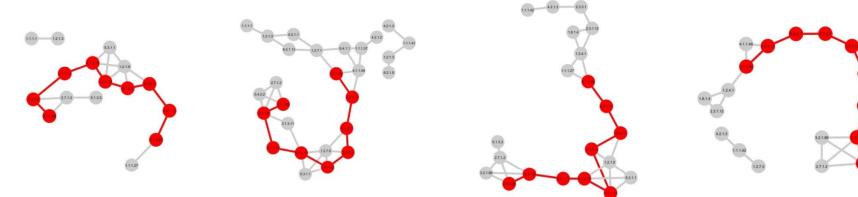
Modeling a Climate System as a Network



Subgraphs Common to Extreme Event Climate Networks

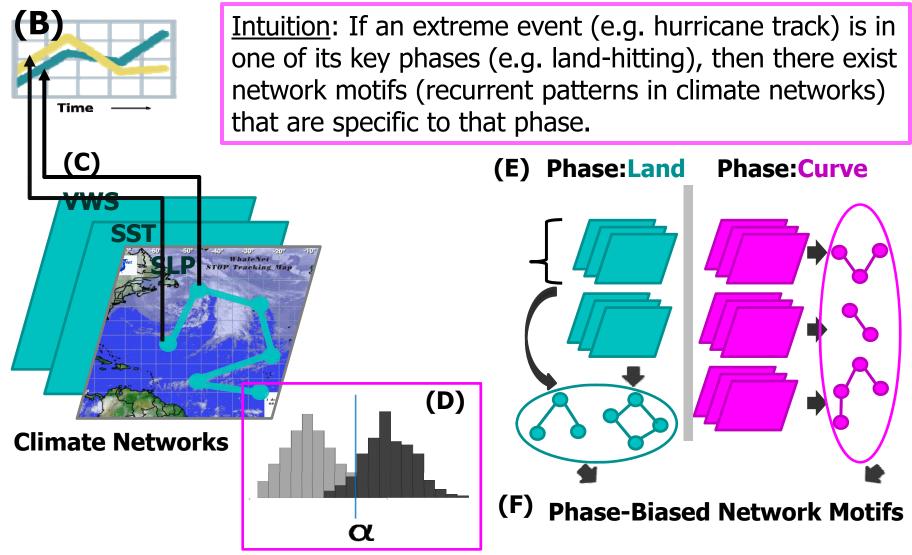


Networks for Climate Systems during Normal Events

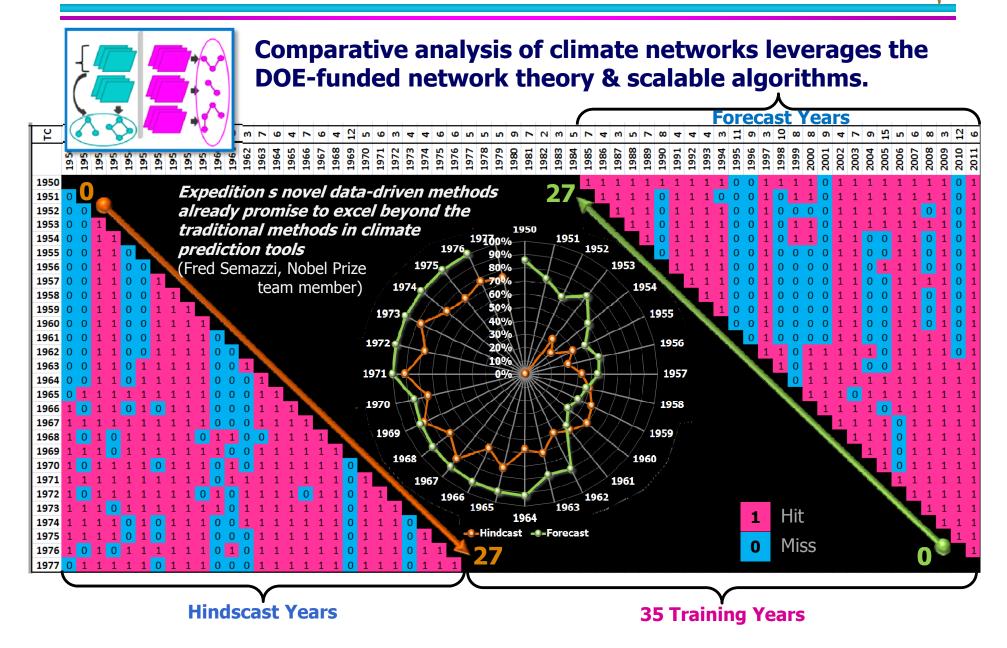


Slide 24

Extreme Event Forecasting via Contrast-based Network Motif Discovery

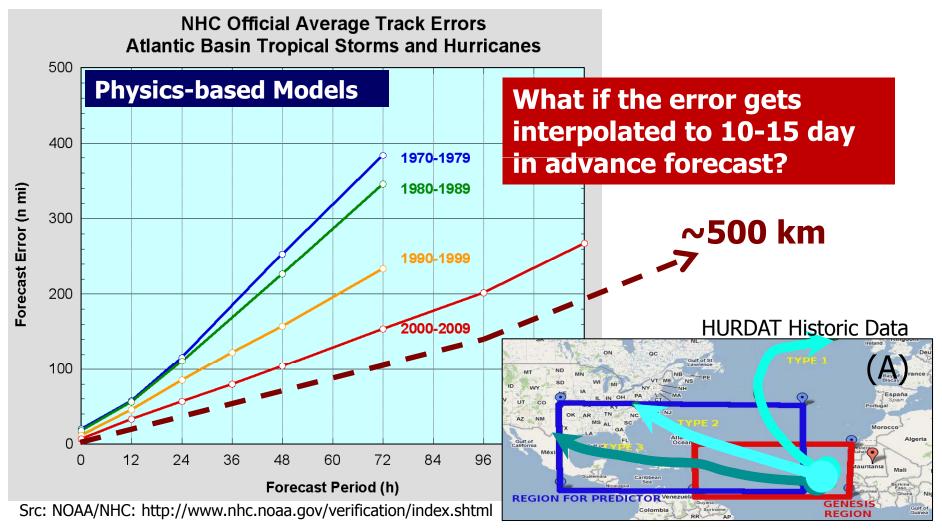


Robust & Accurate Seasonal Hurricane Forecasts through Comparative Climate Networks Analytics



Forecasting Hurricane Tracks

Improving but have mean error (>185km) beyond 48 h



Hurricane End-game Track Forecast

Forecast **10-15 days in advance** the **end-game** of a North Atlantic since hurricane embryonic formation in Western Africa.



• Nearly **east-oriented SLP** edges suggest horizontal pressure gradient configuration in the same direction.

 Based on Buys Ballot's law, this pressure gradient would be associated with wind flow in the north-south direction.

• Onshore wind anomaly flow would promote favorable conditions for landfall; opposite flow anomaly would be more favorable for hurricanes tracks in no-landfall.

Performance of Land-hitting vs. Offshore LOO 10-FOLD SLP SST SLP+SST SLP SST 0.88 0.90 0.92 0.90 0.90 Accuracy Sensitivity 0.91 0.95 0.97 0.96 0.97 Specificity 0.77 0.76 0.81 0.80 0.74 Precision 0.90 0.90 0.92 0.92 0.90 F1-meas. 0.90 0.93 0.94 0.93 0.93

SLP (yellow/dashed) and SST (red/solid) (+)correlated teleconnections;

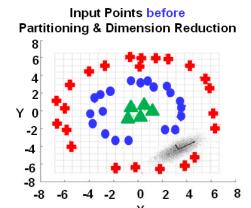
L—biased toward land-hitting

tracks;

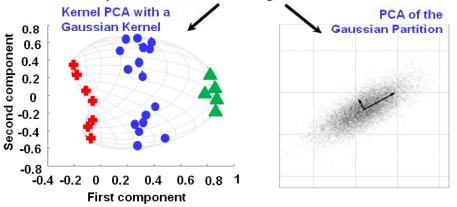
O—biased toward offshore tracks.

Hierarchical Modularity of Complex Systems: Multilevel Paradigm via Divide-and-Conquer Strategy

Hierarchical modularity is a known principle of complex system's organization & function. These functionally associated modules often combine in a hierarchical manner into larger, functionally less cohesive subsystems.



Output Points after Partitioning & Dimension Reduction



Divide Step:

FORECASTER

Divide all system features into modules that likely function together to define what state the system is in: modules with **stronger associations within the modules than between them.**

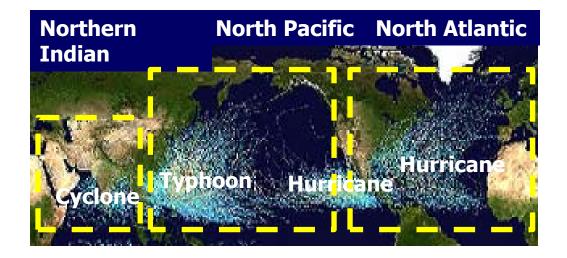
Conquer Step:

Conquers each of these modules in order to refine the **specificity of the inter-feature relationships within the module**.

Cross-talk between Regional & Global Systems

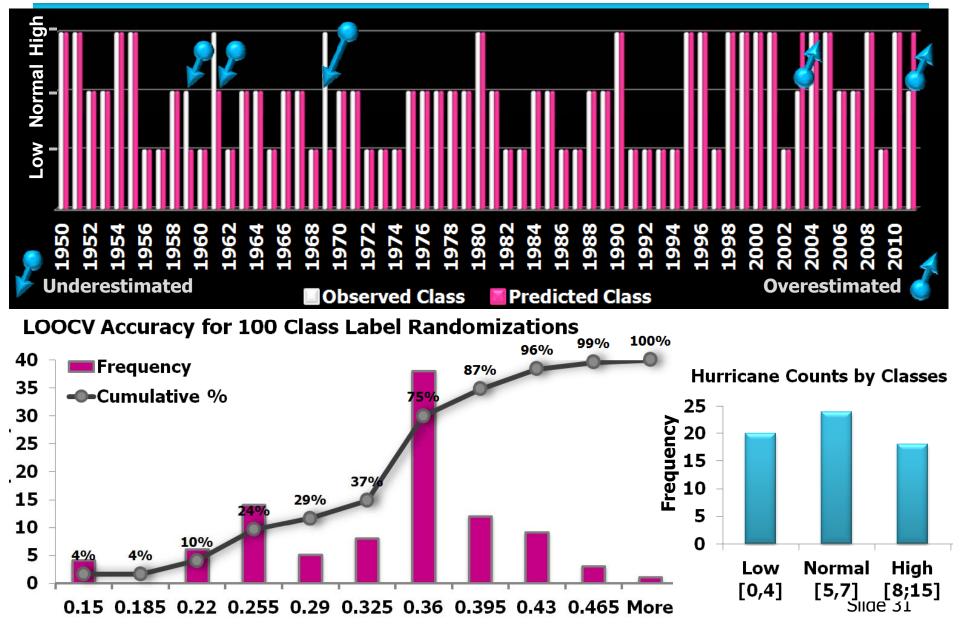
There is an inherent interplay (e.g., feedback) between regional scale subsystems and the global scale system. Ignoring these relationships by focusing on a specific region is a simplification.

DETECTOR



We could use these relationships for detecting the prediction errors and/or possibly correcting them.

92% Accuracy w/ Leave One Out Cross Validation Seasonal Hurricane Activity



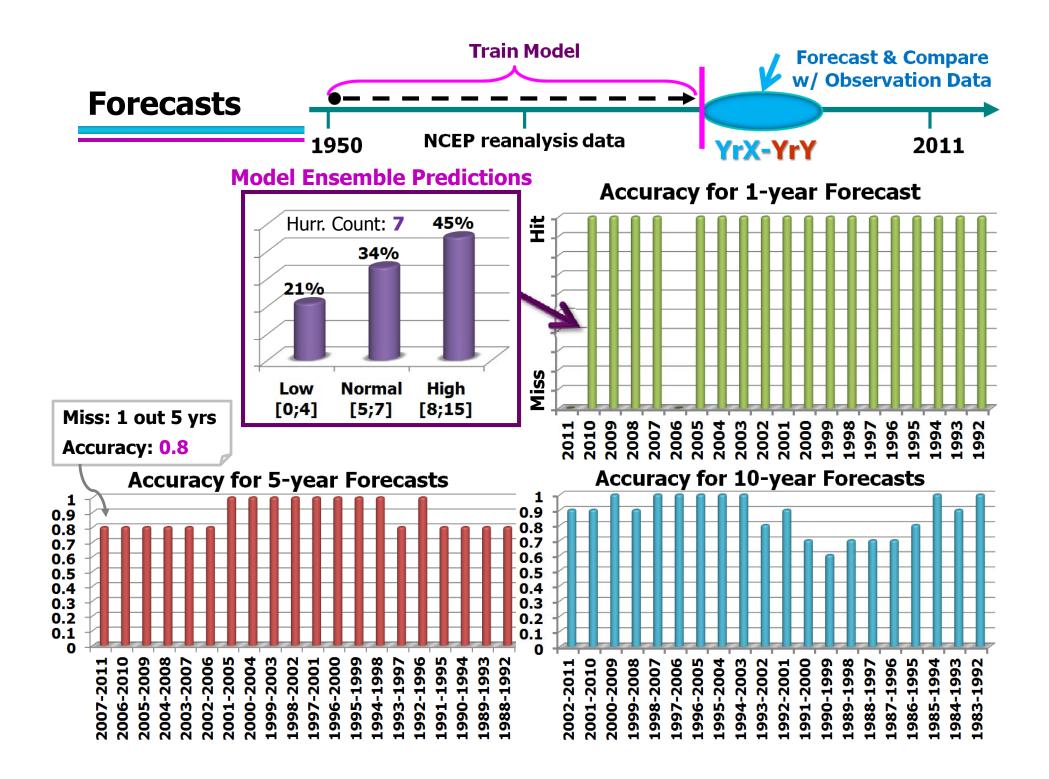
Hurricane Activity Class Forecast vs. State-of-art

FORECASTER Performance on North Atlantic Hurricane

Metric	FORECASTER NC State	[1], 2009 Colorado	[2],2010 GA Tech	Random Forest	Bagging	Boosting
Accuracy (%)	93.3	64.0	65.5	76.7	73.3	75.0
HSS	0.90	0.45	0.49	0.66	0.60	0.62
PSS	0.92	0.44	0.50	0.65	0.63	0.63
GSS	0.96	0.50	0.68	0.65	0.67	0.66
ML-based Regression Hybrid						

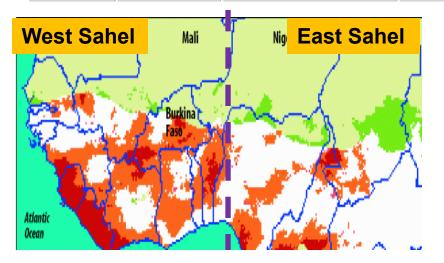
[1] P. J. Klotzbach and W. M. Gray, "Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984-2008)," Geophys. Res. Lett., vol. 36, pp. L09 711, 5pp, May 2009.
[2] H. M. Kim and P. J. Webster. Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37(21):L21705, 2010.

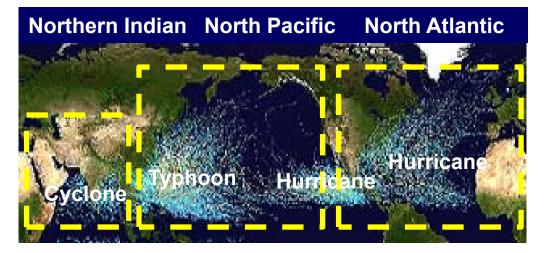
HSS: Heidke score, measures how well relative to a randomly selected forecast; **PSS**: Peirce score, difference between the hit rate and the false alarm rate; **GS**: Gerrity score, occurrences substantially less frequent.



Effectiveness of DETECTOR + FORECASTER Regional subsystems and global system interplays

Task	System	FORECASTER	DETECTOR + FORECATER	Tropical cyclone activity (STCP):
CTCD	NH	90.0	95.0	 NH: Northern Hemisphere NA1: North Atlantic
STCP	NA1	88.3	93.3	• NA1: North Additic Hurricane activity (SHP): • NA2: North Atlantic hurricane
SHP	NA2	93.3	98.6	
	LNA	86.7	93.4	LNA: North Atlantic land-falling
NARP	SH	88.9	94.5	North Africa rainfall activity (NA • SH: Sahel area
	WS	90.7	96.3	• WS: West Sahel.

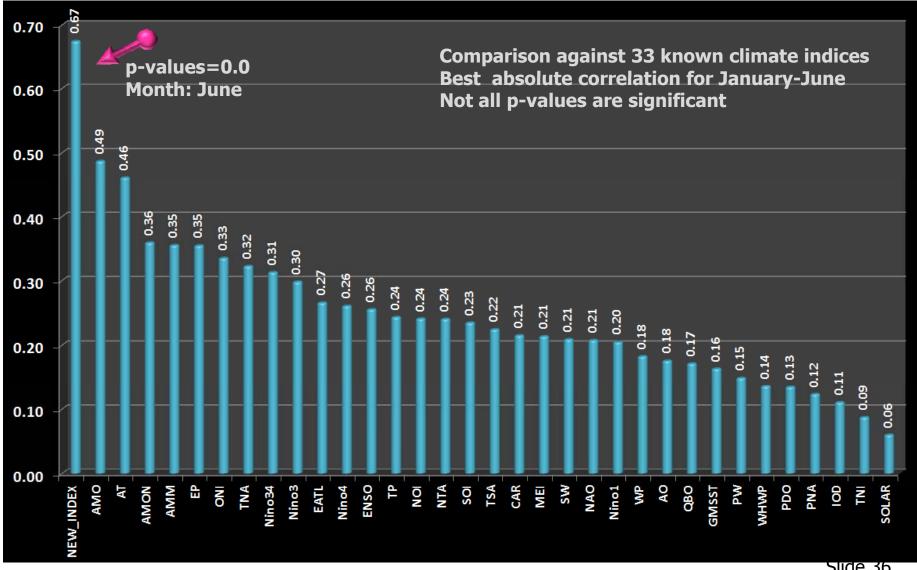




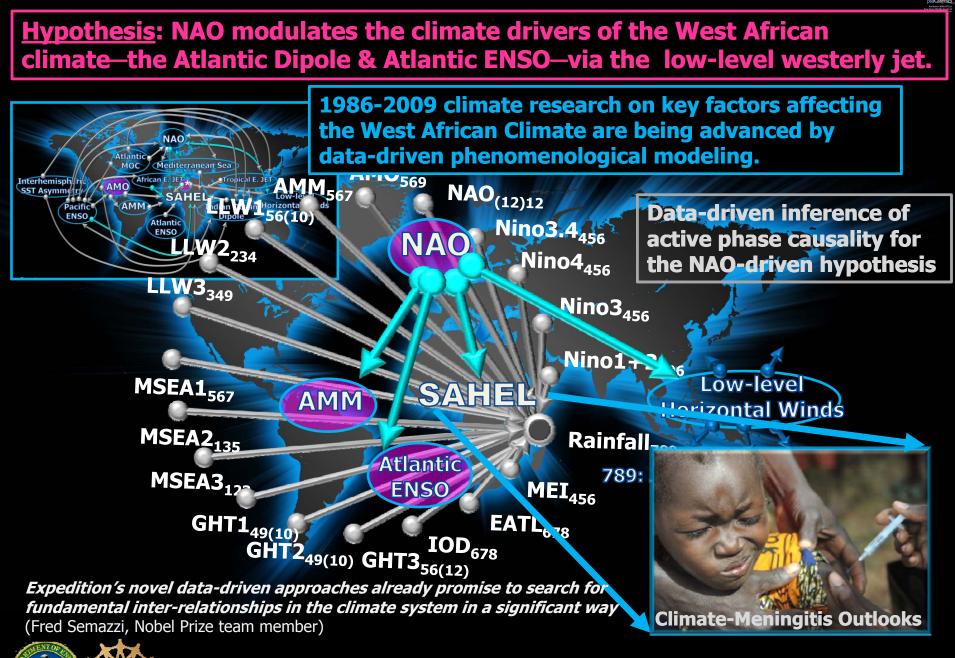
Predicted Network Motifs Agree with Climate Indices Related to Hurricane Activity

	·		1		
Variable	Spatial location	Climate indices			
SST	(4N, 114W)	Nino 3	Published Facts		
	(2S, 168W)	ENSO	 Nino3 SSTs correlate with 		
	(42N, 30W)		Atlantic hurricane activity		
	(32S, 16W)		ENSO modulates NA TCs		
vws	(27.5N, 65W)	MDR	SSTs in MDR contribute to		
	(52.5N, 37.5W)	NAO	 hurricanes in MDR region NAO June correlates with NA 		
	(7.5N, 122.5W)	Nino 3	hurricane tracks		
	(10S, 60W)		• Shifts in the PDO phase can		
	(27.5N, 55W)		have significant implications for		
PW	(52.5N, 135E)	PDO	Atlantic hurricane activity		
	(82.5N, 15W)	AO			
	(37.5N, 40E)		New Hypotheses		
SLP	(57.5N, 22.5W)	NAO	Atlantic multi-decadal Oscillation (AMO) and Arctic Oscillation (AO)		
	(60N, 155E)	PDO	indices might affect the North		
	(37.5N, 162.5W)		Atlantic tropical cyclone activities		
	(12.5N, 122.5E)		Slide 35		

0.67 Spearman Rank-order Correlation between **Network-based Climate Index & Hurricane Activity**

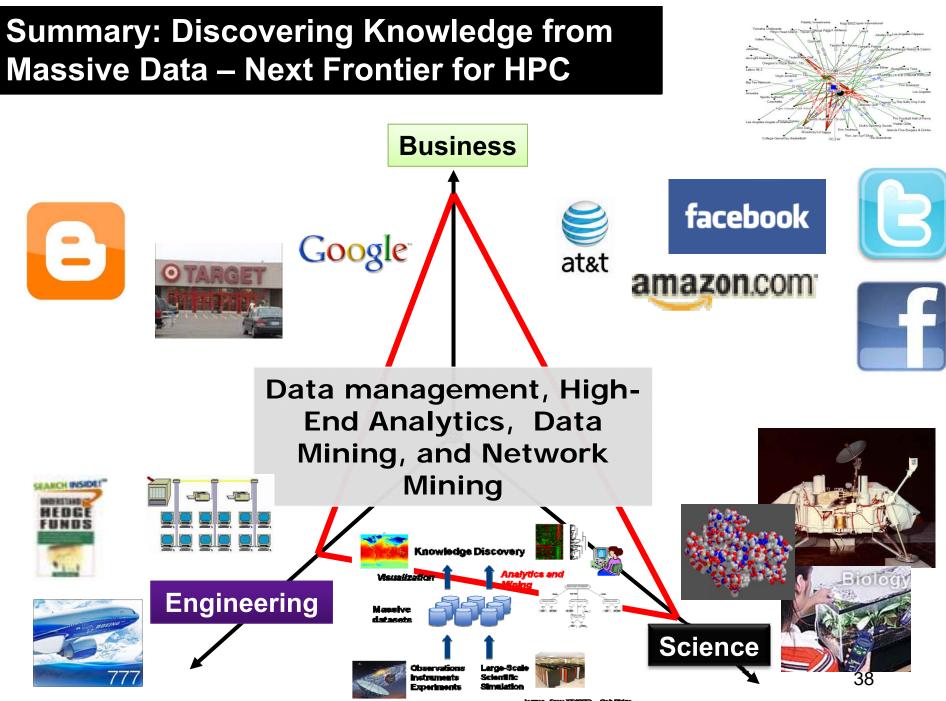


Slide 36



Direct/indirect causality inferred by the data-driven methods
Hypothesized mechanisms quantified by data driven methods

www.psdgraphics.com



per - Casy XT-8XT2 - Call Ri Heliopel Loboratory