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WHAT IS FEDERATED LEARNING?

Collaboratively Training Models without Sharing Data

Distributed learning approach with key benefits:
» Privacy: Models are trained locally.

Mathematical formulation of FL
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PRIVACY-PRESERVING IN FEDERATED LEARNING

Ensuring Data Privacy and Secure Updates

= Local Data Retention: Raw data stays on client devices, but model updates alone

can still leak sensitive information. =3
APPFL server Privacy Preservation
= Potential Data Leakage: Without privacy-preserving techniques, attackers can
reconstruct raw data from gradients or model updates. t 1

APPFL client 1 APPFL client 2

= Differential Privacy: Adds noise to model updates to prevent accurate data
reconstruction by attackers.

(i) The term “differential-privacy guarantee” means protections that allow information about a group to
be shared while provably limiting the improper access, use, or disclosure of personal information about

particular entities. From Executive Order 14110:
Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

Weaker Privacy Stronger Privacy Argonneﬁ




APPLICATIONS ACROSS KEY DOE DOMAINS
Use Cases of Privacy-Preserving Federated Learning for DOE
= Scientific Experiments:

— Collaborative experiments using multimodal data (e.g., from
DOE light source facilities) while preserving data privacy
across institutions.

= Climate Science:

— Secure data collaboration between research centers, allowing
them to share insights from climate models and data (e.g.,
from the ARM facility) without sharing raw data.

= Electric Grid Data Analysis:
— Privacy-preserving FL for analyzing electricity consumption

patterns across smart meters, enhancing prediction models
while maintaining consumer data privacy.
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MATH & ALGORITHM CHALLENGES




ALGORITHMS FOR PRIVACY-PRESERVING FL

Balancing Privacy and Utility in Federated Learning

= Key Challenge: Managing the privacy-utility trade-off.

= Algorithm design: Critical to optimize both privacy and
performance.

= Noise Injection Points:
— Data (input): Perturb data before training.
— Model (output): Add noise before sharing the model.

— Training Loss (objective): Incorporate noise during
training.

» Goal: Enhance training performance & maintaining privacy
guarantees.

A
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Mathematical formulation of FL

# of clients
# of samples at client k

mmF Z

Training loss at client k

Model randomization:

- random noise
wfﬂ = wy — NV F(wy) +@

Training randomization:
~ k =
Wit1 = W — NV Fy(wy),

~ A
where Fj(w) = F(w) + §||WH2 +z'w

randomizing training loss
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PERFORMANCE UNDER PRIVACY SETTINGS

Testing Accuracy vs. Privacy Level

= OutP (State of the Art): FL with noise added to the model output.

= ObjP (APPFL): FL with noise added during training.

= ObjPM (APPFL): FL with training noise and multiple local updates.

= Results: Our methods perform better as privacy increases, compared to current approaches.
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CHALLENGE OF HETEROGENEOUS COMPUTING

Stragglers and Resource Waste

= Computing Variance: Client machines have widely varying capabilities, causing
significant differences in local training times.

» Synchronous FL Drawback: The server waits for all clients, leading to
resource waste when slower clients (stragglers) delay the entire process.

,,‘
Argonn: A : > J Client 1
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Google Cloud
Lots of resources

are wasted for
\ .
\ powerful clients.

Heterogeneous client computing resources. [llustration of Resource waste in synchronous FL.
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ADAPTIVE ASYNC UPDATES FOR EFFICIENT FL
FedCompass: Faster Training with Higher Accuracy

FedCompass achieves faster training and

higher accuracy compared to state-of-the-
Server
Q) art methods.
FedCompass: |1 /
Step 1: Dynamically estimate t'ea'ch client’s computing power. 100 r——=—5=-=-=
p 1: Dy y puting p ; wif"“‘,', e ————
Step 2: Af:ijust local tasks based on client capabilities to better o0 ~ i —
synchronize model updates. K IXT
Step 3: Collaborate with the server to update the global model using - 60
client results. g
\:\ g a0 slow training and ~  feane
less accurate i
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Federated learning with a computing power aware scheduler.
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CHALLENGE OF CLIENT DRIFT

Balancing Communication Efficiency and Modal Accuracy

X
= Client Drift: Clients run multiple updates locally, :2 O

leading to misalignment with the global model,
reducing overall accuracy.

= Existing Solutions: Drift correction methods (e.g.,
FedProx, SCAFFOLD, FedLin) help mitigate drift
but come with trade-offs:

— Higher Costs: Increased communication and
storage for correction terms.

— Practical Limitations: Solutions can be
unstable and lack asynchronous methods,
limiting scalability. .
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AREA: ASYNCHRONOUS EXACT AVERAGING

Asynchronous Client Drift Correction

AREA achieves faster training and higher

i ' ' ' i d to state-of-the-art methods.
= Client-Side: Clients save information from accuracy compared to state-of-the-art methods

previous updates to improve future updates |;
sent to the server.

= Server-Side: The server combines these S S FodAvg(102)
. e
improved updates to create a more accurate z AS-FedAvg(10?)
global model. 3 FedBuff(10°%)
_ _ _ g MIFA(1071)
= Secure: Compatible with privacy-focused 2 ‘ AREA(10%)
. . O /
protocols, ensuring data remains secure =20 - S S

during the process.
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Time
MNIST classification, 128 heterogeneous clients.
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OPEN-SOURCE SOFTWARE

APPFL: Advanced Privacy-Preserving Federated Learning

Argonne &



https://appfl.ai ﬁ&

APPFL V1.0 (08/2024)
Building and Deploying Secure, Scalable FL Algorithms E E

= First Code: Started in 10/2021; First Release: 02/2022.

» For Developers: Design, simulate, and evaluate new privacy- and FL algorithms. E._

» For Users: Deploy secure, scalable FL experiments across distributed clients.

» Key Features

Comprehensive: Handles data and system heterogeneity and privacy
challenges.

Easy-to-use: Simplifies transitioning from centralized to federated learning.
Extensible: Modular interface for integrating new algorithms in aggregation,

training, and privacy. N [ T'
N Ae
Scalable Deployment: Capable of running FL across multiple HPC clusters
and over DOE Energy Sciences Network (ESnet) facility for large-scale National Center for
distributed experiments. Supercomputing Applications
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https://appfl.ai/

AN
COMPARISON OF OPEN-SOURCE FL SOFTWARE

Key Capabilities Across FL Frameworks

TABLE I: Comparison of popular open-source federated learning frameworks. As of Aug, 2024

Framework Data Hetero. Sync. FL Async. FL. Compression Versatile Comm. Privacy Auth. Real Deployment FL Variants

LEAF X v X X X X X X X
______ 13 2 1) A AN S AU SR . SEN. S S
O _AervO 2 D/ T/ x_____ x ____C X ___Zyl_xZZ2_% Vo222 x____.

FEDERATEDSCOPE v e X X X v X v VFL

FLARE v v X X X v v v VFL

OPENFL v Ve X v X v v v VFL
FEDSCALE v Ve v v X v X v X

FLGo v v v X X X X v VFL
FEDLAB v e v v X X X v X

FLOWER v v X X v v v Ve VFL

___ _FEEDML[20]__ _ A AN S S {oeonle o _{___ _VFL HierFL DFL
r APPFEL (this wor v v v v v v v v VFL, HierFL, DFL

____________________________________________________________ 4

» APPFL v1.0 stands out with enhanced support for privacy, asynchronous algorithms, and
versatile communication, advancing beyond APPFL v0 and other platforms.
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DOE USE CASES OF
PRIVACY-PRESERVING FEDERATED LEARNING




FEDERATED LEARNING FOR LOAD FORECASTING

Accurate, Secure Predictions using Building Energy Data

= Data: Electricity consumption from 42 buildings in CA, IL, NY. C— Buifdings per PUMA :
= Challenge: Heterogeneous patterns across buildings. K ‘-.;°f- e
= Model: Attention-based LSTM (long short-term memory) g;_;: S

neural network architecture with personalized layers. -?_
* Results:

334 -388

388 -472
472 -1283

— Personalized FL achieves the lowest error.
— PPFL successfully integrates to ensure data privacy.
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XRT AND XRF AT ARGONNE’S APS FACILITY

Complimentary Data for Advanced Materials Research

X-Ray Tomography (XRT): Provides 3D structural imaging of materials.

X-Ray Fluorescence (XRF): Maps elemental composition of materials.

“s2 sample

XRT sinogram

Complimentary Nature:

— XRT shows physical structure, while XRF reveals chemical
composition.

— Together, they offer a complete view of material properties.

X-ray Source

Why Federated Learning?

— Scalable Collaborative Research: Enable joint analysis across labs
without sharing raw data.

— Data Privacy: Keep sensitive data local, further protection with
differential privacy.

— Better Models: Combines data from diverse sources for improved
generalization.

— Resource Efficiency: Utilizes distributed computing power across
multiple facilities.

XRF Spectra
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FEDERATED LEARNING ON XRT AND XRF DATA

Empirical Results and Performance Insights

» FL integrates distributed XRT and XRF
data for improved, privacy-preserving
image reconstruction.

» Key Results

— Combined XRT and XRF data
improves reconstruction accuracy.

— Developed communication efficient
algorithm for federated reconstruction.

» Takeaway: Combining data and efficient
algorithms boost accuracy and scalability
in multimodal federated analysis.

Results of individual reconstruction

FL Server: Combining XRT
and XRT data as constraints.

Reconstruction Result

Ground Truth as Benchmark
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PATHWAY TO Al FOR SCIENCE (Al4S)
Success Built on ECRP, PALISADE-X, and EXPRESS

Al4S PPFL for Large Al and Foundation Models

Exploratory Research in Extreme-
Scale Stiences (EXPRESS)

Heterogeneous
data and system

Privacy-preserving

Modeling and

Distributed
optimization

PALISADE-X

Biomedical data
and privacy
analysis

constrained
eptimization

Early Career Research Program (ECRP)

L —

« Large Al and foundation models

* Incentive and fairness to FL clients
* Privacy preservation at scale

« Synthetic data generation

« Sustainable and robust workflows

» Interdisciplinary study: AM + CS + Facilities

Argon ne & k? Brookhaven %OAK RIDGE

National Laboratory

National Laboratory

| RUTGERS
UNIVERSITY

NATIONAL LABORATORY

/
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