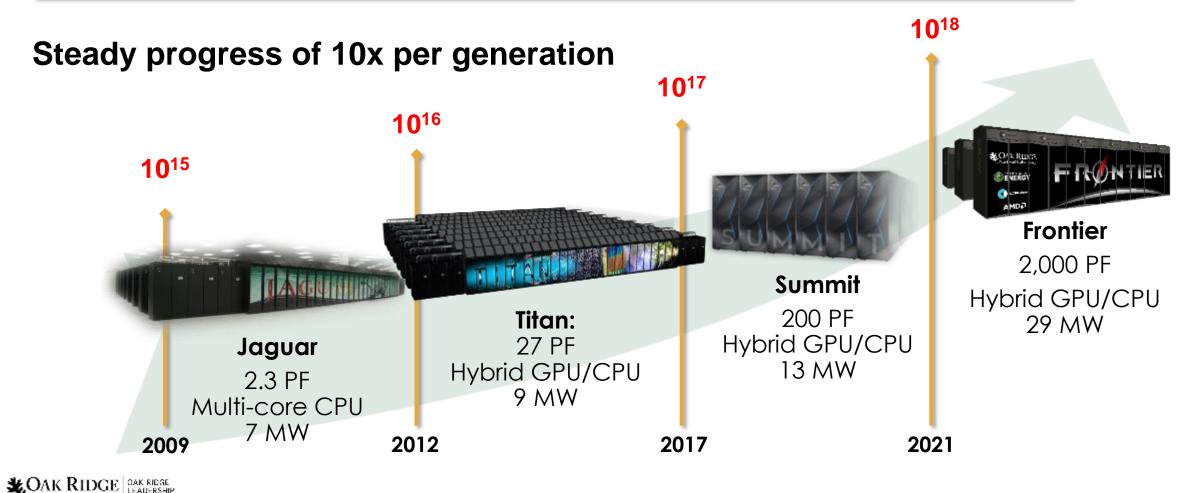


UPDATE ON FRONTIER EXASCALE SYSTEM AND EARLY SCIENCE

Al Geist Leadership Computing Facility Oak Ridge National Laboratory

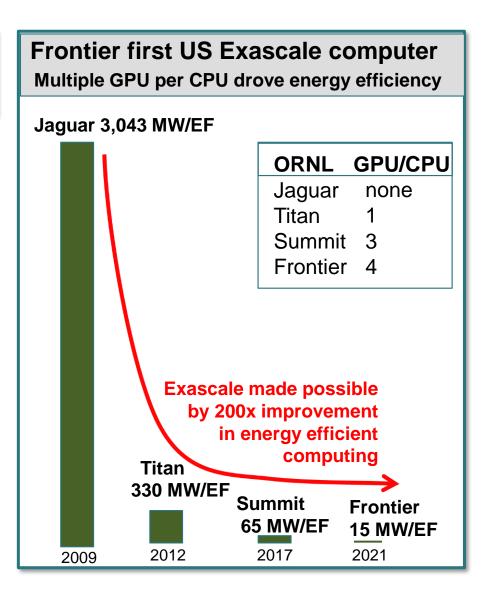
ASCAC Meeting March 29-30, 2022


ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Oak Ridge National Laboratory's Journey from Petascale to Exascale

Mission: Providing world-class computational resources and specialized services for the most computationally intensive global challenges

Vision: Deliver transforming discoveries in energy technologies, materials, biology, environment, health, etc.



2 National Laboratory COMPUTING FACILITY

Energy Efficient Computing – Frontier achieves 14.5 MW per EF

Since 2009 the biggest concern with reaching Exascale has been energy consumption

- ORNL pioneered GPU use in supercomputing beginning in 2012 with Titan thru today with Frontier. Significant part of energy efficiency improvements.
- ASCR [Fast, Design, Path] Forward vendor investments in energy efficiency (2012-2020) further reduced the power consumption of computing chips (CPUs and GPUs)..
- 200x reduction in energy per FLOPS from Jaguar to Frontier at ORNL
- ORNL achieves additional energy savings from using warm water cooling in Frontier (32 C).
 ORNL Data Center PUE= 1.03

On our journey to Exascale, we found an architecture that could excel at simulation, data analytics, and artificial intelligence

As supercomputers got larger and larger, we expected them to be more specialized and limited to just a small number of applications that can exploit their growing scale

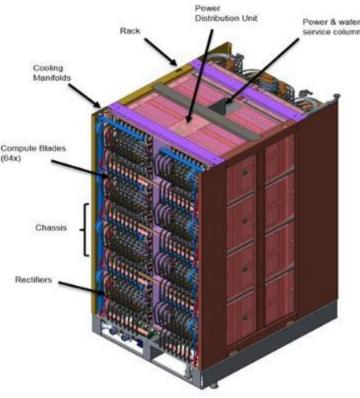
We found that "Summit" architecture with few, large-memory, multi-GPU nodes excels at:

- Data analytics CoMet bioinformatics application for comparative genomics.
 Has achieved 2.36 ExaOps mixed precision (FP16-FP32) on Summit (2018 Gordon Bell Winner)
- Deep Learning Climate: neural network learns to detecting extreme global weather patterns Has achieved a sustained throughput of 1.0 ExaOps (FP16) on Summit

Frontier Exascale computer uses and improves on Summit's successful architecture
5 TB of on-node memory, 4 GPU per node, Peak of >10 ExaOps (FP16)

Frontier Overview

Extraordinary Engineering


System

- 2 EF Peak DP FLOPS
- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes
- 9.2 PB memory (4.6 PB HBM, 4.6 PB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 4000 ft² foot print

Built by HPE

Olympus rack

- 128 AMD nodes
- 8,000 lbs
- Supports 400 KW

Powered by AMD

AMD node

- 1 AMD "Trento" CPU
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node (128 GiB HBM per GPU)
- Coherent memory across the node
- 4 TB NVM
- GPUs & CPU fully connected with AMD Infinity Fabric
- 4 Cassini NICs, 100 GB/s network BW

Compute blade

• 2 AMD nodes

All water cooled, even DIMMS and NICs

Frontier multi-tier storage system is designed to excel at Data Science and AI for Scientific Discovery

Capacity	Perforr	mance
Multi-tier I/O Subsystem 37 PB Node Local Storage	Read	Write
S7 T D Noue Local Storage	11 Billion	
11 PB Performance tier	9.4 TB/s	9.4 TB/s
695 PB Capacity tier 10 PB Metadata	-	4.4 TB/s actions per sec
		actions per sec

During Frontier Build -- the Chip Shortage Hit in Earnest!

When HPE began ordering parts, suppliers said the lead time on orders was increasing an additional 6-12 months.

ORNL worked with ASCR to get DPAS rating for Frontier that helped prioritize USA part orders (DPAS was extended to Aurora and El Capitan)

60 Million parts needed for Frontier

685 Different part numbers used in Frontier

- 167 Frontier part numbers affected by the chip shortage (more than 2 million parts from dozens of suppliers worldwide)
 - 12 Part numbers blocked building the first compute cabinet
 - 15 Part numbers shortage for AMD building all the MI200 cards for Frontier

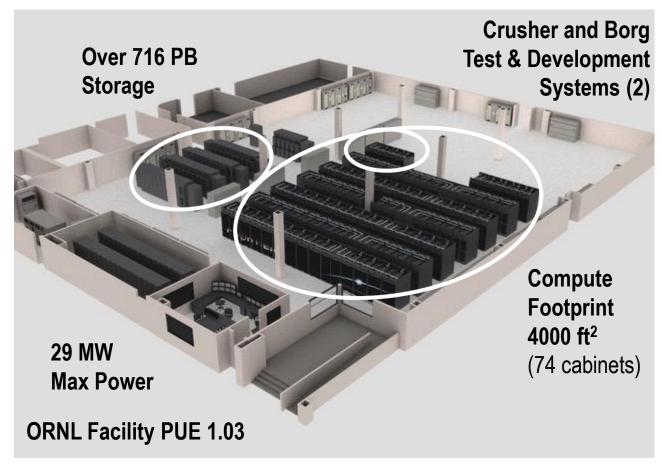
It wasn't exotic parts like CPUs or GPUs, rather parts needed by everyone – in cars, TVs, electronics, such as, voltage regulators, oscillators, power modules

Supply Chain Remained a Constant Battle till Delivery

HPE saw commitments for parts deliveries from sub-contractors being broken weekly as the chip shortage got worse. Had to call every supplier every week (sometimes every day)

HPE had 15 people whose sole job was to try to find the needed parts or alternatives for Frontier. Using HPE's size to negotiate with suppliers, looking for handfuls of parts in warehouses or at other companies who were also stuck because of chip shortage.

April 30 – July 15: Initial shortage of 167 part numbers reduced down to 1 part number


- July 15th only found enough to build 63 of 74 cabinets (looking for about 8,000 more)
- Took three more weeks to find all 8,000
- By that time had a couple more decommits on another part.

PCA Shortages	4/30	5/7	5/14	5/21	5/28	6/4	6/11	6/18	6/25	7/2	7/9	7/16
Critical Shortages	167	69	46	39	30	28	28	11	6	3	2	1
New Shortages	0	0	0	1	0	0	0	1		0	0	C
Total	167	69	46	40	30	28	28	12	6	3	2	1

The final parts arrived the morning the last Frontier node was assembled

Last Cabinet of Frontier Delivered to ORNL October 18th Thanks to Heroic Efforts of the HPE and AMD teams

After the cabinets arrived they had to be connected. There are 81,000 cables between all the Frontier nodes

Getting Frontier Ready for Early Science

- As we saw with Titan and Summit, it takes a number of months to get all the hardware and software stabilized
- HPE continues testing and stabilization of Frontier and its file system
- Early Science Teams in CAAR and ECP got access to the "Crusher" Test & Development system in November 2021.
- Rest of ECP users (~800) given Crusher access January 2022.

DAK RIDGE | OAK RIDGE LEADERSHIP Varional Laboratory | COMPUTING FACILITY

ECP is scheduled for full Frontier access July 2022 INCITE use of Frontier scheduled for January 2023

"Crusher" TDS system

- 2 cabinets of Frontier HW
- 192 nodes
- Slingshot 11 w/ Cassini
- Same Software as Frontier

Getting Users Ready for Early Science

Crusher Training January 13, 2022

• HPE and AMD presented Frontier architecture details, programming environment features and tips and tricks, ORNL provided login instructions and a *Crusher Quick Start Guide*

Two Crusher Hackathons in February for CAAR and ECP Early Science Teams

February 9-11, 2022	February 15-17, 2022	
NAMD	ExaStar	Quotes from Hackathon "Great interactions with HPE and AMD staff
LSMS	LatticeQCD	in resolving issues"
CoMet	NWCHEMex	
GETS	GAMESS	"Reduced unit runtime from 8 hr. to 11 min."
NUCCOR	PELE	"Quick help and learned some useful tricks
PIConGPU	ExaSMR	and tips"
LBPM	WDMApp	"Got 4x speedup on ExaAM PicassoMPM
ExaBiome	E3SM	code"
FUN3D	ExaAM	

ACCUPACE AND CONTRACT OF A CON

Initial CAAR Early Science Results on Crusher

Science Area	CAAR App	Recent Results on Crusher	Magnetic anisotropy in FePt nanopar
Advanced materials	LSMS	MI250 getting up to 10x speedup over Summit V100	
Turbulent Flows	GESTS	Crusher GCD* achieves 6x speedup over Summit V100	
Porus Media	LBPM	Crusher GCD slightly faster than Summit V100.	
Plasma Physics	PIConGPU	Seeing 2.5x – 5x speedup over Summit	
Atomic nucleus	NuCCOR	Crusher MI250 performance gains of up to 8x over Summit V100	
Health	CoMet	Has been run on Frontier up to 3,210 nodes	Health
Astrophysics	Cholla	Total of 15x speedup = Crusher HW getting additional 3x over Summit + 5x from SW	Health

rticle а во о́л во Напан Страка **Properties** of atoms · mort lon Accelerator Astrophysics hydrodynamics

Turbulent Flows

12

* MI250 GPU is composed of two GCDs

Progress on Crusher by ECP KPP-1 Applications

Apps selected to demonstrate performance improvement for mission-critical problems

Science Area	ECP Project	Crusher (TDS)
Quantum Chromodynamics	LatticeQCD	Improving Performance
Chemistry (Biofuels)	NWChemEx	Initial Build/Test
Extreme Materials (MD)	EXAALT	Improving Performance
Quantum Materials (QMC)	QMCPACK	Blocked (MPI)
Nuclear Reactors (SMRs)	ExaSMR	Improving Performance
Fusion Plasmas	WDMApp	Improving Performance
Particle accelerators	WarpX	Improving Performance
Cosmology	ExaSky	Improving Performance
Earthquakes	EQSIM	Improving Performance
Climate Change	E3SM-MMF	Improving Performance
Cancer Research	CANDLE	Improving Performance

13

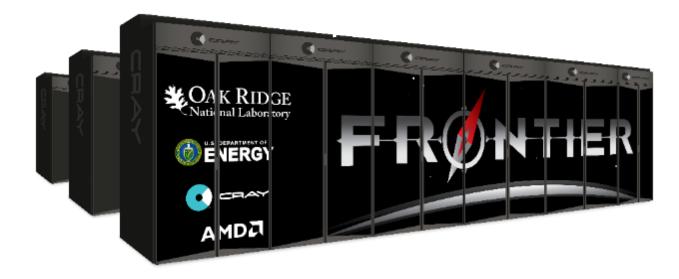
Progress on Crusher by ECP KPP-2 Applications

Apps selected to broaden the reach of exascale science and mission capability

Science Area	ECP Project	Crusher (TDS)
Catalysis	GAMESS	Blocked (ROCm 5.x)
Additive Manufacturing	ExaAM	Improving Performance
Wind Energy	ExaWind	Improving Performance
Combustion	PELE	Improving Performance
Carbon Capture	MFIX-Exa	Improving Performance
Astrophysics	ExaStar	Improving Performance
Subsurface	Subsurface	Improving Performance
Energy Grid	ExaSGD	Improving Performance
Metagenomics	ExaBiome	Blocked (GASNet)
LCLS Molecular Structure	ExaFEL	Improving Performance

14

ECP Application Portfolio – Early Science runs on Frontier


Earth system	Energy security	Health care	Scientific discovery	Economic security
Climate Change Subsurface use for carbon capture, petroleum extraction, waste disposal Accurate regional impact assessments in Earth system models Stress-resistant crop analysis and catalytic conversion of biomass-derived alcohols Metagenomics for analysis of biogeochemical cycles, climate change,	Reliable and efficient planning of the power grid Turbine wind plant efficiency Design and commercialization of Small Modular Reactors Nuclear fission and fusion reactor materials design High-efficiency, low-emission combustion engine and gas turbine design	Accelerate and translate cancer research (partnership with NIH) Developing Al for Precision Drug Therapy in Fight Against Cancer	Cosmological probe of the standard model of particle physics Validate fundamental laws of nature Find, predict, and control materials and properties Light source-enabled analysis of protein and molecular structure and design Predict and control magnetically confined fusion plasmas Demystify origin of chemical elements	Additive manufacturing of qualifiable metal partsScale up of clean fossil fuel combustionBiofuel catalyst designSeismic hazard risk assessmentSign
environmental remediation		Early Science	oal is achieved, EC ce allocation on Fro odes for Early scier	ontier and begin u

Actional Laboratory

15

Questions?

