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Legion

A data-centric, task-based programming model for parallel, accelerated,
distributed machines.

History:
* Initially supported by ASCR through the ExaCT co-design center (~2011) and
additional projects (w/ Lucy, Laura, Hal)

» Additional support from DOE NNSA ASC: PSAAP I, Ill, LANL, BES, SciDAC, DARPA,;
part of the ST portfolio in ECP

* Industry interest & investment, most notably NVIDIA & Facebook
 R&D 100 Award in 2020
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Legion

A data-centric, task-based programming model for parallel, accelerated,
distributed machines




PAD Machines
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Very complex memory hierarchy & significant memory capacity constraints.



Why Do We Need New Programming Models?

* Because the hardware has changed
* Every new DOE machine is now a PAD machine

e Current programming models were designed for a different class of
machines

* We are betting that task-based programming models are the best fit
for PAD machines
* Or at least a better fit
* Fellow travelers: PaRSEC, StarPU



Legion

A data-centric, task-based programming model for parallel, accelerated,
distributed machines



Task Graphs

* Nodes are tasks
e Units of work

* Edges are dependencies
* Ordering constraints




Task Graphs

 Common in data-centric programming systems:
* TensorFlow
* PyTorch
* MapReduce
* Spark
» DASK

e Why?
* Productivity!

* Provide access to supercomputer-scale resources to
programmers who otherwise could not program such
machines

* The challenge:

* Provide the generality, scalability, and performance
needed for DOE codes

*  While keeping the productivity




Task Graphs in Legion

Nodes are tasks
e Application functions & data movement

Edges are dependencies
* Ordering constraints
* Inferred automatically as tasks are launched

Asynchronous model
* Deals gracefully with variable latencies

Machine independent

* No commitment to size of machine, where
tasks execute, or where data is placed

* Separate mapping embeds a task graph in a
machine




Source Code

for j=0, conf.num_loops do
fori=0, conf.num_pieces do
calculate_new_currents(steps, pn_privateli], pn_sharedli], pn_ghost[i], pw_outgoing]i])
end
fori=0, conf.num_pieces do
distribute_charge(pn_private[i], pn_shared|[i], pn_ghost[i], pw_outgoing]i])
end
fori=0, conf.num_pieces do
update_voltages(pn_equalli])
end
end

Programs simply launch tasks.
The (distributed) task graph is constructed dynamically by the Legion runtime.
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Dynamic Task Graph Construction & Execution

Program Execution
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The task graph for one iteration on one
node ... of a mini-app
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Some applications have ~10K

tasks/sec/node: E.g., one iteration of
distributed memory S3D.
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Legion

A data-centric, task-based programming model for parallel, accelerated,
distributed machines



Partitioning
e Tasks work on collections of data

* For parallelism, collections can be partitioned into subcollections

* Partitions are first-class objects in Legion
* Perhaps the most radical aspect of the design
* Rich sublanguage of partitioning operations
* Multiple partitions of the same data can exist simultaneously
 Partitions can be hierarchical



Why Allow Multiple Partitions? Composition!

Application
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Different libraries, written independently, may require different views of the same data.



A Word About Mapping

* The application selects:
* Where tasks run
* Where collections are placed
* Needed communication is then inferred

* The mapping is computed dynamically

* Decouples correctness from
performance
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Applications



S3D: Combustion Simulation

* Simulates chemical reactions
 DME (30 species)
* Heptane (52 species)
* PRF (116 species)

* Two parts
* Physics
* Nearest neighbor communication
* Data parallel
* Chemistry
* Local

. | k lleli Recent 3D DNS of auto-ignition with 30-species
Complex task parallelism DME chemistry (Bansal et al. 2011)

* Large working sets/task
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Weak Scaling: PRF on Titan
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Observations

* More productive for domain scientists to write code
* They don’t deal with parallelism, synchronization, or data movement

 Three versions of S3D:
* S3D Legion C++: 23KLOC
* S3D Regent: 14KLOC
* S3D Fortran+MPI: ~100KLOC

* We use different mappings for different chemical reactions
* More species means more expensive chemistry relative to physics
* Changes the best way to place data and compute

* Legion’s late-binding of performance/mapping decisions is key
* Rapidly explore the best way to execute the program without code changes



Soleil-X

* Solar collector heating nickel
particles in a channel

* Multi-physics
* Fluid, particles & radiation

e Stanford PSAAP |l center code
* All written in Regent
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Soleil-X Results

Ported to:
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Soleil-X Task Graph
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FlexFlow: Deep Neural Networks

* In deep learning, data is commonly organized as tensors.
* tensor = [image, height, width, channel]

* Existing tools parallelize in one of two ways
* In one data dimension (data parallel)
* By dividing up the operations across compute resources (model parallel)

* Allow each layer to be parallelized differently in any dimensions
* Exploits Legion’s expressive data partitioning



Deep Learning: The Candle Project (ECP)
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TensorFlow
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Number of GPUs

* Training the model on Summit

* TensorFlow’s data parallel

strategy does not scale past 1
node/6 GPUs

e FlexFlow finds a different

parallelization strategy that
scales to 128 nodes/768 GPUs



Legate

Parallel/accelerated/distributed support for Python
* Built on Legion
* Provide access to supercomputers to people with little to no HPC background

Drop-in replacement for

* NumPy
 Pandas

Idea: Automatically partition NumPy arrays and create tasks for NumPy operators
* Relies on Legion’s partitioning support and dynamic task graph creation

Developed by NVIDIA

* Open source, as with all Legion packages



CFD Solver in Legate

Weak Scaling of Python CFD Navier-Stokes on DGX SuperPOD
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 Unmodified CFD solver taken
from Lorena Barba’s CFD Python
course

e ~200 lines of NumPy

* Achieves good weak scaling out
to 2,048 A100 GPUs

27



Important ideas

* Important ideas
* First class data partitioning
* Dynamic task graph construction
e Late binding of performance decisions (e.g., mapping)
* Compositional model supports writing libraries

* Applications at scale in
e Simulation
e Deep learning and data analytics



Other, Current and Future Work

Libraries Developing libraries that exploit Legion capabilities

Interoperability Support for interop with Fortran, C++, Python, MPI

Exascale machines Runs on early Frontier and Aurora hardware today

Kernel support Write CPU/GPU portable kernels in Kokkos, (a subset of) OpenMP,
and Regent

Automapping Working on automating the mapping process

And more ... some interesting aspects of Legion omitted for lack of time... Full list of project’s publications available on-
line: https://legion.stanford.edu/publications/



https://legion.stanford.edu/publications/

Questions?

Legion: legion.stanford.edu
Regent: regent-lang.org
FlexFlow: flexflow.ai

Legate: github.com/nv-legate/
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