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Legion
A data-centric, task-based programming model for parallel, accelerated, 
distributed machines. 

History:
• Initially supported by ASCR through the ExaCT co-design center (~2011) and 

additional projects (w/ Lucy, Laura, Hal)
• Additional support from DOE NNSA ASC: PSAAP II, III, LANL, BES, SciDAC, DARPA;  

part of the ST portfolio in ECP
• Industry interest  & investment, most notably NVIDIA & Facebook
• R&D 100 Award in 2020
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PAD Machines

Very complex memory hierarchy & significant memory capacity constraints.
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Why Do We Need New Programming Models?

• Because the hardware has changed
• Every new DOE machine is now a PAD machine

• Current programming models were designed for a different class of 
machines

• We are betting that task-based programming models are the best fit 
for PAD machines
• Or at least a better fit
• Fellow travelers: PaRSEC, StarPU
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Task Graphs

• Nodes are tasks
• Units of work

• Edges are dependencies
• Ordering constraints
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Task Graphs
• Common in data-centric programming systems:

• TensorFlow
• PyTorch
• MapReduce
• Spark
• DASK

• Why?
• Productivity!
• Provide access to supercomputer-scale resources to 

programmers who otherwise could not program such 
machines

• The challenge: 
• Provide the generality, scalability,  and performance 

needed for DOE codes
• While keeping the productivity
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Task Graphs in Legion

• Nodes are tasks
• Application functions & data movement

• Edges are dependencies
• Ordering constraints
• Inferred automatically as tasks are launched

• Asynchronous model
• Deals gracefully with variable latencies

• Machine independent
• No commitment to size of machine, where 

tasks execute, or where data is placed
• Separate mapping embeds a task graph in a 

machine
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Source Code
for j = 0, conf.num_loops do

for i = 0, conf.num_pieces do
calculate_new_currents(steps, pn_private[i], pn_shared[i], pn_ghost[i], pw_outgoing[i])

end
for i = 0, conf.num_pieces do

distribute_charge(pn_private[i], pn_shared[i], pn_ghost[i], pw_outgoing[i])
end
for i = 0, conf.num_pieces do

update_voltages(pn_equal[i])
end

end

Programs simply launch tasks. 
The (distributed) task graph is constructed dynamically by the Legion runtime.
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Task Graphs Get Large and Complex

The task graph for one iteration on one 
node … of a mini-app

Some applications have ~10K 
tasks/sec/node: E.g., one iteration of 
distributed memory S3D. 

12



Legion

A data-centric, task-based programming model for parallel, accelerated, 
distributed machines

13



Partitioning

• Tasks work on collections of data

• For parallelism, collections can be partitioned into subcollections

• Partitions are first-class objects in Legion
• Perhaps the most radical aspect of the design
• Rich sublanguage of partitioning operations
• Multiple partitions of the same data can exist simultaneously
• Partitions can be hierarchical
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Why Allow Multiple Partitions?  Composition!

Library A Library B

Application

C C

Different libraries, written independently, may require different views of the same data.
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A Word About Mapping
• The application selects:

• Where tasks run
• Where collections are placed
• Needed communication is then inferred

• The mapping is computed dynamically

• Decouples correctness from 
performance
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Applications
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S3D: Combustion Simulation
• Simulates chemical reactions

• DME (30 species)
• Heptane (52 species)
• PRF (116 species)

• Two parts
• Physics

• Nearest neighbor communication
• Data parallel

• Chemistry
• Local
• Complex task parallelism

• Large working sets/task
5 

Planning the science simulation 

•  Recent 3D simulation on Jaguar 
was used to extrapolate and plan 
a target Titan simulation 

•  Planned simulation will have more 
grid points and/or larger chemistry 

•  Will need a month on 12,000 
hybrid nodes of Titan 

Figure 5: Computational domain and grid to be used for simulations of the CRF HCCI engine.

Figure 6: Reaction and diffusion structures for OH radical during the third stage thermal explosion of a high-pressure
DME fueled autoignition process.Recent 3D DNS of auto-ignition with 30-species 

DME chemistry (Bansal et al. 2011) 
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Weak Scaling: PRF on Titan
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Observations

• More productive for domain scientists to write code
• They don’t deal with parallelism, synchronization, or data movement
• Three versions of S3D:

• S3D Legion C++:  23KLOC
• S3D Regent: 14KLOC
• S3D Fortran+MPI: ~100KLOC

• We use different mappings for different chemical reactions
• More species means more expensive chemistry relative to physics
• Changes the best way to place data and compute

• Legion’s late-binding of performance/mapping decisions is key
• Rapidly  explore the best way to execute the program without code changes

20



Soleil-X

• Solar collector heating nickel 
particles in a channel

• Multi-physics
• Fluid, particles & radiation

• Stanford PSAAP II center code
• All written in Regent

21



Soleil-X Results

Ported to:

Titan
Summit
Sierra
Lassen
Piz Daint
Certainty (CPU only)
Sherlock

Weak scaling on Sierra
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Soleil-X Task Graph 

One timestep on 
one node

23



FlexFlow: Deep Neural Networks

• In deep learning, data is commonly organized as tensors.
• tensor = [image, height, width, channel]

• Existing tools parallelize in one of two ways
• In one data dimension (data parallel)
• By dividing up the operations across compute resources (model parallel)

• Allow each layer to be parallelized differently in any dimensions
• Exploits Legion’s expressive data partitioning

24



Deep Learning: The Candle Project (ECP)

• Training the model on Summit

• TensorFlow’s data parallel 
strategy does not scale past 1 
node/6 GPUs

• FlexFlow finds a different 
parallelization strategy that 
scales to 128 nodes/768 GPUs
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Legate

• Parallel/accelerated/distributed support for Python
• Built on Legion
• Provide access to supercomputers to people with little to no HPC background

• Drop-in replacement for
• NumPy
• Pandas

• Idea: Automatically partition NumPy arrays and create tasks for NumPy operators
• Relies on Legion’s partitioning support and dynamic task graph creation

• Developed by NVIDIA
• Open source, as with all Legion packages
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CFD Solver in Legate

• Unmodified CFD solver taken 
from Lorena Barba’s CFD Python 
course
• ~200 lines of NumPy

• Achieves good weak scaling out 
to 2,048 A100 GPUs
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Important ideas

• Important ideas
• First class data partitioning
• Dynamic task graph construction
• Late binding of performance decisions (e.g., mapping)
• Compositional model supports writing libraries

• Applications at scale in
• Simulation
• Deep learning and data analytics
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Other, Current and Future Work

Libraries Developing libraries that exploit Legion capabilities 

Interoperability Support for interop with Fortran, C++, Python, MPI

Exascale machines Runs on early Frontier and Aurora hardware today

Kernel support Write CPU/GPU portable kernels in Kokkos, (a subset of) OpenMP,
and Regent

Automapping Working on automating the mapping process

And more … some interesting aspects of Legion omitted for lack of time…  Full list of project’s publications available on-
line: https://legion.stanford.edu/publications/
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Questions?

Legion:   legion.stanford.edu
Regent: regent-lang.org
FlexFlow:  flexflow.ai
Legate: github.com/nv-legate/
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