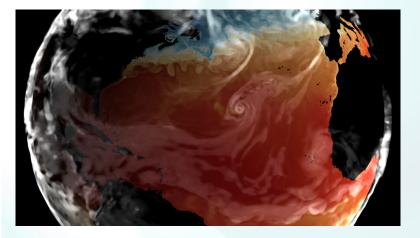
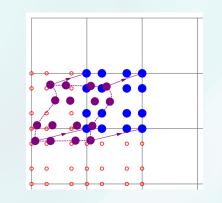
Incorporating GPUs into Earth System Science

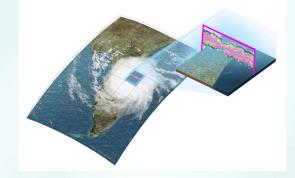
Mark Taylor Sandia National Laboratories

BER E3SM Nonhydrostatic Atmosphere NGD ASCR E3SM-MMF Exascale Computing Project BER E3SM Performance Group BER CMDV-SM project

Advanced Scientific Computing Advisory Committee Via Zoom, September 25, 2020 SAND2020-10336 C


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.


EXASCALE COMPUTING PROJECT



Earth System Modeling in DOE

- BER: E3SM Project
- ~70 FTEs, 8 labs + Universities
- Energy Exascale Earth System Model
- DOE-SC science mission: Energy & water issues looking out 40 years
- Ensure E3SM will run well on upcoming DOE exascale computers

- ASCR/BER SciDAC
- ~10 FTEs over multiple projects
- Large focus on new algorithms

- ASCR ECP Project
- ~10 FTEs
- E3SM-MMF: "superparameterization"

Three overarching science drivers

U.S. energy sector is vulnerable to:

- Decreasing water availability
- More intense storm events and flooding
- Increasing temperatures
- Sea level rise

- Water cycle: How does the hydrological cycle interact with the rest of the human-Earth system on local to global scales to determine water availability and water cycle extremes?
- Biogeochemistry: How does the biogeochemical cycle interact with other Earth system components to influence energy-sector decisions?
- **Cryosphere systems:** How do rapid changes in cryospheric systems evolve with the Earth system and contribute to sea level rise and increased coastal vulnerability?

Challenge: water cycle, biogeochemistry, and cryosphere systems interactions cannot be ignored for predictions or projections at longer time scales

E3SM Exascale strategy: Running on GPUs

- All new DOE SC machines will be GPU based
- NERSC Perlmutter
- OLCF Frontier (and Summit)
- ALCF Aurora

Key Points for Earth System Models

- CPU performance (per watt) has nearly stagnated
 - 2x speedup over the last 6 years
- GPUs: 3x speedup (per watt) over today's CPUs
 - But only in the high-workload regime
 - Need major code rewrite or refactor
- Traditional climate simulation campaigns are run in the low-workload regime
- E3SM: Focus on several new types of simulation campaigns where GPUs will allow us to run simulations not possible on CPU systems

High Workload Simulations for GPUs

Earth System Model running at 5 SYPD for ~300 simulated years

- A \$5M commodity CPU cluster is most efficient

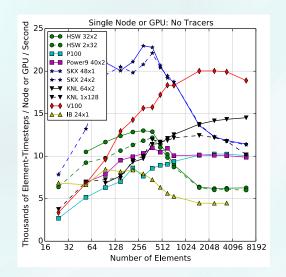
Ultra high resolution "Cloud Resolving" model

- BER: E3SM's "SCREAM" project
- On track for E3SM V3 (2021-2022)
- Typical INCITE award: 10-30 simulated year

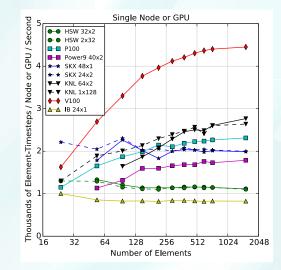
Increase "local" complexity

- ECP: E3SM-MMF project: "superparameterization"
- Achieve many aspects of a cloud resolving simulation and also achieve 5 SYPD
- Running on Summit since OLCF Early Access Program

Large Ensembles


- Each ensemble member is running slower but more efficiently on GPU systems.
- E3SM V4 capability: large ensembles on GPU systems

Performance & Portability Strategy

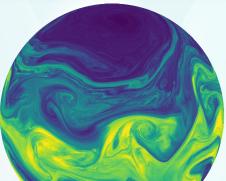

- Large investments in two approaches:
 - Fortran + OpenMP
 - C++ / Kokkos
- Both strategies require complete code refactor or rewrite, with careful coding to obtain competitive performance
- We are taking this opportunity to: replace legacy code, improve testing, software engineering and verification
- Takes several years per major component. Not simple code porting requires computational science research along the way.

Detailed single node comparisons

- Atmosphere dynamical core with and without tracers (~1/2 the atmosphere mode)
- Shows slow improvement in CPUs going back to 2012
- Gives upper bound on possible performance: doesn't include. MPI and other overheads
- Dynamical core only: minimal benefit from GPUs
- Dynamical core + tracers: Large benefit from GPU, but only in high work load regime.
- Hope to soon add newer CPUs (Epyc, Fugaku ARM) and new GPUs

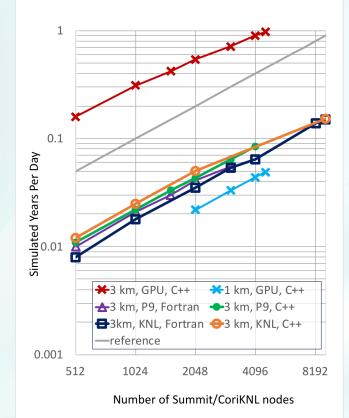
Atmosphere dynamical core

Atmosphere dynamical core with 40 tracers


Bertagna et al., HOMMEXX 1.0: A Performance Portable Atmospheric Dynamical Core for the Energy Exascale Earth System Model, GMD 2019

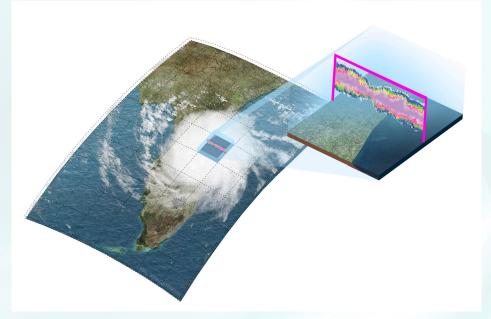
NGGPS cloud resolving (3km) benchmark Scaling to all of Summit

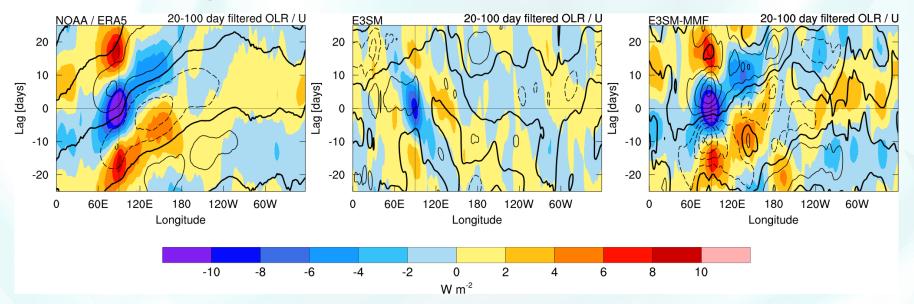
- Standardized benchmark from the National Weather Service
- Atmosphere model with realistic configuration and idealized physics
- Highlights from several generation of computers and Global clould resolving models (GRCMs)
- Double precision results (reported real*4 results ~1.6x faster)
- Results inline with Linpack/HPGC comparison


GCRM Model	Computer (Linpack rating)	NGGPS 3km Benchmark
NOAA FV3	Edison (2.6PF)	0.16 SYPD
HOMME (CESM)	TaihuLight (125 PF)	0.34 SYPD
E3SM's HOMMEXX_NH	Summit (200 PF)	0.97 SYPD

L. Bertagna et. al., SC '20: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2020

NGGPS 3km Benchmark: Strong scaling (per node)

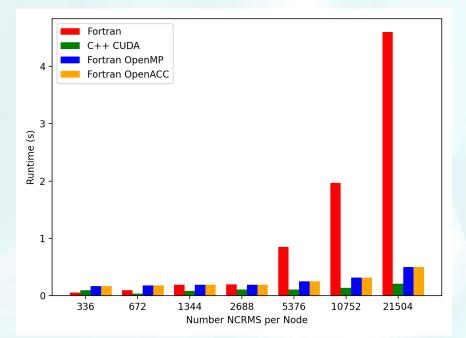

- C++/kokkos and Fortran codes competitive IBM P9
- C++/kokkos code has hand-vectorized every loop, leading to excellent KNL performance.
- Summit node with 6 V100s obtains ~ 12x speedup (for ~6x more power?)
- 1km resolution also running well, but throughput is impractically low


L. Bertagna et. al., SC '20: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2020

ECP Project: E3SM-MMF

- E3SM-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model
- Super-parameterization dramatically increases arithmetic intensity, making the MMF approach ideal for GPU acceleration.
- Exascale + MMF approach will make it possible for the first time to perform climate simulation campaigns with *some aspects* of cloud resolving resolutions.

ECP Project: E3SM-MMF


Cloud resolving resolution improves many aspects of our models, such as the Madden-Julian Oscillation, the dominant mode of sub-seasonal variability in the Tropics. Filtered outgoing longwave radiation and 850 mb zonal wind characterize the MJO eastward movement in time.

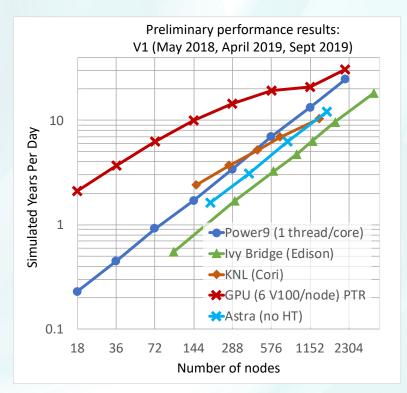
Compared to observations (left), E3SM-MMF (right) captures much of this eastward propagation, significantly better than the traditional resolution E3SM model (middle)

Analysis: W. Hannah (LLNL)

E3SM-MMF

- In the MMF, performance is dominated by the superparamertization, a 2D "CRM"
- Porting just the CRM to GPUs is sufficient to make effective use of GPU systems
- Performance of the CRM shows similar trends as before: in high workload regime (many CRMs per GPU), GPUs significantly outperform CPUs
- Fortran/OpenMP good but not competitive with C++ due to compiler maturity.

Closing thoughts


- CPU systems are getting better (Fugaku)
- GPU systems are getting better (Frontier, Aurora)
- E3SM V3: Two approaches to cloud resolving simulations made possible by GPU architectures
- E3SM V4 will run efficiently on *both* architectures
 - hopefully well prepared to adapt to post-Exascale hardware

Backup Slides

Summit Full Machine Benchmarks

Consider the E3SM v1 model running on Summit:

- Atmosphere dycore (25km, 40 tracers). GPU acceleration probably not as good for the rest of the model.
- In strong scaling limit, GPU systems cannot outperform CPUs
- If you are willing to run slower, GPUs provide significant advantage (18 nodes):
- E3SM v1 high-res model (projections)
 - 5 SYPD: no GPU benefit
 - 0.5 SYPD: GPUs more efficient
- How will this change in the future?

