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Sandia Combustion Research Facility
A DOE/BES Collaborative Research Facility dedicated to energy 

science and technology for the twenty-first century

Keys to CRF’s success:
Common scientific purpose

Full spectrum of basic to applied

Collocation and collaboration

Strong ties to application and energy impact

Visitor program adds intellectual vitality 
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Transportation will depend on internal combustion engines for decades

• Despite the expected growth in electric vehicle sales, the 
global light-duty fleet will be dominated by vehicles with 
internal combustion (IC) engines in the coming decades

o Improving IC engine efficiency is an important path to 
energy security and reducing greenhouse gas emissions 
in the 2050 timeframe

• DOE Vehicle Technology Office Partnership in Advanced 
Combustion Engines (PACE) focuses resources across six 
national laboratories on common, key barriers to engine 
efficiency

• Leverages DOE investments in high performance 
computing through ECP and recent advances in ML/AI

• Direct path to industry OEM computational fluid 
dynamics workflow

o Connect SC ‘big science’ to industry design process
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ECP Pele Combustion High-Fidelity DNS Codes at the Exascale

Key questions and sensitivities

– What is the distribution of reactivity

in a realistic mixture prepared by 

multiple injections

– How are reactivity gradients

affected by injection characteristics: 

• Composition and mixing

• Duration and timing

– How does the reactivity distribution 

and re-entrainment affect soot 

generation

– What are the rate-controlling 

reactions that expand the operating 

map for compression ignition 

engine combustion 

Soot 
formation

+ radiation

Spray evaporation

Critical physical processes:

 Turbulence and mixing

 Spray vaporization

 Low-temperature ignition

 Flame propagation

 Soot

 Radiation

 Chemical Kinetics (leveraging BES Gas Phase Chemical Physics and 

automated combustion chemistry for drop-in mechanisms in CFD)

Pele: reacting flow PDE solvers featuring block-structured adaptive mesh refinement with 
multi-physics for scalable performance portability on Frontier and Aurora in 2023
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Direct Numerical Simulation of Turbulent Reactive Flows – S3D

• Solves compressible reacting Navier-

Stokes, total energy and species 

continuity equations

• High-order finite-difference methods

• Detailed reaction kinetics and

molecular transport models

• Lagrangian particle tracking (tracers, 

spray, soot)

• In situ analytics and visualization

• Geometry using immersed boundary 

method

• Refactored for heterogeneous 

architectures using dynamic task based 

programming model (Legion)

DNS provides unique 

fundamental insight into the 

chemistry-turbulence interaction

Chen et al., Comp. Sci. Disc., 2009
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Computational intensity of DNS scales with Moore’s Law

[1] T. Echekki, J.H. Chen, Comb. Flame, 1996, vol.106.
[2] T. Echekki, J.H, Chen, Proc. Comb. Inst., 2002, vol. 29.
[3] R. Sankaran, E.R. Hawkes, J.H. Chen, Proc. Comb. Inst., 2007, vol. 31.
[4] E.R. Hawkes, O. Chatakonda, H. Kolla,  A.R. Kerstein, J.H. Chen, Comb. Flame, 2012, vol. 159.
[5] 2015 submission for Gordon Bell prize
[6] H. Wang, E. Hawkes, J. H. Chen,  Comb. Flame  2017

[1]
3.0x106

[2]
2.3x108

[3]
3.5x109

[4]
9.7x1010

[5]
1.8x1011

problem size = # grid pts x # variables 

(e.g. chemical species)

2D unsteady flows
With global step 
chemistry

3D turbulent
Jet flames
With O(20) 
species

3D turbulent 2-stage 
autoignition at 25 bar
with O(35-116) species

Lean CH4 Piloted 
laboratory-scale
jet flame in the 
distributed 
reaction zones 
regime with NOx

[6]

1.9e11

 



‘Real’ Fuels are described by chemical models with high-

dimensionality: O(1000) species and O(10,000) reactions

• Find low dimensional manifold in composition 

space that is a surrogate for full system 

dynamics of the reacting flow (to reduce the 

number of species transport equations to be 

solved)

• Manifolds exist due to inherent correlations of 

species (source of traditional paradigms for 

modeling)

• Empirical low-dimensional manifolds (ELDM) 

constructed from samples of compositions 

from experiment or DNS

• Linear (PCA) or nonlinear regression

Yang et al. 2013Lu et al. 2009
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Framework for In situ Reduced Order Surrogate Models for DNS 

of Turbulent Reacting Flows at the Exascale

In situ on Summit and on future exascale machines

ROM Physics Validation Toolbox

Apriori
Stability, Realizability

Validity Bounds

Aposteriori
ROM Simulation

Data and Model Repository

DNS Output

Metadata
Provenance 
Annotations

Visual Thumbprints
Statistical summaries

Spatial/temporal patterns

Post-hoc ML

Low Dimensional Manifolds
Rank Reduction

Anomaly Detection 

DNS Data Generator

First Principles 
Simulation Database 

Reduced/Coarse-grained
Simulation Data

Quantities of 
Interest (QOI)

Features, Events 
Anomaly Detection

In-Situ ML

Source terms, ANN tabulation/retrieval, 
hyperparameter autotuning

Adaptive basis and time-dependent 
basis for ROM of transient systems 

NVRAM

+

AI Model

Reduced Order Model 
(ROM)

Event prediction



Promote collaboration between DOE Labs and universities 
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Infrastructure for complex DNS workflows
using Legion/Regent/ FlexFlow with S3D

Surrogate DNS with PC-Transport

Real-time reduced order modeling of 
sensitivities & data compression in 
transient deterministic/stochastic 
systems, theory and algorithms

In situ Sensitivity and ROMs in S3D

Martin Rieth



Surrogate DNS via In situ Adaptive Principal Component Transport

• Use ML/AI to aggressively reduce the high-dimensional composition space needed 
to describe gasoline and diesel surrogates, enabling DNS of ‘turbulence-chemistry’ 
interactions in SI gasoline and diesel engines 

• Replicate high-dimensional composition space with low-dimensions using principle 
component (PC) transport analogous to species transport equations coupled with 
deep neural networks (DNNs) to model the chemical and transport terms (chemical 
source terms and diffusion coefficients) for PCs in terms of the transported PCs 
and to recover the original thermo-chemical scalars from the retained PCs.

• A few PC’s, linear combination of species compositions,  can represent the 
variance of the original DNS with 1000’s of species - potential for 2 orders of 
magnitude savings in DNS cost and storage

• Instantaneous transport equations for the PCs in DNS can be derived (Sutherland 
and Parente, 2009):

• Chemical and transport terms in the PC-transport equations are similar to the 
species equivalent terms and are modelled using deep neural networks that relate 
them to the transported PC’s.  Similarly, the original thermochemical scalar can be 
reconstructed from the PC’s.

𝝏𝝆𝝓𝒌

𝝏𝒕
+

𝝏𝝆𝒖𝒋𝝓𝒌

𝝏𝒙𝒋
=

𝝏

𝝏𝒙𝒋
𝝆𝑫𝒌

𝝏𝝓𝒌

𝝏𝒙𝒋
+ 𝒔𝝓𝒌

, 𝒌 = 𝟏,⋯ ,𝑵,where 𝐬𝛟 = 𝐀𝐓𝐬𝛉

where AT is a matrix with the leading eigenvectors of the covariance matrix
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A Priori: DNS of Ethanol Compression Ignition

• Original Manifold: 29 dimensional (28 species + 

temperature)

• Linear PCA performed in a subspace spanned of 

6 representative scalars: T, O2, H2O, CO, CO2

and C2H5OH .

• PCA-ANN tabulation of all 29 variables are 

satisfactory based on first 2 PCs.

• Potentially, an order of magnitude saving in 

computational time.

• Also potential for reducing stiffness if fast 

reactions are eliminated from the reduction 

process.

A Priori … (an important step in PC transport)

• Determine PCs from slices of DNS solution

• Retain subset of the PCs

• Reconstruct solutions at different snapshots using 
the retained PCs.

11DNS data PCA-ANN tabulation



A Posteriori: 2D DNS of methane-air premixed flame wrinkling
(Owoyele & Echekki, 2018) 

A Posteriori: PC Transport in DNS (an a priori step is needed prior to a 

posteriori)

• (31) Thermo-chemical scalars: (30 species + temperature) and 184 

reactions 

• (8) Representative scalars: T, CH4, O2, H2O, CO2 , CO, H2 and O (O 

need to capture curvature/differential diffusion effects).

– (8) Potential PCs

• (4) Retained PCs

– The PCs capture the flame topology and are correlated with different 

key scalars.

• Saving in computational cost:

– 4 vs. 31 scalars transported

– A factor of 4 spatial resolution saving

– A factor of 10 temporal resolution saving

• 2D DNS with species and energy has a similar computational cost to 3D 

DNS with PCs (huge saving)

• PC transport is not limited to a particular combustion mode.

PCs

CO

12



Next Steps with PC Transport

• Current state-of-the-art: 

– Start with static PCA from existing data generated from a low-dimensional 

simulation (2D vs. 3D) or smaller domain.

– Requires knowledge of the composition space accessed by the simulations a priori

• PC transport can be optimized by dynamically evolving PCs during a simulation

– Data on which PCA is carried out evolves with the simulation

– Reduction and modeling of the transport terms for the PCs must be done on the fly 

during the simulation

– Need to develop criteria for when PCs are dynamically updated

– Need to develop strategies for transitioning from the old PCs to the new PCs

• Further extensions

– PCA is designed to model the dominant features of a combustion problem

– PCs will be augmented with additional bases that capture anomalies using 

anomaly detection algorithms

– Anomaly detection provides criteria for transitioning the PC bases as well as to 

track the occurrence of rare events  (e.g. extinction or ignition)
13

First principal kurtosis vector 
aligns in the direction of anomalies 

Temperature anomalies
during autoignition



• Anomaly detection to identify ignition regions (trigger for adaptive PC-transport)
• An anomaly detection algorithm [1] using factorization of higher moment tensor (co-

kurtosis) was used to identify spatio-temporal regions where auto-ignition was 
occurring in a DNS simulation of HCCI combustion. Plot on left shows contour map of 
heat release rate at an instant of low temperature ignition, the center shows the sub-
domains containing the true ignition kernels, the right plot shows sub-domains 
identified by the anomaly detection algorithm.

• Implement in-situ light-weight anomaly detection ML tasks on accelerators

[1] K. Aditya, H. Kolla, W. P. Kegelmeyer, T. M. Shead, J. Ling, Warren L Davis IV, 2019, “Anomaly detection in 
scientific data using joint statistical moments”, Journal of Computational Physics, vol. 387, pp:522. 

Autoignition predicted by anomaly detectionTrue ignition kernels

DNS HCCI data

Anomaly detection using joint statistical moments as a trigger for adapting PC-transport 
subspace (Example: predict pre-ignition knock and its indicators for GDI SI engines at 
boosted conditions)

https://www.sciencedirect.com/science/article/pii/S002199911930172X


Real-Time Reduced Order Modeling Via Time-Dependent Basis: Model-Driven and Data-Driven Modalities

Model (PDE) or Data (from simulation)

≈

Hidden Space Matrix

u1(𝑡)

u2(𝑡)

u𝑟(𝑡)

v1(𝑡)

v2(𝑡)

v𝑑(𝑡)

Time-Dependent
Orthonormal Basis

Full-Dimensional 
Solution/Data

r<<d

𝐔
·

= 𝑓𝑈(𝐔, 𝐘)

𝐘
·

= 𝑓𝑌(𝐔, 𝐘)
()
·

=
𝑑

𝑑𝑡

Knowledge Discovery: Time-dependent basis 𝐔(𝑥, 𝑡) discovers low-

dimensional subspace of systems with finite-time instabilities/rare events 

(e.g. ignition/extinction/blowoff/flashback, turbulent intermittency)

On-the-fly Data/Model Compression: Extracts low-rank structure from 

streaming simulation data or directly from model. Application: in-situ

compression. 

Scalable Method: Scales linearly with respect to size of data and low-rank r. 

Does not require solving large scale eigenvalue/optimization problem.

Optimality: Find the time-dependent subspace 𝐔(𝑥, 𝑡) and its 

coefficients 𝐘(𝑡) by minimizing the functional
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Data: Mass Fraction (DNS) In-situ Low-Rank Extraction 

𝐔
·

= 𝑓𝑈(𝐔, 𝐘)

𝐘
·

= 𝑓𝑌(𝐔, 𝐘)
Compression/ROM

Advance

𝐔(𝑥, 𝑡) & 

𝐘(𝑡) to the 
next time step

Streaming 
simulation 
data

Store 𝐔(𝑥, 𝑡) & 𝐘(𝑡)
instead of the full 
solution.

Build real-time 
reduced order 
model.

Model: Sensitivity Equation (Large Number of Parameters)

Solve the sensitivity equation in the compressed form.

𝐔
·

= 𝑓𝑈(𝐔, 𝐘)

𝐘
·

= 𝑓𝑌(𝐔, 𝐘)

PDE for 𝐔(𝑥, 𝑡)

ODE for 𝐘(𝑡)

Extract spatial/parametric correlations from model or data on the fly



Data-Driven Reduction: On-the-fly Compression of DNS Combustion Data

Streaming Simulation DataOn-the-fly 

Low-rank Subspace

Extraction

Species Coefficient

Time Derivative

An order of magnitude saving in Storage: r/ns=8/113



17 Exascale Computing Project

Legion Programming System Applied to S3D

• A data-centric parallel programming system

• A programming model for heterogeneous, distributed machines

– Automates many aspects of achieving high performance, such as extracting task- and data-level 
parallelism

– Automates details of scheduling tasks and data movement (performance optimization)

– Separates the specification of tasks and data from the mapping onto a machine (performance 
portability)

• Legion application example: S3D DNS

– Production combustion simulation

– Written in ~200K lines of Fortran

– Direct numerical simulation using explicit methods

36 

S3D 

 Production combustion simulation 

 Written in ~200K lines of Fortran 

 Direct numerical simulation using explicit methods 

S3D performance Legion vs. MPI

S. Treichler et al., “S3D-Legion: An Exascale Software for Direct Numerical Simulation 

(DNS) of Turbulent Combustion with Complex Multicomponent Chemistry,” CRC Book on 

Exascale Scientific Applications: Programming Approaches for Scalability Performance 

and Portability, 2017.



In-situ Data Analytics in Legion S3D

Chemical Explosive Mode Analytics (CEMA)
• CEMA: eigenvalue solve on the reaction rate Jacobian to determine the mode of 

combustion (ignition, flame propagation, extinction)

• Run CEMA every 10 time steps as a diagnostic for identifying combustion mode

• CEMA computation takes longer than a single explicit RK stage (6 stages/timestep)

• Dividing CEMA across RK stages and interleaving with other computation so as not to 
impact other critical operations would be hard to schedule manually

• Asynchronous task execution,  schedule CEMA on CPU resources

• Interoperate Fortran CEMA with Legion S3D DNS code – took a day to implement



Execution Overhead of In-situ Analytics 

(CEMA) in Legion-S3D (Titan & Piz Daint)

98%
reduction

84%
reduction



Regent code allows application scientists to write code with sequential 
semantics

• Task-based programming model

– Built on the Legion runtime

• Used in ExaFEL, S3D, PSAAP II & III, ...

– Ports to exascale machines in progress

– Automatically compiles for different GPU’s

• Key features

– Transparent support for code on CPUs or GPUs

– Expressive data partitioning for distributed 
computation

– Compiler and runtime manage scheduling, 
communication, data placement, ...

– Highly portable

__demand(__cuda)

task CalcVolumeTask(lr_q : region(ispace(int3d), fields.QFields),

lr_int : region(ispace(int3d), fields.IntFields))

where

reads(lr_q.{RHO, RHO_U, RHO_V, RHO_W}),

writes(lr_int.{VOLUME, VEL_X, VEL_Y, VEL_Z})

do

for idx in lr_q.ispace do

var rho = lr_q[idx].RHO

var volume:double = 1.0 / rho

lr_int[idx].VOLUME = volume

lr_int[idx].VEL_X = volume * lr_q[idx].RHO_U

lr_int[idx].VEL_Y = volume * lr_q[idx].RHO_V

lr_int[idx].VEL_Z = volume * lr_q[idx].RHO_W

end

end



FlexFlow will be used for deep learning for parallel performance

• A distributed deep learning framework 

– Also built on Legion

– Secret sauce: Automatic search to find a high-

performance data partitioning

• Dramatically improves locality and scalability

– Reduces large scale training from days to hours

• Supports Keras interface

– Pytorch support in progress



Promote scientific and academic excellence in ASCR and BES 

research through collaborations between Labs and universities

• Co-Design: collaboration between computer scientists, applied mathematicians (ML), and 

computational scientists at DOE Labs (SNL, SLAC) and universities (North Carolina State 

U., U. Pittsburgh, Stanford U.)

• Train graduate students and postdocs (extended visits at Labs), provide a pipeline for 

future computational and data scientists at DOE Labs

• Develop an open source in situ DNS/ML framework to evaluate ML/AI algorithms on 

heterogeneous exascale machines

• Provide a scalable, portable DNS/ML framework for composing complex workflows with 

PDE solver coupled with analytics/visualization/ML 

• Generate high-fidelity large-scale turbulent reactive flow simulation data including 

metadata (provenance and annotations) for training and validation of ML/AI models

• Engage with LCFs on computing and infrastructure issues related to large-scale simulation 

of turbulent reactive flows with in situ data analytics and ML/AI
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