
Preparing for the Sustainable Delivery 
of the DOE Exascale Software Stack

Michael A. Heroux, Sandia National Laboratories, Director of Software Technology
Rajeev Thakur, Argonne National Laboratory, Programming Models and Runtimes Area Lead
Jeffrey Vetter, Oak Ridge National Laboratory, Development Tools Area Lead

Advanced Scientific Computing Advisory Committee
September 25, 2020



ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel 
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source 
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of 
architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Xaioye (Sherry) Li, Math Libraries (2.3.3)
Sherry is a senior scientist at Berkeley Lab. She has over 20 years of experience in high-performance numerical software, including development of 
SuperLU and related linear algebra algorithms and software. 

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively 
contributes to many open-source data science packages including ParaView and Cinema. 

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years.  His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he 
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Lois Curfman McInnes, Software Technology Deputy Director
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in high-
performance numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software 
ecosystems. 

Kathryn Mohror, NNSA ST (2.3.6)
Kathryn is Group Leader for the CASC Data Analysis Group at LLNL. Her work focuses on I/O for extreme scale systems, scalable performance 
analysis and tuning, fault tolerance, and parallel programming paradigms. She is a 2019 recipient of the DOE Early Career Award.

Todd Munson, Software Ecosystem and Delivery (2.3.5)
Todd is a computational scientist in the Math and Computer Science Division of ANL. He has nearly 20 years of experience in high-performance 
numerical software, including development of PETSc/TAO and project management leadership in the ECP CODAR project.

Many thanks to Rob Neely!
Rob was part of ECP 
leadership from the very 
beginning



3

ST L4 Teams

- WBS
- Name
- PIs
- PCs - Project         

Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Balaji, Pavan Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kale, Vivek
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Grundhoffer, Alicia
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Grundhoffer, Alicia
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan
2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL  ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST Stats

- 34 L4 subprojects
- 11 PI/PC same
- 23 PI/PC different
- ~27% ECP budget



Software 
Technology
Tracking: KPP-3



5

KPP-3: Focus on capability integration

• Capability: Any significant product functionality, including existing features adapted to the pre-
exascale and exascale environments, that can be integrated into a client environment.

• Capability Integration: Complete, sustainable integration of a significant product capability into a 
client environment in a pre-exascale environment (tentative score) and in an exascale environment 
(confirmed score).



6

KPP-3 Dashboard (2020-09-24)

• Manage KPP-3 
progress in Jira

• Special issue type

• Present values 
updated at least twice 
a year

• Updates include 
uploaded artifacts 
supporting scores

• Measuring tentative 
present values now

• Confirmed values 
possible when Aurora, 
Frontier arrive

21 of 63



7

Key Takeaways for ECP ST Progress Tracking

• KPP-3 measures the key value proposition of ECP ST activities:
– The sustainable integration of capabilities demonstrated on the exascale platforms

• Final KPP-3 definition benefitted tremendously from review teams input

• Use of Jira enable real-time tracking of integration progress:
– At any time, we can see status
– We collect artifacts as we go
– Currently 21 of 63 (33%) have achieved tentative passing value
– Require 32 of 63 (>50%) achieving confirmed passing value to achieve threshold for KPP-3

• The KPP-3 approach of sustainable capability integration is applicable to other settings:
– Other reusable software projects
– Future DOE projects



The Extreme-Scale 
Scientific Software 
Stack (E4S): 

A collaborative HPC 
Linux Ecosystem



9

Delivering an open, hierarchical software ecosystem

ST 
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant, 
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products



10

Delivering an open, hierarchical software ecosystem

ST 
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant, 
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products



11

E4S Components
• E4S is a curated release of ECP ST products based on Spack [http://spack.io].
• E4S Spack cache to support bare-metal installs at facilities and custom container builds: 

– x86_64, ppc64le, and aarch64
• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products.
• Base images and full featured containers (GPU support).
• GitHub recipes for creating custom images from base images.
• e4s-cl for container launch and for replacing MPI in application with system MPI libraries. 
• Validation test suite on GitHub provides automated build and run tests.
• Automates build process via GitLab Continuous Integration to ensure packages can be built.
• E4S Doc Portal aggregates and summarizes documentation and metadata by raking product repos.
• E4S VirtualBox image with support for Docker, Shifter, Singularity, and Charliecloud runtimes.
• AWS image to deploy E4S on EC2.

https://e4s.io



E4S Community 
Policies

Community-driven 
Quality Commitments



13

xSDK community policies
xSDK compatible package: Must satisfy 
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options. 
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures. 
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called 
packages. 
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the 
software.
M9. Use a limited and well-defined symbol, macro, library, and include file 
name space. 
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or IO statements that cannot be turned off.
M12. For external dependencies, allow installing, building, and linking against 
an outside copy of external software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional. 
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible 
with the xSDK install tool and xSDK metapackage.

Also recommended policies, which currently are 
encouraged but not required:

R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to test for 
memory corruption issues. 
R3. Adopt and document consistent system for error 
conditions/exceptions.
R4. Free all system resources it has acquired as soon as they 
are no longer needed.
R5. Provide a mechanism to export ordered list of library 
dependencies. 
R6. Document versions of packages that it works with or 
depends on, preferably in machine-readable form
R7. Have README, SUPPORT, LICENSE, and CHANGELOG 
files in top directory.

xSDK member package: Must be an xSDK-compatible  
package, and it uses or can be used by another 
package in the xSDK, and the connecting interface is 
regularly tested for regressions. 

We welcome feedback.  What policies 
make sense for your software?

https://xsdk.info/policies

BSSw blog article: 
P. Luszczek and U. Yang, Aug 2019,

https://bssw.io/blog_posts/building-community-through-software-policies

https://xsdk.info/policies
https://bssw.io/blog_posts/building-community-through-software-policies


14

E4S Community Candidate Policies V 1.0 Beta
• Spack-based Build and Installation 

Each E4S member package supports a scriptable Spack build and production-quality installation in a way that is compatible with other E4S member packages in the same environment. When E4S build, test, or installation issues arise, there is 
an expectation that teams will collaboratively resolve those issues.

• Minimal Validation Testing
Each E4S member package has at least one test that is executable through the E4S validation test suite (https://github.com/E4S-Project/testsuite). This will be a post-installation test that validates the usability of the package. The E4S validation 
test suite provides basic confidence that a user can compile, install and run every E4S member package. The E4S team can actively participate in the addition of new packages to the suite upon request.

• Sustainability

All E4S compatibility changes will be sustainable in that the changes go into the regular development and release versions of the package and should not be in a private release/branch that is provided only for E4S releases.

• Product Metadata 
Each E4S member package team will provide key product information via metadata that is organized in the E4S DocPortal format. Depending on the filenames where the metadata is located, this may require minimal setup.

• Public Repository
Each E4S member package will have a public repository, for example at GitHub or Bitbucket, where the development version of the package is available and pull requests can be submitted.

• Imported Software 

If an E4S member package imports software that is externally developed and maintained, then it must allow installing, building, and linking against a functionally equivalent outside copy of that software. Acceptable ways to accomplish this 
include (1) forsaking the internal copied version and using an externally-provided implementation or (2) changing the file names and namespaces of all global symbols to allow the internal copy and the external copy to coexist in the same 
downstream libraries and programs.

• Error Handling 
Each E4S member package will adopt and document a consistent system for signifying error conditions as appropriate for the language and application. For e.g., returning an error condition or throwing an exception. In the case of a command 
line tool, it should return a sensible exit status on success/failure, so the package can be safely run from within a script.

• Test Suite 

Each E4S member package will provide a test suite that does not require special system privileges or the purchase of commercial software. This test suite should grow in its comprehensiveness over time. That is, new 
and modified features should be included in the suite.

https://github.com/E4S-Project/testsuite
https://e4s-project.github.io/DocPortal.html
https://github.com/E4S-Project/E4S-Documenter/blob/master/README.md


15

E4S/SDK Policy Initiative Status

• Community policies are important for several reasons:
– Commitment to quality
– Membership criteria for the future
– Community discussion

• Each SDK community developing policies like Math Libs (xSDK).

• Policies common to all SDKs will be promoted to E4S level

• Policies will determine:
– Quality label 
– Membership in E4S and the SDKs

• Version 1.0 of policies due by end of 2020



E4S DocPortal

A Single Portal with 
Redirect to Product 
Documentation



Product 
Documentation 
Challenges: 
User 
Perspective

Finding info for 
specific product

What it does
License
Support
Contact info
More …

Finding new products What can solve my problem

Trusting accuracy of 
information

Up to date
Complete

Hierarchical Summary to deep dive

17



Product 
Documentation 
Challenges: 
Developer 
Perspective

Efficient and Effective 
generation and maintenance

Getting noticed by new users

Conveying summary 
information and details

18



E4S Documentation Portal Strategy

All content resides in product 
repositories
Use open source community approach of specially-
name files in software repositories.

Adopt commonly used file names when available.

ID new information items not already being requested.

Documentation portal provides single 
point of access
Web-based raking tool capture information from 
product repositories and present in summary form.

Aggregates and summarizes documentation and 
metadata for E4S products

Regularly updates information directly from product 
repositories

Location: https://e4s-project.github.io/DocPortal.html

19

https://e4s-project.github.io/DocPortal.html


20

E4S DocPortal

• The DocPortal is live!

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html


21

Goal: All E4S Product Documentation Accessible from single portal on E4S.io 
(Working Mock Webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html


22

Q: What do we need for adding a product to the DocPortal?
A:  A repo URL + up-to-date meta-data files

Takeaway: Adding new products is very straightforward!



E4S Spack Build Cache and 
Container Build Pipeline



24

E4S: Spack Build Cache at U. Oregon

• https://oaciss.uoregon.edu/e4s/inventory.html

• 10,000+ binaries
• S3 mirror
• No need to build 
from source code!



25

WDMApp: Speeding up bare-metal installs using E4S build cache

• https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

• E4S Spack build cache
• Adding E4S mirror
• WDMApp install speeds up!

Special Thanks 
to Sameer 
Shende, 

WDMapp Team



Pantheon and E4S support end-to-end ECP examples

LA-UR-20-27327 9/25/20Los Alamos National Laboratory 26

Overview: The Exascale Computing Project (ECP) is a complex undertaking, 
involving a myriad of technologies working together. An outstanding need is a 
way to capture, curate, communicate and validate workflows that cross all of 
these boundaries.

The Pantheon and E4S projects are collaborating to advance the integration and 
testing of capabilities, and to promote understanding of the complex workflows 
required by the ECP project. Utilizing a host of ECP technologies (spack, Ascent, 
Cinema, among others), this collaboration brings curated workflows to the 
fingertips of ECP researchers.

Contributions
- Curated end-to-end application/in-situ analysis examples can be run quickly by 

anyone on Summit. (https://github.com/pantheonscience/ECP-E4S-Examples)

- Pantheon/E4S integration speeds up build/setup times over source builds due 
to cached binaries (approx.10x speed up).

Instructions page for (top) Nyx, Ascent and 
Cinema workflow repository, and (bottom) 
Cloverleaf3d, Ascent, Cinema workflow. 
These curated workflows use Pantheon, 
E4S and spack to provide curated 
workflows for ECP.

Special Thanks 
to David Rogers, 

Jim Ahrens, 
Sameer Shende

https://github.com/pantheonscience/ECP-E4S-Examples


27

E4S Summary

What E4S is
• Extensible, open architecture software ecosystem 

accepting contributions from US and international teams.

• Framework for collaborative open-source product 
integration.

• A full collection if compatible software capabilities and

• A manifest of a la carte selectable software capabilities.

• Vehicle for delivering high-quality reusable software 
products in collaboration with others.  

• The conduit for future leading edge HPC software 
targeting scalable next-generation computing platforms.

• A hierarchical software framework to enhance (via SDKs) 
software interoperability and quality expectations.

What E4S is not

• A closed system taking contributions only from DOE 
software development teams.

• A monolithic, take-it-or-leave-it software behemoth.

• A commercial product.

• A simple packaging of existing software.



The Second Extreme-scale Scientific Software Stack Forum (E4S Forum)
September 24th, 2020, Workshop at EuroMPI/USA'20 

• E4S: The Extreme-scale Scientific Software Stack for Collaborative Open Source Software, 
Michael Heroux, Sandia National Laboratories 

• Title: Practical Performance Portability at CSCS, Ben Cumming, CSCS 

• Title: An Overview of High Performance Computing and Computational Fluid Dynamics at NASA, Eric Nielsen, NASA Langley
• Towards An Integrated and Resource-Aware Software Stack for the EU Exascale Systems, Martin Schulz, Technische Universität München 
• Spack and E4S, Todd Gamblin, LLNL 

• Rocks and Hard Places – Deploying E4S at Supercomputing Facilities, Ryan Adamson, Oak Ridge Leadership Computing Facility 
• Advances in, and Opportunities for, LLVM for Exascale, Hal Finkel, Argonne National Laboratory 
• Kokkos: Building an Open Source Community, Christian Trott, SNL

• Experiences in Designing, Developing, Packaging, and Deploying the MVAPICH2 Libraries in Spack, Hari Subramoni, Ohio State University 
• Software Needs for Frontera and the NSF Leadership Class Computing Facility – the Extreme Software Stack at the Texas Advanced 

Computing Center, Dan Stanzione, TACC 

• Building an effective ecosystem of math libraries for exascale, Ulrike Yang
• Towards Containerized HPC Applications at Exascale, Andrew Younge, Sandia 

• E4S Overview and Demo, Sameer Shende, University of Oregon 
• The Supercomputer “Fugaku” and Software, programming models and tools, Mitsuhisa Sato, RIKEN Center for Computational Science (R-

CCS), Japan

- Presenters from 11 
institutions, 6 non-DOE

- 70 participants
- DOE Labs, NASA
- AMD
- HLRS, CSCS



Vision for E4S Now and in the Future

• E4S has emerged as a new top-level component in the DOE HPC 
community, enabling fundamentally new relationships

• E4S has similar potential for new interactions with other US agencies, 
US industry and international collaborators.  NSF and UK are examples

• The E4S portfolio can expand to include new domains (ML/AI), 
lower—level components (OS), and more.

• E4S can provide better (increased quality), faster (timely delivery of 
leading edge capabilities) and cheaper (assisting product teams)



30

E4S/SDK Summary

• E4S/SDK Software: Curated release of complete production-quality HPC Linux software stack:
– Latest ECP-developed features for 50+ products.
– Ported and validated regularly on all common and emerging HPC platforms.
– Single DocPortal access to all product documentation.
– Collaborative development communities around SDKs to build culture of quality.
– Policies for SW and user experience quality.
– Containers, build caches for (dramatic) reduction in build time and complexity.

• E4S: A new member of the HPC ecosystem:
– A managed portfolio of HPC software teams and products.
– Enabling first-of-a-kind collaboration: vendors, facilities, US agencies, industry and internationally.
– Extensible to new domains: AI/ML.
– A new way of delivering reusable HPC software with ever-improving quality and functionality.

https://e4s.io



31

Next

• Rajeev Thakur will highlight progress in programming models, highlighting efforts in MPICH, 
Kokkos, RAJA

• Jeff Vetter will describe efforts to integrate ECP ST work into the LLVM ecosystem



Programming Models and 
Performance Portability

Rajeev Thakur
Argonne National Laboratory

September 25, 2020



33

DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/TBD

ANL
Intel/HPC

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel  Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

NERSC-9Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

Sierra

FY 2023FY 2022

Exascale 
Systems

To date, only NVIDIA GPUs GPUs from three different vendors



34

Trends in Internode Programming

• Individual compute nodes are becoming very powerful because of accelerators

• As a result, fewer total number of nodes are needed

• MPI will continue to serve as the main internode programming model

• Nonetheless, improvements are needed in the MPI Standard and in MPI implementations
– Hybrid programming (integration with GPUs & GPU memory and with the node programming model)
– Scalability, low-latency communication, optimized collective algorithms 
– Overall resilience and robustness
– Optimized support for exascale interconnects and lower-level communication paradigms (OFI, UCX)
– Scalable process startup and management

• PGAS models (e.g., UPC++) are also available to be used by applications that rely on them, and 
they face similar challenges as MPI on exascale systems



35

Trends in Intranode Programming

• Main challenge for exascale is in achieving performance and portability for intranode programming

• Vendor-supported options for GPUs
– NVIDIA: CUDA, OpenACC
– Intel: SYCL/DPC++ (C++ abstractions on top of OpenCL)
– AMD: HIP (similar to CUDA)

• OpenMP (portable standard)
– Supports accelerators via the target directive (since OpenMP version 4.0, July 2013)
– Subsequent releases of OpenMP (4.5 and 5.0) have further improved support for accelerators
– Supported by vendors on all platforms

• Kokkos and RAJA (developed at SNL and LLNL)
– Portable, heterogenous-node programming via C++ abstractions
– Support complex node architectures with multiple types of execution resources and multilevel memories
– Many ECP applications use Kokkos and RAJA to write portable code for a variety of CPUs and GPUs



Application project Code Main language GPU programming model
ExaStar FLASH Fortran OpenMP
ExaStar CASTRO Fortran, C++ OpenMP, OpenACC
EQSIM SW4 C++ RAJA
ExaSky HACC C++ CUDA, OpenCL
ExaSky CRK-HACC C++ CUDA, OpenCL
ExaSky Nyx C++ AMReX
Subsurface Chombo-Crunch C++ PROTO, UPC++
Subsurface GEOSX C++ RAJA
E3SM-MMF E3SM Fortran OpenACC, moving to OpenMP
Combustion-PELE PeleC Fortran CUDA, OpenACC
Combustion-PELE PeleLM Fortran CUDA, OpenACC
WarpX WarpX + PICSAR C++ AMReX abstractions
ExaSMR Nek5000 Fortran OpenACC
ExaSMR NekRS Fortran libParanumal (OCCA)
ExaSMR OpenMC C++ OpenMP, OpenCL or SYCL
ExaSMR Shift C++ CUDA
WDMApp GENE Fortran OpenMP
WDMApp GEM Fortran OpenACC
WDMApp XGC Fortran OpenMP, OpenACC
MFIX-Exa MFIX-Exa C++ AMReX abstractions
ExaWind Nalu-Wind C++ Kokkos
ExaWind OpenFAST Fortran 90 N/A

Intranode Programming Models being used in ECP Application Codes (1)

ECP Application Development Milestone Report, Appendix A, March 2020

https://www.exascaleproject.org/ecp-application-development-milestone-report-is-released/


ExaBiome MetaHipMer C++ UPC++
ExaBiome GOTTCHA C++ OpenMP, HIP, SYCL
ExaBiome HipMCL C++ OpenMP, HIP, SYCL
ExaFEL M-TIP C++ CUDA, HIP, OpenCL
ExaFEL PSANA C++ Legion
CANDLE CANDLE Python TensorFlow, PyTorch
ExaSGD GridPACK C++
ExaSGD PIPS C++ RAJA or Kokkos
ExaSGD StructJuMP Julia
QMCPACK QMCPACK C++ OpenMP
ExaAM MEUMAPPS-SS Fortran OpenMP, OpenACC
ExaAM ExaConstit C++ MFEM
ExaAM TruchasPBF Fortran AMReX
ExaAM Diablo Fortran OpenMP
ExaAM ExaCA C++ Kokkos
NWChemEx NWChemEx C++ CUDA, Kokkos
LatticeQCD Chroma C++ Kokkos
LatticeQCD CPS C++ GRID library
LatticeQCD MILC C GRID library
GAMESS GAMESS Fortran libcchem, libaccint
GAMESS libcchem C++ libaccint
EXAALT ParSplice C++ N/A
EXAALT LAMMPS C++ Kokkos
EXAALT SNAP C++ Kokkos

Intranode Programming Models being used in ECP Application Codes (2)

ECP Application Development Milestone Report, Appendix A, March 2020

https://www.exascaleproject.org/ecp-application-development-milestone-report-is-released/


38

ECP Programming Models and Runtimes Portfolio

Project Short Name PI Name, Inst Short Description/Objective

PMR SDK Shende, UOregon Support the deployment, testing and usage of PMR products

Exascale MPI Balaji, ANL Enhancement of the MPI Standard and the MPICH implementation 
of MPI for exascale

Legion McCormick, LANL Task-based programming model 

PaRSEC Dongarra, UTK Task-based programming model

UPC++/GASNet Hargrove, LBNL Partitioned Global Address Space (PGAS) programming model

SICM Lang, LANL Interface and library for accessing complex memory hierarchy

OMPI-X Bernholdt, ORNL Enhancement of the MPI Standard and the Open MPI 
implementation for exascale

Kokkos / RAJA Trott, SNL C++ abstractions for node-level performance portability

Argo Beckman, ANL Low-level resource management for the operating system and 
runtime

*OpenMP (SOLLVE) project moved to Development Tools area to keep all LLVM-related efforts in one area.



39

Kokkos and RAJA

• C++ performance portability abstractions developed at Sandia and Livermore labs

• Primarily funded by NNSA

• ECP ST provides additional funding to develop optimized backends for Aurora and Frontier 
(OpenMP, SYCL/DPC++, HIP) and for outreach to ECP applications

• Organized as one project in ECP ST. The two teams collaborate on common features, C++ and 
backend support, and outreach activities

• The combined project involves six labs: SNL, LLNL, ANL, LANL, LBNL, and ORNL
– PI: Christian Trott (SNL); Co-PIs: Rich Hornung (LLNL), Hal Finkel (ANL), Galen Shipman (LANL), Jack 

Deslippe (LBNL), Damien Lebrun-Grandie (ORNL)



40

• Kokkos provides a production-quality solution for C++ performance portability
– Kokkos Core: C++ template-based library for the programming model
– Kokkos Tools: Profiling, debugging and tuning tools that connect into Kokkos Core
– Kokkos Kernels: Math libraries based on Kokkos Core

• Distributed development team: SNL, ORNL, ANL, LBNL, and LANL

• Long-term goal is alignment and extension of the ISO C++ standard
– Fundamental capabilities from Kokkos are proposed for the C++ standard

• Kokkos is currently used on most DOE and many European production HPC systems
– Numerous applications use Kokkos to run on Sierra, Summit, Astra, Trinity, Theta, PizDaint, and others

• Extensively used across ECP AD and ST projects
– Exawind, EXAALT, WDMApp, ExaAM, SNL and LANL ATDM apps, ExaGraph, CoPA, ALExa (ArborX and 

DTK), Kokkos Kernels, Trilinos, FleCSI, …

• Numerous workshops and training events
– Now available “The Kokkos Lectures”: 15 hours of recorded lectures https://kokkos.link/the-lectures. 

Kokkos: Preparation for Exascale Platforms

https://kokkos.link/the-lectures


41

Kokkos: SPARTA – An Example of Production Runs
• Stochastic PArallel Rarefied-gas Time-accurate Analyzer 

• A direct simulation Monte Carlo code

• Developers: Steve Plimpton, Stan Moore, Michael Gallis

• Only application to have run on all of Trinity

• Benchmarked on 16K GPUs on Sierra
0

100

200

300

400

500

4 8 16 32 64 128 256

Pe
rf

or
m

an
ce

 p
er

 
N

od
e/

G
PU

SPARTA Weak Scaling

Haswell KNL V100
Exascale Support Status
• HIP support in Kokkos 3.2 for AMD GPUs 

– Currently missing hierarchical parallelism and tasking due to compiler bug
– Some apps already running (ArborX, some LAMMPS runs, ...)  

• OpenMP Target support for Intel GPUs in Kokkos 3.2
– Some MiniApps are already running

• Expect most functionality will be available for HIP and OpenMP in Kokkos 3.3 in Nov 2020

• SYCL/DPC++ port in progress. Encountered compiler/runtime bugs, which are getting fixed.



42

RAJA: Preparation for Exascale Platforms

• A suite of performance-portability tools developed at LLNL
– RAJA (C++ kernel execution abstractions); CHAI (C++ array abstractions); Umpire (memory management) 

• Used in a diverse set of ECP and LLNL mission applications and support libraries
– Supports majority of production LLNL weapons program apps and apps in other LLNL programs
– ECP: SW4 (EQSIM), GEOSX (Subsurface), MFEM (CEED), ExaSGD, SUNDIALS, DevilRay (Alpine)

• Exascale platform support
– Full support for HIP back-end in public releases since January 2020. Key part of El Capitan CoE activities.
– SYCL back-end in progress, including SW4 & RAJA Performance Suite running on pre-Aurora systems now

• ECP applications have demonstrated substantial GPU node (Sierra) vs. CTS-1 node speedups
– SW4: 28X speedup on Sierra node (4 NVIDIA Volta GPUs) vs. CTS-1 CPU-only node (36 core Intel Xeon).

• Hayward fault earthquake simulation of unprecedented resolution (26B grid points) runs in 10.3 hours on 256 nodes of 
Sierra (6% of machine). Same problem (grid size, run time) requires 8196 nodes of Cori-II (85% of machine)

– GEOSX: 14X speedup on Sierra node vs. CTS-1 CPU-only node for explicit time integration solid 
mechanics model needed for ECP challenge problem



43

Exascale MPI (MPICH)
• PI: Pavan Balaji (ANL)
• MPICH has been a key influencer in the adoption of MPI

– First or most comprehensive implementation of each new 
version of the MPI standard

– Allows supercomputing centers to not compromise on what 
features they demand from vendors

• R&D 100 Award in 2005
• MPICH and its derivatives are the world’s most widely used MPI 

implementations on large-scale supercomputers
• MPICH will be the primary MPI implementation on Aurora,

Frontier, and El Capitan (via Intel MPI and Cray MPI) MPICH

Intel 
MPI

Sunway
MPI

Cray 
MPI

Microsoft 
MPI

MVAPICH

Tianhe
MPI

MPE

PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

ParaStation
MPI

FG-
MPI

RIKEN 
MPI

MPICH Users

MPICH is not just a software
It’s an Ecosystem

Ongoing activities (September 2020)
• MPI Forum and standardization efforts
• Addressing ECP application-specific issues
• Efficient and transparent support for GPUs from multiple 

vendors (Intel, AMD, NVIDIA)
• New library for efficient noncontiguous data communication 

(MPI derived datatypes)
https://www.mpich.org/
https://github.com/pmodels/mpich

https://www.mpich.org/
https://github.com/pmodels/mpich


44

ECP Application Interactions, MPI Standardization
Activities, and Vendor Collaboration

Standardization Efforts for MPI-4.0
• Leading the Hybrid Working Group
• Participating in other Working Groups

• Point-to-point Communication
• Fault Tolerance
• Remote Memory Access
• Hardware-Topologies
• I/O

Vendor Collaborations
• Weekly telecon for project updates
• Deep dives with individual teams to discuss 

development priorities and plans
• Hackathons: Week-long accelerated development 

for priority topics

HACC

GAMESS

QMCPACK

Nek5000

NWChemEx

CANDLE

Fault 
Tolerance

MPI + X Hybrid 
Programming

Heterogeneity

Heterogeneity

Heterogeneity

Topology 
Awareness

Performance 
& Scalability

Performance 
& Scalability

Performance 
& Scalability

ECP 
ApplicationsMPI + X Hybrid 

Programming

Performance 
& Scalability

Interactions with ECP Applications
• Improvement on Key Technologies for ECP Applications
• Collaboration on Evaluation of Prototypes



45

GPU Support in MPICH

CH4

MPI Layer

CH4 Core

Netmods

OFI UCX

Shmmods
POSIX XPMEM

Architecture-
specific Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-
independent 
Collectives

Derived Datatype 
Management (Yaksa)

Group 
Management

GPU Support
Fallback

GPU IPC

Yaksa Datatype Engine

Vector

Indexed

Struct

MPI Datatypes

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

0

2

4

6

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M

Ti
m

e 
(m

se
c)

Number of integers in the Z 
dimension

Yaksa H2H Yaksa D2D

Preliminary results for pack/unpack
noncontiguous datatype GPU buffers to
leverage high GPU memory bandwidth.

• Communication using GPU buffers
– Support native RDMA on GPU buffers

through Libfabric (OFI) and UCX
– Fallback for the case where RDMA is not

available with GPU
– Support GPU intranode communication

through GPU IPC
– Datatype handling with GPU buffers

• Supporting noncontiguous datatypes with
GPU
– Yaksa: A high performance datatype engine
– Multiple backends provide datatype support

for CPUs and GPUs from different vendors

The GPU support in MPICH is developed in close collaboration
with vendors (AMD, Cray, Intel, Mellanox, NVIDIA).

https://github.com/pmodels/yaksa

https://github.com/pmodels/yaksa


46

Lock Optimization

• Replace global lock with per-
object locks

• Reduce lock scope

Improvements to MPI + Threads Support

wait
Critical sections

start complete

Global Locks

Critical sections

start complete

Granular Locks

Argobots Integration

• MPICH works with Argobots, a 
lightweight high-performance user-
level thread library.

• Increased opportunities for 
computation and communication 
overlapping

• Reduced thread synchronization

Virtual Communication Interface (VCI)

• VCIs are independent sets of communication resources in MPICH. They can be
mapped to network hardware contexts.

• Having multiple VCIs allows the communication from different threads to be handled
by different MPI resources, therefore reducing contention in the MPI library.

• It also allows multithreaded MPI applications to fully utilize network hardware contexts
• With reduce contention and full utilization of network hardware, MPI+Threads can

achieve a performance close to MPI-only application which leads to significant
improvement on strong scaling performance of MPI+Threads applications

0

10

20

30

40

50

60

70

1 2 4 8 16

M
es

sa
ge

 R
at

e 
(1

06
/s

ec
)

Number of Threads

MPICH Message Rate (Msg Size=8B)

MPI Everywhere MPI+Threads (global)

MPI+Threads (VCI)

MPI Library

Network Interface Card

VCI

CTX CTX CTXCTX CTX

MPI Process

C1 C2 C3 C4 C5

MPI + Threads

MPI Library

Network Interface Card

VCI VCI VCIVCI VCI

CTX CTX CTXCTX CTX

MPI Process

C1 C2 C3 C4 C5

MPI + Threads with VCI
VCI

T
X
Q

R
X
Q

C
Q



47

Brief updates on other PMR Projects



48

PMR Software Development Kit (SDK)

• PI: Sameer Shende (UOregon)

• Developed draft set of community policies for PMR projects

• Integrated and released PMR products in a containerized distribution with support for GPUs 
(ROCm 3.x and CUDA 10.1). Available for download from https://e4s.io or DockerHub for Linux 
x86_64 and ppc64le.

• E4S Spack build cache for bare-metal installation has over 20,000 binaries 
[http://oaciss.uoregon.edu/e4s/inventory.html] with support for the latest release of Spack. E4S is 
used for Spack pull request (PR) merge validation testing [cdash.spack.io].

• E4S validation testing [https://github.com/E4S-Project/testsuite] planned for early access systems 
and includes LLVM support for Shasta Testing Project (STP)

• Examples of E4S build cache being used in ECP applications:
– WDMapp: https://wdmapp.readthedocs.io/en/latest/machines/rhea.html
– Pantheon: http://pantheonscience.org/projects/e4s

•

https://e4s.io/
http://oaciss.uoregon.edu/e4s/inventory.html
http://cdash.spack.io/
https://github.com/E4S-Project/testsuite
https://wdmapp.readthedocs.io/en/latest/machines/rhea.html
http://pantheonscience.org/projects/e4s


49

Open MPI (OMPI-X)

• PI: David Bernholdt (ORNL); Co-PIs: Howard Pritchard (LANL), Ignacio Laguna (LLNL), 
Ron Brightwell (SNL), George Bosilca (UTK)

• Enhance the MPI Standard and the Open MPI implementation for exascale
• Open MPI (via IBM Spectrum MPI) is the default implementation on Summit and Sierra

• Two new features championed by the group have been officially accepted for the 
upcoming MPI-4 Standard 
– Partitioned point-to-point communication 
– MPI sessions

• These features are already available in Open MPI for ECP teams to try out



50

Legion & FlexFlow
• Task-based programming model
– PI: Pat McCormick (LANL); Co-PIs: Alex Aiken (Stanford), 

Pavan Balaji (ANL)
– Used in ExaFEL, S3D, CANDLE, NNSA PSAAP II & III, ...
– Ports to exascale architectures in progress

• FlexFlow is a distributed deep learning framework 
– Built on Legion
– Exploits Legion’s first-class data partitioning & distributed 

execution
– Secret sauce: Automatic search to find a high-performance 

partitioning
– Dramatically improves locality and scalability
– Reduces CANDLE run times from days to hours
– Portability interfaces for Keras and PyTorch in progress

1 G38
(1 noGe)

3 G38s
(1 noGe)

6 G38s
(1 noGe)

12 G38s
(2 noGes)

24 G38s
(4 noGes)

48 G38s
(8 noGes)

96 G38s
(16 noGes)

192 G38s
(32 noGes)

384 G38s
(64 noGes)

768 G38s
(128 noGes)

1uPEeU of G38s

0

10

20

30

40

3e
U-

(p
oc

h 
7U

ai
ni

ng
 7

iP
e 

(h
ou

Us
)

27.4

17.9
19.7

25.4

8.8

6.0
4.5

3.4 2.9 2.3 1.9 1.5 1.2

7ensoU)low
)lex)low

The FlexFlow system is based on Legion and, in 
comparison to Google’s TensorFlow, can scale to 768 
GPUs and reduces the per-epoch training time from 
18 hours to 1.2 hours for CANDLE’s Uno benchmark.



51

Argo
• PI: Pete Beckman (ANL); Co-PIs: Tapasya Patki and Maya Gokhale (LLNL)

• Deep Memory: Enable applications to improve usage of new memory types
– AML: Application-aware management of deep memory systems

• New: Enhanced memory topology API for complex multi-CPU, multi-GPU exascale nodes; ongoing integration effort with OpenMC

– UMap: User-level mapping of NVRAM/SSD into the memory hierarchy
• New: UMap handler can access memory from other nodes, e.g., a dedicated memory server or data producer nodes

• Power Management: Dynamically manage power to improve energy usage and performance
– PowerStack: Global management through power-aware job scheduling

• New: Variorum + GEOPM integration, initial power management support for Kokkos tools

– NRM: Node-level power management  infrastructure
• New: ML-based power management controller

• Co-Design: Working with vendors, improve interfaces to exploit new hardware capabilities in HPC and ML

• Platform Readiness
– NRM runs on Theta; UMap runs on Sierra, AMD systems; PowerStack is deployed in TOSS; ongoing work on using 

ECP-CI to test AML on Theta and Summit



52

Pagoda (UPC++, GASNet-EX)

• PI: Paul Hargrove (LBNL) 

• GASNet-EX: Portable high-performance networking layer for PGAS runtimes
• UPC++: C++ template library providing asynchronous one-sided RMA and RPC for rapid 

development of PGAS applications, implemented using GASNet-EX

• ECP use cases: ExaBiome, ExaGraph, NWChemEx, Legion

• Recent Activities
– Semi-annual software releases of UPC++, GASNet-EX
– Optimizations for GPUs in progress (efficient GPU-GPU 

memory transfers)
– ECP training event for UPC++ in May
– SC20 tutorial accepted

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Cori-I Cori-II Summit Gomez

R
M

A 
O

pe
ra

tio
n 

La
te

nc
y 

(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)

D
O

W
N

 IS
 G

O
O

D



2.3.2 Development Tools (and 
Compilers)

Jeffrey Vetter, Oak Ridge National Laboratory

ASCAC Meeting
25 Sep 2020 



54

WBS 2.3.2 Development Tools: Context for the portfolio
Vision Enable exascale computing by providing architecture-ready compilers and programming tools
Challenges Complex and heterogeneous node architectures with immature software systems; exact 

system architectures not known until early systems arrive; diverse application requirements
Mission Develop compilers and programming tools that enable applications teams to achieve high 

performance while providing basic portability across diverse exascale architectures
Objective Produce production-ready compilers and programming tools, tuned for application needs, 

deployed at facilities via vendors or as part of SDK
Starting  Point Existing heterogeneous architecture programming models including CUDA, OpenACC, 

OpenMP, OpenCL, and various research efforts
Portfolio Goals Compilers Provide OpenMP, OpenACC, Fortran, and other architectural specific 

capabilities via the LLVM ecosystem

Prog Tools Deliver development tools for performance and correctness: TAU, HPCToolkit, 
PAPI, Autotuning, 

Memory Deliver libraries that provide portable abstractions for managing deep memory 
hierarchies including nonvolatile memory like Optane DIMMs.



55

2.3.2 Development Tools Portfolio
Project Short 
Name PI Name, Inst Short Description/Objective

SDK Miller, UW Madison SDK: System-facing delivery of software products, APIs, and vendor 
integration

EXAPAPI Dongarra, UTK EXAPAPI: The Exascale Performance Application Programming 
Interface

HPCToolkit Mellor-Crummy, Rice Extending HPCToolkit to Measure and Analyze Code Performance 
on Exascale Platforms

PROTEAS-
TUNE Vetter, ORNL PROTEAS-TUNE: Programming, Autotuning, and Optimization 

Toolchain for Emerging Architectures and Systems

SOLLVE Chapman, Stony 
Brook/BNL

SOLLVE: OpenMP for LLVM

Flang McCormick, LANL Flang: Fortran for LLVM

Picture

Tau HPCToolkit



Development Tools: LLVM 
Ecosystem

Deep Dive



57

LLVM is an infrastructure for creating compilers
l Features: LLVM has become well known for an 

important set of features:

l LLVM is a liberally-licensed(*) infrastructure for 
creating compilers, other toolchain components, and 
JIT compilation engines.

l A modular, well-defined IR allows use by a lot of 
different languages (C, C++, Fortran, Julia, Rust, 
Python (e.g., via Numba), Swift, ML frameworks (e.g., 
TensorFlow/XLA, PyTorch/Glow), and many others.

l A backend infrastructure allowing the efficient creation 
of backends for new (heterogeneous) hardware.

l A state-of-the-art C++ frontend, CUDA support, 
scalable LTO, sanitizers and other debugging 
capabilities, and more.

l High code-quality community standards and review 
process

https://llvm.org/

Slide courtesy of Hal Finkel

https://llvm.org/


58

Next week’s LLVM Dev Meeting Brings Together (virtually) over 
500+ Developers from around the World including ECP Staff

• The Present and Future of Interprocedural Optimization in LLVM - J. 
Doerfert; B. Homerding; ...   

• Proposal for A Framework for More Effective Loop Optimizations - M. 
Kruse; H. Finkel

• Changing Everything With Clang Plugins: A Story About Syntax 
Extensions, Clang’s AST, and Quantum Computing = H. Finkel; A. 
Mccaskey

• (OpenMP) Parallelism-Aware Optimizations - J. Doerfert; S. Stipanovic; 
H. Mosquera; J. Chesterfield; G. Georgakoudis; J. Huber

• A Deep Dive into the Interprocedural Optimization Infrastructure - J. 
Doerfert; B. Homerding; S. Baziotis; S. Stipanovic; H. Ueno; K. Dinel; 
S. Okumura; L. Chen

• From Implicit Pass Dependencies to Effectiveness Prediction - H. 
Ueno; J. Doerfert; E. Park; G. Georgakoudis; T. Jayatilaka; S. 
Badruswamy

• OpenACC support in Flang with a MLIR dialect - V. Clement; J. Vetter

• Flang Update - S. Scalpone

• Code Feature Analysis, Tracking, and Future Usage - T. Jayatilaka; J. 
Doerfert; G. Georgakoudis; E. Park; H. Ueno; S. Badruswamy

• Loop Optimization BoF - M. Kruse; K. Barton

https://llvm.org/devmtg/2020-09/

https://llvm.org/devmtg/2020-09/


59

ECP is Improving the LLVM Compiler Ecosystem

LLVM

• Very popular 
open source 
compiler 
infrastructure

• Easily extensible
• Widely used and 

contributed to in 
industry

• Permissive license
• Used for 

heterogeneous 
computing

+SOLLVE

• Enhancing the 
implementation 
of OpenMP in 
LLVM

• Unified memory
• OMP 

Optimizations
• Prototype OMP 

features for LLVM
• OMP test suite
• Tracking OMP 

implementation 
quality

+PROTEAS-
TUNE

• Core optimization 
improvements to 
LLVM

• OpenACC
capability for 
LLVM
• Clacc
• Flacc

• Autotuning for 
OpenACC and 
OpenMP in LLVM

• Integration with 
Tau performance 
tools

+FLANG

• Developing an 
open-source, 
production 
Fortran frontend 

• Upstream to 
LLVM public 
release

• Support for 
OpenMP and 
OpenACC

• Recently 
approved by 
LLVM

+HPCToolkit

• Improvements to 
OpenMP profiling 
interface OMPT

• OMPT 
specification 
improvements

• Refine HPCT for 
OMPT 
improvements

+ATDM

• Enhancing LLVM 
to optimize 
template 
expansion for 
FlexCSI, Kokkos, 
RAJA, etc.

• Flang testing and 
evaluation

Vendors

• Increasing 
dependence on 
LLVM

• Collaborations 
with many 
vendors using 
LLVM
• AMD
• ARM
• Cray
• HPE
• IBM
• Intel
• NVIDIA

Active involvement with broad LLVM community: LLVM Dev, EuroLLVM



60

Leveraging LLVM Ecosystem 
to Meet a Critical ECP (community) need : FORTRAN

• Fortran support continues to be an 
ongoing requirement

• Flang project started in NNSA funding 
NVIDIA/PGI to open source compiler front-
end into LLVM ecosystem

• SOLLVE is improving OpenMP dialect, 
implementation, and core optimizations

• PROTEAS-TUNE is creating OpenACC
dialect and improving MLIR

• ECP projects are contributing many 
changes upstream to LLVM core, MLIR, etc

• Many others are contributing: backends for 
processors, optimizations in toolchain, …
– Google contributed MLIR

ECP Projects: Flang, SOLLVE, PROTEAS-TUNE
Many other contributors: NNSA, NVIDIA, ARM, Google, …



61

PROTEAS-TUNE: Clacc – OpenACC in Clang/LLVM

• Develop production-quality, standard-conforming 
traditional OpenACC compiler and runtime support by 
extending Clang and LLVM
– Build on existing OpenMP infrastructure

• Enable research and development of source-level 
OpenACC tools
– Design compiler to leverage Clang/LLVM ecosystem 

extensibility
– E.g., Pretty printers, analyzers, lint tools, and debugger and 

editor extensions

• Actively contribute improvements to the OpenACC
specification

• Actively contribute upstream all Clang and LLVM 
improvements that are mutually beneficial
– Many contributions are already in LLVM

• Open-source with multiple collaborators (vendors, 
universities)

Clacc: Translating OpenACC to OpenMP in Clang, Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter, 2018 IEEE/ACM 5th Workshop on the LLVM 
Compiler Infrastructure in HPC (LLVM-HPC), Dallas, TX, USA, (2018).

2.3.2.10 PROTEAS-TUNE

POC Joel Denny, ORNL



62

2.3.2.11 SOLLVE

POC Michael Kruse, ANL



63

ECP LLVM Integration and Deployment

• Develop an integrated ECP LLVM distribution
– Integrating different ECP projects using LLVM
– CI on target architectures
– Shared vehicle for improvements in LLVM
– Increased collaboration within ECP

• Operations
– ECP LLVM distro will be closely maintained fork 

of LLVM mono repo
– Multiple branches of individual ECP projects will 

exist at git branches
– Branches will be integrated into ECP LLVM

• Periodic upstreaming and patching of LLVM 
monorepo

https://github.com/llvm-doe-org/llvm-project

https://github.com/llvm-doe-org/llvm-project


64

Questions?



Bonus Slides



66

PROTEAS/Kokkos

• Performance profiling of Kokkos
applications

• Tau and Kokkos team 
collaborating on initial interface to 
allow transparent performance 
profiling

• Impact on application 
performance and user 
productivity

ExaPAPI/NWChemEx Flang//LLVM Community

• Developing an open source, 
production quality Fortran front-
end for LLVM

• Work in progress for several 
years including rewriting major 
portions of front-end in order to 
merge successfully with LLVM 
design and standards

• Received approval from LLVM 
leadership for upstreaming of 
final Flang implementation 

Example Integration Activities

• Co-design a prototype 
implementation of a PAPI 
component for NWChemEx-
related software-defined events 
(SDE).

• Development of a proof-of-
concept PAPI component that 
supports the performance metrics 
the NWChemEx team requires



67

6
7

Scope and objectives
• Monitor the costs of data movement.
• Identify latency and bandwidth bound code regions and 

quantify data movement associated with individual 
variables.

• Support accurate, low-overhead measurement of a broad 
range of parallel applications.

Project accomplishment
• Added a feature in HPCToolkit to monitor both dynamic 

allocation of memory and static variables in a load module 
or executable.

• Added a feature in the HPCToolkit user interface to 
present the cost of data movement for important 
variables.

Impact
• HPCToolkit is installed on many DOE systems.
• HPCToolkit supports low overhead measurement and 

analysis of performance for a wide range of applications.
• Application, library and tool developers can use 

HPCToolkit to analyze the performance of their software.

Pinpoint and quantify data movement

HPCToolkit: Analysis of Data Movement
2.3.2.08 Enhancing HPCToolkit

PI J. Mellor-Crummey, Rice.

Members Rice., U. of Wisconsin-
Madison

HPCToolkit’s Github at https://github.com/HPCToolkit/hpctoolkit/tree/datacentric

HPCToolkit utilizes the 
additional information from 
Intel PEBS and IBM Marked 
events to directly measure 
memory access latency to 
both variables and 
instructions.

Type to enter a caption.

https://github.com/HPCToolkit/hpctoolkit/tree/datacentric


68

PaRSEC
•PIs: Jack Dongarra and George Bosilca (UTK)
• Data-centric programming environment based on asynchronous tasks executing on a 

heterogeneous distributed environment 

• ECP use cases: SLATE, NWChemEx, GAMESS

• Recent Activities
– Redesigning the communication infrastructure to support one-sided communication
– New Domain Specific Languages targeting developer productivity and facilitating the 

expression of parallel/distributed algorithmic constructs (including collective behaviors)
– Initial support for ARM processors (atomic operations, gather/scatter, SVE)
– Improved interoperability with DPLASMA, ScaLAPACK, and SLATE

• Automatic support for heterogeneous environments
– Heterogeneous-memory-aware algorithms and integration with MPQC (NWChemEx)
– Large scale performance evaluation on all pre Exascale platforms



69

Simplified Interface to Complex Memory (SICM)

• PI: Mike Lang (LANL); Co-PIs: Terry Jones (ORNL), Maya Gokhale (LANL), Michael 
Jantz (UTK), Frank Mueller (NC State)

• Portable low-level interface targeting Intel KNL, IBM Power9+Volta, Intel Optane DC 
PMM, Frontier, and Aurora

• High-level interface that makes reasonable decisions for applications 

• Meta allocator for persistent memory focusing on graph applications
• ECP use cases: SOLLVE (OpenMP), OMPI-X, Umpire, Kokkos, NaluWind, Trilinos

• Recent Activities
– Integration as an allocator in CLANG/OpenMP
– Integration into Kokkos
– Integration into NaluWind



70

Concluding Remarks

• ECP Programming Models and Runtimes projects are actively working on performance tuning for 
exascale platforms and working closely with applications, vendors, and facilities

• There isn’t one single intranode programming model for meeting the performance portability needs 
of applications

• Instead, a variety of models are available, and applications are using them

• At the end of ECP, we will have a lot of useful data on what works well (and what doesn’t), which will 
help achieve convergence


