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“AI won’t replace the scientist, but 
scientists who use AI will replace  

those who don’t.” 

 

Adapted from a Microsoft report, “The Future 
Computed” 
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Executive Summary 

Introduction 

In February 2019, the President signed Executive Order 13859, Maintaining American Leadership 
in Artificial Intelligence [1]. This order launched the American Artificial Intelligence Initiative, a 
concerted effort to promote and protect AI technology and innovation in the United States. The 
Initiative implements a government-wide strategy in collaboration and engagement with the 
private sector, academia, the public, and like-minded international partners.  

Among other actions, key directives in the Initiative called for Federal agencies to: 

• Prioritize AI research and development investments,  
• Enhance access to high-quality cyberinfrastructure and data, 
• Ensure that the US maintains an international leadership role in the development of 

technical standards for AI, and  
• Provide education and training opportunities to prepare the American workforce for the 

new era of AI.  

The mission of the Department of Energy (DOE) is to ensure America’s security and prosperity by 
addressing its energy, environmental, and nuclear challenges through transformative science 
and technology solutions. In terms of Science and Innovation, the DOE’s mission is to maintain a 
vibrant US effort in science and engineering as a cornerstone of our economic prosperity with 
clear leadership in strategic areas.  

From July to October in 2019, the Argonne, Oak Ridge, and Berkeley National Laboratories hosted 
a series of four AI for Science Town Hall meetings in Chicago, Oak Ridge, Berkeley, and 
Washington DC. The four meetings were attended by over 1300 scientists from the 17 DOE Labs, 
39 companies, and over 90 universities. The goal of the Town Hall series was ‘to examine scientific 
opportunities in the areas of artificial intelligence, Big Data, and high-performance computing 
(HPC) in the next decade, and to capture the big ideas, grand challenges, and next steps to 
realizing these.’  The discussions at the meetings were captured in the final report of the AI for 
Science Town Hall meetings [2]. 

In response to a charge letter from the DOE’s Office of Science (SC), the Advanced Scientific 
Computing Research (ASCR) program asked its Advisory Committee (ASCAC) to establish a 
subcommittee to explore the scientific opportunities and challenges arising from the intersection 
of Artificial Intelligence (AI) and Machine Learning (ML) with data-intensive science and high 
performance computing. Specifically, this AI for Science subcommittee was asked to: 

• Assess the opportunities and challenges from Artificial Intelligence and Machine Learning 
for the advancement of science, technology, and the Office of Science missions.  

• Identify strategies that ASCR can use, in coordination with the other SC programs, to 
address the challenges and deliver on the opportunities. 
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This report is the result of the Subcommittee’s investigation of these charge questions. To set the 
context a summary of AI, ML and Deep Learning is included here along with a characterization of 
different roles for data scientists. This executive summary reports the subcommittee’s key 
findings and recommendations. 

Context 

The term Artificial Intelligence was coined by John McCarthy for a workshop at Dartmouth 
College in New Hampshire in 1956. At the workshop, McCarthy introduced the phrase ‘Artificial 
Intelligence’ which he later defined as [3]: 

‘The science and engineering of making intelligent machines, especially 
intelligent computer programs.’ 

By contrast, the field of Machine Learning is less ambitious and can be regarded as a sub-domain 
of artificial intelligence [4]:  

‘Machine learning addresses the question of how to build computers that 
improve automatically through experience. It is one of today's most rapidly 
growing technical fields, lying at the intersection of computer science and 
statistics, and at the core of artificial intelligence and data science. Recent 
progress in machine learning has been driven both by the development of new 
learning algorithms and theory and by the ongoing explosion in the availability 
of online data and low-cost computation.’ 

Finally, Deep Learning neural networks are a subset of Machine Learning methods that are  based 
on artificial neural networks (ANNs) [5]: 

‘An ANN is based on a collection of connected units or nodes called artificial 
neurons, which loosely model the neurons in a biological brain. Each connection, 
like the synapses in a biological brain, can transmit a signal to other neurons. An 
artificial neuron that receives a signal then processes it and can signal neurons 
connected to it. The "signal" at a connection is a real number, and the output of 
each neuron is computed by some non-linear function of the sum of its inputs. 
The connections are called edges. Neurons and edges typically have 
a weight that adjusts as learning proceeds.’  

The artificial neurons in these networks are arranged in layers going from an input layer to an 
output layer with connections between the neurons in the different layers. Deep learning neural 
networks are merely a subset of such ANNs with very large numbers of hidden layers. On the 
ImageNet Image Recognition Challenge, the 2015 competition was won by a team from Microsoft 
Research using a very deep neural network of over 100 layers and achieved an error rate for 
object recognition comparable to human error rates [6]. Figure 1 tries to capture the essence of 
this AI, Machine Learning, and Deep Learning hierarchy [7] 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Weight_(mathematics)
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Figure 2 attempts to define three different roles for a data scientist [8]. The first role is that of a 
data engineer who is expert at operating close to the computers, instruments, and sensors that 
generate the data. The second role is that of a data analyst who uses advanced statistics and 
AI/ML methods to explore the experimental data sets and assist the researcher to extract new 
science. Finally, in this classification, there is a third role of data curator who is expert in managing 
large data sets, curating the data with suitable metadata for re-use, and later archiving. All three 
of these aspects of data science are relevant for the proposed AI for Science initiative. 

Key Findings 

• Finding A 

The growing convergence of AI, Data, and HPC provides a once in a generation opportunity to 
profoundly accelerate scientific discovery, create synergies across scientific areas, and improve 
international competitiveness.  

Science and computing are now in an era of post-Moore’s Law silicon technologies and there is 
an urgent need for a sea-change in the programmability and productive use of increasingly 
complex/heterogeneous systems and the seamless integration of data, algorithms, and 
computing resources. Doing so will help manage the challenges of Big Data, carrying out science 
at scale using DOE’s most advanced facilities, leverage the workforce at the Labs, and set the 
stage for the emergence and development of robust and reliable AI systems with the ability to 
learn for themselves in domain-science specific areas.  

• Finding B 

Science can greatly benefit from AI methods and tools. However, commercial solutions and 
existing algorithms are not sufficient to address the needs of science automation and science 
knowledge extraction from current and future DOE facilities and data. 

Current AI solutions can be successfully applied to conduct a variety of data analyses. However, 
new algorithms, foundations, and tools are essential to addressing unique science concerns in a 
broad spectrum of science applications.  AI algorithms need to be able to deal with sparse, 
heterogeneous, and un-labeled data sets that are often expensive to collect and archive and be 
able to generate models that incorporate domain knowledge and physical constraints. AI-
enabled experimental design and control are necessary for optimal use of DOE facilities. In the 
science context, AI methods need to have provable correctness and performance, be able to 
expose biases, and to quantify uncertainties, errors, and precision. 

• Finding C 

Adopting AI for Science technologies throughout the Office of Science will enable US scientists 
to take advantage of the tremendous new advances in the DOE’s scientific user facilities.  
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The DOE’s Office of Science provides US researchers with access to the largest and most diverse 
suite of scientific experimental facilities in the world – from X-ray synchrotrons and neutron 
sources to integrative genomics and atmospheric radiation facilities – as well as to the world’s 
most capable high performance computing facilities. Upgrades to these user facilities and new 
nuclear physics facilities coming online now and over the next decade will dramatically increase 
the amount of new data produced across all of the scientific domains supported by the Office of 
Science, posing new challenges and new opportunities. Science-aware AI technologies will allow 
us to extract information and scientific understanding from these tremendous new data sources.  

• Finding D 

Realizing the potential for a generational shift in scientific experimentation at the DOE 
Laboratories due to science-driven AI/ML technologies requires far more than simply compute 
power and encompasses the full spectrum of computing infrastructures, ranging from 
ubiquitous sensors and interconnectivity across devices to real-time monitoring and data 
analytics, and will require a concerted and coordinated R&D effort on AI/ML algorithms, tools, 
and software infrastructure.  

Across the SC programs, scientific applications of Artificial Intelligence (AI) and Machine Learning 
(ML) can build on the power of sensor networks, edge computing, and high performance 
computers to transform science and energy research in the future. Given the highly specialized 
nature of many DOE facilities and scientific research domains, it is not possible to rely solely on 
third-party AI/ML research and development (R&D) for this transformation. The DOE will need 
to build its own R&D programs that focus on the most challenging science-driven applications. 
Software infrastructure will be required that combines leadership in AI/ML tools and algorithms 
with the DOE’s traditional strengths in simulation and modeling technologies and that can 
execute on new computing platforms capable of high performance on both types of applications. 
The anticipated returns will help ensure that the US continues to maintain and enhance 
leadership in both data-intensive science and high performance computing.  

• Finding E 

The DOE Labs are uniquely positioned to integrate AI/ML technologies across a host of scientific 
challenges thanks to the enviable culture of co-design teams consisting of scientific users, 
instrument providers, theoretical scientists, mathematicians and computer scientists that has 
proven so successful in the Exascale Computing Project.  

The subcommittee, therefore, sees a compelling need for AI/ML technologies to be incorporated 
into all of the DOE’s scientific research capabilities in order to effectively support the Office of 
Science’s missions in energy, national security, fundamental sciences, and the 
environment.  DOE’s National Laboratories, together with US university and industry partners, 
have the necessary assets to initiate a large-scale program to accelerate the development of such 
capabilities and the necessary workforce to not only meet their SC mission needs but also benefit 
all of DOE’s activities.  



9 

• Finding F 

The impact of a DOE-driven AI/ML strategy for science will have national implications far 
beyond the Office of Science and will drive new industrial investments, including accelerating 
engineering designs, synthesizing materials, and optimizing energy devices, as well as 
advancing hardware and software computing capabilities. 

The benefits to the nation in developing powerful and broad-based AI for Science capabilities in 
the DOE Laboratories will extend well beyond the DOE’s programs.  The development of 
comprehensive AI/ML capabilities will benefit other government agencies and a broad range of 
industries in this country, including energy, pharmaceutical, aircraft, automobile, entertainment, 
and others.  More powerful AI capabilities will allow these diverse industries to more quickly 
engineer new products that can improve the nation’s competitiveness.  In addition, there will be 
considerable flow-down benefits that result from meeting both the hardware and software AI 
challenges. Initiating a major program focused on applying AI/ML technologies to the DOE 
scientific challenges would be likely to lead to significant gains in US competitiveness in several 
critical areas and technologies.  

• Finding G 

A workforce trained in advanced AI/ML technologies would play a pivotal role in enhancing US 
competitiveness. 

The training, focusing, and retention of a cadre of young people, experts in both inventing and 
delivering the techniques and technologies of AI/ML for science and engineering applications, is 
critical to the success of the AI for Science agenda. The Office of Science DOE Laboratories can 
play a key role in cooperation with the National Science Foundation (NSF). Over the past 20 years, 
the Information Technology (IT) industry has expanded dramatically, driven by e-commerce, 
social media, cloud services, and smartphones. In recent years, the emergence of the Internet of 
Things (IoT), the widespread deployment of healthcare sensors, increasing industrial automation, 
and the development of autonomous vehicles have further expanded the domain of AI/ML data 
analytics and services. In response to these growing workforce demands, most students are now 
trained in software tools and techniques that target commercial opportunities. At present, 
commercial tools are rather generic and not well-targeted to scientific applications. An AI for 
Science initiative would deliver scientific AI/ML tools and environments appropriate for training 
a new generation of scientists and engineers. 

• Finding H 

Partnering with other Agencies and with international efforts will be important to deliver on 
the ambitious goals of an AI for Science initiative.  

The NSF and NIH, the two other major science-focused funding agencies in the US, also have or 
are planning, major investments in AI/ML programs for their scientific domains. In several areas 
there are clear synergies of research interest and the DOE should explore possible mechanisms 
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for collaborative projects with other agencies such as NIST and DOD in any DOE AI for Science 
initiative. 

Other countries have also recognized the potential benefits of applying AL/ML technologies to 
science. The subcommittee believes that there would be a benefit in the DOE collaborating with 
‘like-minded international partners’ on aspects of an AI for Science research agenda that are 
likely to be of mutual benefit. 
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Recommendations for DOE’s Office of Science 

1. Creation of a 10-year AI for Science Initiative 

In order to create the world-leading AI systems and applications needed to drive scientific 
productivity and discovery in science and technology dramatically beyond that achievable 
with traditional scientific supercomputing, we recommend that the DOE Office of Science start a 
ten-year program to develop an ambitious AI for Science initiative, as recommended in the 
recent PCAST report [9]. This program should encompass foundational research into new, 
science-aware AI methodologies, specifically designed for DOE mission-critical challenges, and AI 
solutions that can be deployed in operational settings at leading DOE research facilities. The 
initiative should provide a clear, guided roadmap from research to deployment. The 
DOE laboratories can play a key role here, offering leading-edge exascale supercomputers and 
large experimental facilities generating increasingly large scientific datasets, as well as providing 
critical expertise in mathematics, computer science, and experience with DOE mission-
specific applications.  No other agency has the breadth, critical mass, or recent large project 
management experience to undertake this cross-disciplinary AI for Science challenge.  However, 
there is a clear case for the benefits of collaboration with other agencies and other countries, to 
leverage existing expertise to maximum advantage. Partnerships with other funding agencies and 
other countries are therefore strongly encouraged. 

2. Structure of an SC AI for Science Initiative 
 
It is recommended that this AI for Science initiative be structured around four major AI R&D 
themes: 

 
• AI-enabled applications 
• AI algorithms and foundational research 
• AI software infrastructure 
• New hardware technologies for AI 

The subcommittee believes that this ten-year AI for Science initiative should be funded at the 
same scale as the successful Exascale Computing Initiative (ECI) and Exascale Computing Project 
(ECP).  Essential for the success of such an initiative is that the work of these four themes must 
be closely-coupled in a manner similar to that used in the ECP, as the advances and improvements 
in one area can inform advances and improvements in other areas.  

Figure 3 illustrates an overview of a possible roadmap for such an AI for Science initiative. As for 
the ECI and ECP, the roadmap for this proposed AI for Science initiative envisages an initial 
‘incubation’ research phase of coordinated projects with co-design centers connecting the four 
major themes. Partnerships across all Office of Science domains, with participation from 
universities and private industry, would be initiated early in the program. The goal of this 
research phase is to specify the application grand challenges and AI/ML tools and services 
required as deliverables in the more focused project R&D and Deployment phases, where broad 
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engagement of the DOE research community becomes critical. Since these applied R&D and 
Deployment phases will inevitably generate new questions and challenges, having the research 
phase continuing and overlapping with the R&D and Deployment phases will significantly 
increase the chances of success for the AI for Science Project. 

3. An Instrument-to-Edge Initiative 

The subcommittee believes that ASCR, in close cooperation with BES and with the other science 
programs in the Office of Science, should work with scientists, users, and the broad academic 
community to define requirements, conduct research, competitive procurement and design a 
highly integrated end-to-end system and software stack that connects instruments at the edge 
to the needed AI computing resources. Integrating national and global data sources (large scale 
experimental facilities, observational networks terrestrial & space-based, etc.) poses unique 
opportunities and challenges that require addressing foundational research in the context of 
leading-edge scientific experiments. Integrated systems for acquiring, analyzing, transforming, 
storing, and maintaining scientific results, capturing provenance, and contributing broadly 
accessed analytical workflows within DOE supported computational infrastructure could be 
transformative. There are, however, severe challenges that will need to be confronted in terms 
of privacy, security, commercial licensing of data, and integrated data services. 

Building on ASCR’s co-design experience in ECP, application users, software infrastructure 
developers, AI/ML researchers, and Lab and industry hardware specialists should be encouraged 
to define, develop, and contribute to a common software stack for AI/ML Edge computing 
resources across the different facilities. The software infrastructure should support some generic 
services at the facilities but also allow the easy creation of specialized AI-based software pipelines 
specific to the facility and capable of supporting coupling to particular instruments in some cases.  

4. Training, focusing, and retention of AI/ML workforce 
 
Industry, national laboratories, government, and broad areas of academic research are making 
more use than ever before of AI, ML, and simulation-based decision-making. This trend is 
apparent across many domains such as energy, manufacturing, finance, and transportation. 
These are all areas in which AI is playing an increasingly significant role, with many more examples 
across science, engineering, business, and government. Research and innovation, both in 
academia and in the private sector, are increasingly driven by large-scale computational 
approaches using AI and ML technologies.  With this significant and increased use comes a 
demand for a workforce versed in technologies necessary for effective and efficient AI/ML-based 
computational modeling and simulation and big data analytics, as well as the fundamentals of 
AI/ML algorithms. Graduates with the interdisciplinary expertise needed to develop and/or 
utilize AI techniques and methods in order to advance the understanding of physical phenomena 
in a particular scientific, engineering, or business field and also to support better decision-making 
are in high demand. 
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A strong research program will crucially rely on a complementary education and skills 
component, which is as important as providing adequate infrastructure support. As emphasized 
in the ASCR ECP Transition report [10], this is also a timely and important opportunity to focus SC 
efforts to create a more diverse and inclusive workforce. A continuing supply of high-quality 
computational and data scientists available for work at DOE laboratories is of vital importance. 
In high performance modeling and simulation, for example, the DOE Computational Science 
Graduate Fellowship (CSGF) program has successfully provided support and guidance to some of 
the nation's best scientific graduate students, and many of these students are now employed in 
DOE laboratories, private industry, and educational institutions. We need a similar fellowship 
program to meet the increasing requirement for computational and data scientists trained to 
tackle exascale and data-intensive computing challenges. In addition, the DOE SC should explore 
the possibilities for collaboration with the NSF about the provision of relevant training programs 
in AI/ML technologies and their application to science. 
 

5. Inter-Agency collaboration  
 
Although the NSF has long been regarded as the lead agency for fundamental AI research, DOE 
is clearly the lead agency for research involving the intersection of ‘Big Science, Big Data, and Big 
Computing.’ DOE has not only established national and international leadership in HPC and 
supercomputing but is also a leader in the application of AI/ML technologies to the very large 
scientific datasets generated by their large-scale experimental facilities.  
 
With the NIH, the DOE SC has a successful collaboration with the National Cancer Institute (NCI) 
in the CANDLE project [11]. DOE is now developing an MOU with both the NSF and NIH on a 
program of collaborative research in Computational Neuroscience. The subcommittee, 
therefore, recommends that the SC explore new opportunities to work with both NSF and NIH in 
areas where there would be a clear benefit for scientific progress under a DOE-led AI for Science 
initiative. There may also be opportunities to work with other US funding agencies, such as NIST 
and DOD, in areas of mutual interest. 
 

6. International collaboration  
 
There is a need for broad-based, coordinated action by like-minded international partners to 
harness the global scientific software community to address the tremendous opportunities in 
data-intensive science stemming from the huge increase in scientific data collection rates. 
Computational and data analytical methods driven by AI/ML are now universally accepted as 
indispensable for future progress in science and engineering.   

International leadership in AI for Science over the coming decade will hinge on the realization of 
an integrated set of programs spanning the four interdependent areas noted above – AI-enabled 
applications, AI algorithms and foundational research, AI software infrastructure, and new 
hardware technologies for AI. Scientists in nearly every research field in every country will now 
depend on the development of such software infrastructure for high-end computing and big data 
analytics to open up new research fields and to dramatically increase their research productivity.  
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Such AI/ML software infrastructure and algorithms capable of scaling up to exascale systems will 
underpin the work of global scientific communities working together on problems of global 
significance and enable them to leverage distributed resources in transnational configurations. 
In terms of feasibility, the dimensions of the task – totally re-thinking, re-imagining, and 
expanding, in the period of just a few years, the massive software foundation of computational 
and data science to meet the new realities of AI for science – are simply too many and too large 
for any one country to undertake on its own. 

To realize this vision for an international cooperative effort, the Office of Science needs to: 

• Provide a framework for organizing the software research community  
• Create a thorough assessment of needs, issues, and strategies  
• Initiate development of a coordinated software roadmap  
• Encourage and facilitate collaboration in education and training 
• Engage and coordinate the vendor community in cross-cutting efforts 

In DOE’s Office of Science, ASCR is well suited to lead on bringing the international community 
together to work on these challenges. 
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Report 

1. Introduction and Background 

Executive Order on AI 

On February 11, 2019, the President signed Executive Order 13859, Maintaining American 
Leadership in Artificial Intelligence [1]. This order launched the American AI Initiative, a concerted 
effort to promote and protect AI technology and innovation in the United States. The Initiative 
implements a whole-of-government strategy in collaboration and engagement with the private 
sector, academia, the public, and like-minded international partners.  

Among other actions, key directives in the Initiative called for Federal agencies to prioritize AI 
R&D investments, enhance access to high-quality cyberinfrastructure and data, ensure that the 
Nation leads in the development of technical standards for AI, and provide education and training 
opportunities to prepare the American workforce for the new era of AI.  

DOE Office of Science Town Hall Meetings on AI for Science 

From July to October in 2019, the Argonne, Oak Ridge, and Berkeley National Laboratories hosted 
a series of four AI for Science Town Hall meetings in Chicago, Oak Ridge, Berkeley, and 
Washington, DC. The four meetings were attended by over 1300 scientists from the 17 DOE Labs, 
39 companies, and over 90 universities. The goal of the Town Hall series was ‘to examine scientific 
opportunities in the areas of artificial intelligence (AI), Big Data, and high-performance computing 
(HPC) in the next decade, and to capture the big ideas, grand challenges, and next steps to 
realizing these opportunities.’  

The term AI for Science was used as a shorthand for the next generation of methods and scientific 
opportunities that will be enabled by the development and application of a variety of AI 
technologies including machine learning, deep learning neural networks, approximation and 
statistical methods, data analytics, and automated control as well as agent-based AI models. The 
Town Hall discussions focused on capturing the transformational uses of AI that employ HPC 
and/or data analysis, leveraging datasets generated by DOE instruments and user facilities as well 
as HPC simulations.  

These discussions were captured in the 16 chapters of the AI for Science report of the Town Hall 
meetings [2]. The study of these chapters showed that the discussions contain ‘common arcs 
revealing classes of opportunities to develop and exploit AI techniques and methods to improve 
not only the efficacy and efficiency of science but also the operation and optimization of scientific 
infrastructure.’   
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2. Charge Letter to ASCR 

The charge letter from the Director of the Office of Science sets out the context of the challenge 
to the subcommittee as follows: 

• Artificial Intelligence and Machine Learning have the potential for providing new insights 
and even new discoveries from this data, including the correlation of experimental and 
computational data.  

• However, the technical aspects of ‘AI/ML for Science’ may be more challenging than 
currently envisioned. Over the last few years, several workshops and subcommittee 
reports have identified and enumerated the scientific opportunities and some challenges 
from the intersection of AI/ML with data-intensive science and high performance 
computing. 

The subcommittee is tasked to deliver a report that specifically: 

• Assesses the opportunities and challenges from Artificial Intelligence and Machine 
Learning for the advancement of science, technology, and the Office of Science missions.  

• Identifies strategies that ASCR can use, in coordination with the other SC programs, to 
address the challenges and deliver on the opportunities. 

The letter also noted that, due to the cross-cutting nature of this effort, members from the other 
Office of Science Federal Advisory Committees should be included in the make-up of the 
subcommittee as well as input from Industry and other relevant Federal agencies. 

 

3. Subcommittee Information Gathering Activities 

The subcommittee has gathered information from a wide range of sources. At its first meeting in 
February 2020, there was a presentation and discussion session with the organizers of the AI for 
Science Town Hall meetings from Argonne, Oak Ridge, and Berkeley Laboratories. There were 
also presentations from the ‘big five’ IT software companies about their thoughts on AI for 
Science – Sanjay Padhi from Amazon, Larry Zitnik from Facebook, Peter Norvig from Google, Jed 
Pitera from IBM, and Sarah Bird from Microsoft.  
 
This session was followed by presentations from both the NIH and NSF. Susan Gregurick, 
Associate Director for Data Science, highlighted the recommendations of an NIH AI Working 
Group, and Grace Peng from the National Institute of Biomedical Imaging and Bioengineering 
(NIBIB), talked about their programs in AI, Machine Learning and Deep Learning, Mathematical 
Modeling, Simulation and Analysis, and summarized the recommendations of several recent AI 
Workshops.  
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For the NSF, Manish Parashar, Director of the Office of Advanced Cyberinfrastructure, explained 
how AI cuts across all of NSF’s Priorities and their ‘10 Big Ideas’. In the words of France Cordova: 
‘AI is the universal connector that interweaves all of our Big Ideas; data science is changing the 
very nature of scientific inquiry, and AI’s use of data has the potential to revolutionize everything 
we do in science.’ In FY19, NSF’s investments in AI totaled over $450M. Denise Caldwell, Physics 
Division Director, then summarized some science projects incorporating AI/ML and gave details 
of the recent call, in collaboration with several other federal funding agencies, to establish six 
National Artificial Intelligence Research Institutes. 
 
In addition, the subcommittee heard presentations from James Sethian (LBNL) on the ASCR-BES 
funded CAMERA project [12], from Laura Freeman (VA Tech) on ‘Statistical thinking and 
accelerating insights from Machine Learning and Artificial Intelligence,’ and from Tanmoy 
Bhattacharya on ‘Uncertainty Quantification.’ 

 
Subsequent meetings of the subcommittee were held virtually as Zoom meetings. The nominated 
representatives from the five domain science directorates of the Office of Science presented 
reports on their community’s thoughts about the potential for AI and ML technologies in their 
respective fields: 
 

• Kerstin Kleese van Dam for BERAC on ‘BER AI Strategy and Requirements’ 
• Phil Snyder for FESAC on ‘Strategy and Potential of AI/ML in the Fusion Energy Sciences 

Program’ 
• Mike Hildreth for HEPAP on ‘AI and HEP: An overview of opportunities’ 
• Tanja Horn for NSAC on ‘Artificial Intelligence for Science – Nuclear Physics Overview’ 
• Abbas Ourmazd for BESAC on ‘Impact of AI on Basic Energy Sciences’  

 
There were three presentations on AI research from: 

 
• David Womble for Oak Ridge National Laboratory on the ‘ORNL AI Initiative’ 
• Becca Willett from the University of Chicago on ‘AI: Challenges & Opportunities’ 
• Pedro Domingos from the University of Washington on the potential for ‘AI for Science’ 

 
The subcommittee also heard two non-IT industry talks: 

 
• Kim Branson, Global Head AI/ML for Medicinal Science and Technology R&D at GSK, 

gave a presentation on ‘AI and ML at GSK’  
• Rick Arthur, Senior Principal Engineer, Advanced Computational Methods Research, GE 

Research, gave a talk about more than 30 years of applying ‘industrial AI’ at GE [14] 

The final two presentations were from IT hardware companies: 

• Andy Hock, Head of Product at Cerebras Systems, on ‘Wafer-Scale AI Computing for 
Science’ 
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• Raja Koduri, Senior Vice President, Chief Architect, and General Manager of 
Architecture, Graphics, and Software at Intel, on ‘Exascale for Everyone’ 

A collection of recent reports on AI and science were available in an online archive together 
with copies of most presentations to the subcommittee. 

 

4. DOE as the lead agency for AI/ML applied to Facilities Science 

Although the NSF is the lead agency for fundamental AI research, the DOE is the lead agency for 
AI research involving ‘Big Science, Big Data, and Big Computing.’ DOE has not only established 
national and international leadership in HPC and supercomputing but is also a leader in the 
application of AI/ML technologies to the very large scientific datasets generated by their large-
scale experimental facilities. DOE’s Office of Science provides US researchers with access to the 
largest and most diverse suite of scientific experimental facilities in the world – from X-ray 
synchrotrons and neutron sources to integrative genomics and atmospheric radiation facilities – 
as well as to the world's most capable high performance computing facilities. Upgrades to these 
user facilities and new nuclear physics facilities coming online now and over the next decade will 
dramatically increase the amount of new data being produced across all of the scientific domains 
supported by the Office of Science.  

Across the SC programs, scientific applications of Artificial Intelligence and Machine Learning can 
build on the power of sensor networks, edge computing, and high performance computers to 
transform science and energy research in the future. Given the highly specialized nature of many 
DOE facilities and scientific research domains, it will not be possible to rely solely on third-party 
AI/ML R&D for this transformation. The DOE will need to build its own R&D programs that focus 
on the most challenging science-driven problems and computing capabilities. Software 
infrastructure will be created that combines leadership in AI/ML tools and algorithms with the 
DOE’s traditional strengths in simulation and modeling technologies and that can execute on new 
computing platforms capable of high performance on both types of applications. The new AI for 
Science initiative can also build on the lessons learned in the successful Exascale Computing 
Project [10]. The anticipated returns will help ensure that the US continues to maintain and 
enhance leadership in both data-intensive science and high-performance computing.  

Science and computing are now in an era of post-Moore’s Law silicon technologies and there is 
an urgent need for a sea-change in the productive use of increasingly complex/heterogeneous 
systems, and in the seamless integration of data and computing resources. There are also major 
challenges in the management, reduction, visualization, provenance, and curation of the 
scientific Big Data generated at scale by DOE's most advanced facilities. With a major initiative in 
AI for Science, a growing convergence of AI, Data, and HPC can be enabled across the DOE to 
accelerate scientific discovery and improve our international competitiveness. With such a 
coherent initiative and the right research programs, building blocks, and sustained effort, it 
should be possible to engineer the transformation of this once in a generation 
science/technology convergence into a profound new way of doing science within a decade. 
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Only the DOE’s National Laboratories, together with US university and industry partners, have 
the necessary assets to initiate a large-scale AI for Science program that can accelerate the 
development of such capabilities not only to meet their SC mission needs but also to benefit all 
of DOE’s activities. With their experience in the ECI/ECP, the DOE Labs have established a vibrant 
co-design culture involving teams of scientific users, instrument providers, mathematicians, and 
computer scientists. In the proposed AI for Science initiative, this unique experience can be 
leveraged to develop new capabilities and tools so that they can be readily applied across the 
agency’s diversity of instruments, facilities, and infrastructure [10].  
 
 

5. Opportunities and challenges from Artificial Intelligence and Machine 
Learning for the advancement of science, technology, and Office of Science 
missions 

The application of AI has the potential to revolutionize how science is conducted – substantially 
advancing not only the efficiency of the scientific enterprise but also the operation of the 
scientific infrastructure. The combination of ML, high performance computing (HPC), and 
advanced data acquisition and handling will uncover a range of opportunities for breakthrough 
science – allowing the analysis of huge datasets, the exploration of enormously complex 
parameter spaces and the discovery of extremely subtle effects, leading to unforeseeable 
discoveries that will benefit the nation and, ultimately, the world.  

The historical result of scientific discovery is innovation.  Whether in the creation of new 
technologies that transform an industry or in the creation of entirely new industries, scientific 
discovery is the fuel for the engine of innovation that powers the US economy. Thanks both to a 
technology culture that embraces and rewards innovation together with world-class centers of 
higher education, the US has earned an enviable reputation as the innovation leader in the world. 
However, other countries have made great strides in closing the gap and are keen to erase it 
entirely. With much of the innovation that will be delivered to humanity in the coming decades 
likely to be fueled by AI, the US must lead in AI  if it is to continue to lead the world in innovation 
and continue to reap the enormous societal and economic benefits that come with that position  
[1].  

For AI to fulfill its enormous potential for scientific advancement (and for the nation to maximally 
benefit from this potential), we must see widespread adoption and utilization of AI across the 
entire scientific enterprise. Scientific competition will drive many researchers to rapidly embrace 
AI/ML technologies, but each scientific discipline comes with its own culture and sets of 
requirements and constraints. The resulting patchwork of AI advances will therefore almost 
certainly be sub-optimal. The subcommittee, therefore, recommends that a comprehensive 
strategy for advancing the AI for Science agenda be created to guide developments across the 
entire mission space of the Office of Science. 



20 

The expected benefits of such an initiative will result in a transformation of scientific research at 
the DOE Laboratories and other DOE supported facilities. For example, the use of AI methods in 
science will: 

• accelerate the design, discovery, and evaluation of new materials 
• advance the development of new hardware and software systems, instruments and 

simulation data streams  
• identify new science and theories revealed as a result of increasingly high-bandwidth 

instrument data streams  
• improve experiments by inserting inference capabilities in control and analysis loops 
• enable the design, evaluation, autonomous operation, and optimization of complex 

systems from light sources and accelerators to instrumented detectors and HPC data 
centers 

• advance the development of self-driving laboratories and scientific workflows 
• dramatically increase the capabilities of exascale and future supercomputers by 

capitalizing on AI surrogates  
• automate the large-scale creation of “FAIR” (findable, accessible, interoperable, 

reusable) data [15] 
 

To achieve such advances, the DOE community will need to work closely with the NSF and with 
the university AI research community to pursue the research needed to create new and powerful 
AI methods and technologies. For example, new AI architectures capable of incorporating 
mathematical and physical constraints that require less data to train effectively will allow the 
design of a whole new range of applications optimized for specific scientific tasks. 
 
 

6. Strategies for the DOE Office of Science to address the challenges and deliver 
on the opportunities 

6.1  Introduction 

The purpose of an AI strategy for SC is to guide the development of AI technologies and foster 
the utilization of AI capabilities in such a way that leads to widespread adoption of AI across the 
entire Office of Science. Successful execution of this strategy would see, after an appropriate 
period of time (5-10 years), a deep understanding and pervasive exploitation of AI in all areas of 
DOE science, leading to substantial advances and discoveries as well as to significant efficiency 
gains in the process of scientific experiments.  

In order to achieve this vision, the entire ecosystem of AI must be advanced, in much the same 
way as the entire ecosystem of high performance computing needed to advance in order to 
deliver usable exascale systems. The AI ecosystem has similarities to that for high performance 
computing, with some interesting (and important) differences. Crudely speaking, the HPC ‘stack’ 
can be thought of as Applications built on top of Software that is built to run on Hardware. In a 
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process known as co-design, the DOE has pioneered an approach whereby all three are advanced 
together: hardware and software are designed together while informed by the application that 
drives the entire process. In the case of AI, substantial progress is required in foundational 
mathematics and AI algorithms if we are to move the science forward significantly. The four 
integral components needed for a successful AI for Science initiative are then: 

• Application-specific solutions based on hardware/software/algorithm co-design  

The driver for the entire initiative is the acceleration of scientific discovery leading to 
innovation. It is here, through development and deployment of domain-specific, AI-based 
solutions, that a transformation of the scientific research process can be achieved. 

• Research in AI algorithms and foundations 

The lack of a fundamental basis for understanding how ML methods such as Deep 
Learning neural networks arrive at their ‘conclusions’ is a cause for concern. For AI/ML 
technologies to gain the confidence of scientists and to be useful in contexts where there 
can be consequential decisions, substantial research is needed to develop the underlying 
theory and our understanding of the robustness, trustworthiness, and limitations of these 
technologies. 

The space of AI algorithms is changing very rapidly and includes some of the most 
impactful innovations such as Deep Learning, Reinforcement Learning, and Generative 
Adversarial Networks (GANs). A continued focus on the exploration and development of 
new AI algorithms must be an important component of an AI for Science initiative.  

• Development of AI software infrastructure 

In terms of software infrastructure, in order to take advantage of changes in both AI 
hardware and algorithms, significant advances in areas such as programming 
environments, workflow and resource management, data management and engineering, 
and other system software will be required. 

• AI-specific computing architectures and hardware 
 
While much progress has been made using general-purpose high performance computing 
architectures, the workflows of the future can be substantially accelerated by the 
development of AI-specific hardware. Although numerous start-up companies are 
exploring new hardware solutions, the DOE has unique computational requirements and 
needs to be engaged in this co-design process with industry. A specific DOE focus area will 
be the integration of such new AI-specific hardware into the harsh environment of 
scientific instruments. 
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Successful integration of all four components of an AI for Science initiative will require: 

o A full partnership between all areas of the Office of Science 
o Engagement of the National Laboratories and their user facilities 
o Involvement of the university and private industry research community 
o Mechanisms for collaborative projects with agencies such as the NSF and NIH 
o Collaboration with expert organizations from similarly minded countries 
o An organized process for dissemination to the scientific community 

6.2  AI Applications 

AI is expected to revolutionize scientific discovery.  The transformative impact of AI on science 
has been carefully evaluated by the Office of Science in a series of AI for Science Town Hall 
meetings involving more than 1300 scientists [2] as well as in Roundtable and Workshop Reports 
from appropriate areas of the Office of Science (see Appendix C). These activities have identified 
the exceptional opportunities offered by AI for the Office of Science, crystallized the key 'grand 
challenges’ associated with these opportunities, and highlighted the research priorities needed 
to meet these grand challenges. Note that the Priority Research Directions in the submissions 
from each of the five Office of Science programs have not been integrated so that several generic 
priorities common to several research areas are separated from those that are specific to a given 
area. 

Priority Research Directions: Basic Energy Sciences (BES) 

AI/ML methods for data analysis, control, and modeling hold promise for greatly accelerating 
experimental and computational discovery. The Office of Science has identified key Priority 
Research Opportunities to realize the vision that, in the next 10 years, AI/ML will be an integral 
part of the discovery and design workflow, just as experimental, theoretical, and computational 
tools are today. The BES scientific user facilities can work in close synergy with experts across the 
DOE national laboratories and universities to realize these opportunities and attain the vision of 
broadly incorporating AI/ML methods in facility operations and scientific experiments. These 
advances will result in new insights that will drive innovation and enable exploration of new 
scientific opportunities far beyond the current horizon.  

1. Efficiently extract critical & strategic information from large, complex datasets. 

Key Question: How to extract robust, meaningful information from increasingly vast, 
complex data produced at BES’ scientific user facilities? 

AI/ML approaches are based on training algorithms with appropriate data, in order to 
extract information from data not used in training.   This approach gives rise to a number 
of important questions.  These include: whether an algorithm trained on one dataset can 
be used to produce reliable answers about a different dataset; whether a particular 
algorithm is robust against noise or attempts to deceive it; what the basis is for the 
answers an algorithm provides and whether these answers are free of bias. Answers to 
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such critical questions are required in order to gain confidence in the veracity and 
reliability of AI/ML based algorithms. 

2. Address challenges of autonomous control of scientific systems. 

Key Question: How to address challenges inherent in real-time operation of large, 
complex scientific user facilities? 

AI/ML is expected to enable breakthroughs in operating complex infrastructure.  In order 
to realize this potential, new paradigms must be developed and tested to integrate real-
time information from powerful sensors, combined, where appropriate, with edge 
computation, to enable real-time AI-based predictive analytics, control, and optimization.  
AI-driven, real-time intelligence will likely couple real-time data with infrastructure 
models (e.g., a digital twin).  Similarly, AI/ML-enabled predictive models trained with 
infrastructure data will be indispensable for exploring the design spaces for smart energy 
and transportation infrastructure, HPC computing systems, data centers, and 
communications networks. In a similar fashion, they will also become indispensable for 
particle accelerators, light sources, and complex instruments, many of which involve 
interconnected subsystems of magnets, mechanical, vacuum, and cooling equipment, 
power supplies, and other components. Such instruments have many control points, and 
require high levels of stability, making their operation a complex optimization problem. 
The operation of these instruments will require AI/ML-based solutions but this remains a 
challenging problem due to lack of prior models for reliable and safe control.  Initial results 
have already highlighted the potential of AI/ML-based solutions, but key challenges 
remain. Finally, critical infrastructures increasingly rely on information systems. Removing 
the human-in-the-loop is increasingly necessary for defensive responses on the same 
millisecond timescales as digital attacks.  The development of robust and transparent 
AI/ML solutions is expected to offer the best approach to detecting and diagnosing cyber 
and physical attacks and threats in real-time.    

3. Enable offline design & optimization of facilities & experiments. 

Key Question: How can we catalyze scientific discovery by leveraging the wealth of 
diverse and complementary data recorded across the BES scientific user facilities? 

Advanced user facilities generate terabytes of data per experimental run.  The unabated 
advance of high repetition-rate instruments will exacerbate the data torrent.  Techniques 
are needed to rapidly pre-process data, and extract meaningful information from very 
large datasets, to guide experiments in real-time.  AI/ML approaches promise to play a 
prominent role in this endeavor.  Science, however, is often driven by exceptions to the 
ordinary. New AI/ML approaches are needed to identify and help interpret previously 
unseen rare (‘transition’) states in very large datasets.  New paradigms are also needed 
to integrate multisensory data, combining, for example, structural and spectroscopic 
snapshots from complex systems.  
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Taken together, the priority research directions outlined above show that AI for Science is poised 
to fundamentally transform the way scientific experiments are designed and conducted, and the 
nature and extent of the information extracted from the resulting data.  Continued US leadership 
in basic energy sciences depends critically on integrating AI into the fabric of BES activities. 

Priority Research Directions in Biological and Environmental Research (BER) 

Climate and Environmental Sciences 

The BER Climate and Environmental Science research community have been at the forefront of 
applying novel AI/ML methods, particularly in its computational efforts. Core methods such as 
clustering, regression, and feature and anomaly detection have been successfully applied in a 
range of projects. One such project won the Gordon Bell Prize in 2018. Furthermore, a number 
of projects are now underway that are exploring the use of surrogate models in climate modeling 
with excellent early results. From this basis, the community has set its sights on tackling more 
advanced challenges in the future to provide novel, robust and meaningful scientific insights 
through the use of AI such as: 

• Create new AI enabled observational instruments that can adaptively capture dynamic 
environmental processes with greater precision  

o Key Question: How can we integrate AI hardware and software into observational 
capabilities at the edge and link these seamlessly to other instruments and 
computing capabilities. 

• Develop hybrid process-based/AI modeling frameworks to gain a predictive 
understanding of the Earth system at global, regional and local scales under a changing 
environment.  

o Key Question: How can we extrapolate sparse measurements across space and 
through time to improve our understanding of the functional traits of biological 
and hydrological systems, as well as dynamic processes important for closing the 
carbon cycle or secure water resources, and to develop models that improve 
climate predictability and reduce uncertainty in future projections.  

• AI enabled multi-scale, real-time data-model assimilation to predict environmental risk 
and develop resiliency in a changing environment - for energy infrastructures and 
subsurface applications. 

o Key Question: How can we integrate smart sensing systems, built-for-purpose 
models, large ensemble forecasts to quantify uncertainty, and dynamic decision 
support systems for critical infrastructure - in real-time and across scales? 

In addressing the above challenges it is expected that researchers will gain a deeper, predictive 
understanding of the processes that govern our climate and environmental systems, helping 
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them to identify future risks and develop effective mitigation strategies with reduced 
uncertainty. 

Biological Systems Science 

Biological System Science in BER is focused on improving the understanding of the fundamental 
processes that govern genomic and metabolic processes that influence the secure production of 
biofuels and bioproducts. Furthermore, the community studies the role of microbes in the 
environment, and earth system and subsystems. As such, AI/ML efforts have focused on data 
analysis and subsequent inference of process knowledge. Moving forward, the community is now 
looking to solve: 

• AI enabled systematic mapping of the small-molecule chemical space to find new 
applications and biological knowledge by eliminating biological ‘Dark Matter’. 

o Key Question: How can the multitude of experimental, computational, and 
literature-based knowledge be harnessed to infer new biological compounds, 
functions, and behavior? 

• Build AI based higher order integrated biological models that fully capture the 
complexity of interactions and lead to a predictive understanding of biological systems. 

o Key Question: How can we learn and represent the complexity of biological 
processes and their interactions in an efficient, yet accurate manner? 

In solving the challenges above, researchers will not only gain a predictive understanding of 
biological and environmental systems as they pertain to biofuels and bioproducts, but also be 
able to develop effective strategies to maximize bio-production. 

Priority Research Directions: Fusion Energy Sciences (FES) 

As fusion energy research advances toward reactor-scale experiments, exascale computation, 
and sophisticated next-generation diagnostics, new and exciting opportunities are emerging for 
application of AI/ML techniques.  AI/ML has been successfully applied across a wide range of 
problems in fusion, including development of reduced models, disruption prediction, plasma 
control, and physics discovery. As the state-of-the-art advances, and experimental and 
computational fusion datasets grow dramatically in size, AI/ML is expected to play an ever more 
important role in scientific discovery, experiment planning and analysis, and device control and 
operation.  Grand challenges identified in the AI for Science Town Hall Report include: 

• Enable real-time understanding in long pulse tokamak experiments: Next generation 
experiments such as ITER will involve long pulse lengths and ‘burning plasma’ conditions 
in which the plasma is self-heated by alpha particles.  This strongly-coupled system will 
introduce real-time data streaming and analysis challenges similar to those posed by an 
operational fusion power plant. 
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• Develop models that bridge gaps in fusion plasma confinement and stability prediction: 
Capability to predict plasma confinement and stability has improved dramatically across 
the past decade.  Remaining gaps in understanding, such as physics of the boundary 
plasma and tearing modes, often involve bridging a very wide range of spatio-temporal 
scales, and the interaction of plasmas with neutrals and material surfaces.  The 
development of interpretable AI/ML methods and model extraction and reduction 
techniques can facilitate both understanding and performance optimization. 

• Establish the plasma prediction and control solutions for sustained fusion power plant 
operation: Power plants must have very high reliability and availability.  Control physics 
and control algorithm mathematics requirements for fusion are challenging due to 
extreme nonlinearity, and multi-physics overlaps.  Data-driven methods can contribute 
to control level modeling, management, and interpretation of real-time data for control 
and determination of optimal parametric trajectories.  

In addition to these grand challenges, numerous other problems in the FES domain would benefit 
greatly from application of AI/ML technologies. Examples include high repetition rate lasers, 
which produce enormous data sets, and fusion material simulations and experiments, whose 
multi-scale nature challenges the capabilities of existing methods. 

To address these and other key challenges in fusion and plasma science, the FES and ASCR 
communities have developed a set of Priority Research Opportunities (PROs) for application of 
AI/ML methods to enable accelerated solution of fusion problems.  Seven PROs were identified, 
including three in each of two broad categories, Accelerating Science (1-3) and Enabling Fusion 
(4-6), and a cross-cutting opportunity (7): 

1. Science Discovery with Machine Learning:   

Key Question: How can AI/ML approaches bridge and close gaps in understanding, 
accelerate hypothesis generation and testing, and optimize experimental planning? 

2. Machine Learning Boosted Diagnostics:   

Key Question:  How can AI/ML maximize the information extracted from complex 
measurements, enhance interpretability, combine multiple data sources, and 
generate synthetic diagnostics that enable inference of quantities that are not 
directly measured? 

3. Model Extraction and Reduction:   

Key Question:  How can AI/ML enable extraction of models of fusion systems and 
plasmas to enhance understanding of complex processes? How well can 
sophisticated AI/ML approaches accelerate computational algorithms while 
maintaining accuracy? 
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4. Control Augmentation with Machine Learning:   

Key Question: How can AI/ML improve control-level models and cope with massive 
data streams in real time to optimize control and analysis algorithms?  

5. Extreme Data Algorithms:  

Key Question: How to develop methods for in-situ, in-memory analysis and reduction 
of extreme scale simulation data, and methods for efficient ingestion and analysis of 
fusion experimental data. 

6. Data-Enhanced Prediction:  

Key Question: How to use AI/ML to develop reliable algorithms for prediction of key 
plasma phenomena, including disruption avoidance and mitigation. 

7. Fusion Data Machine Learning Platform:   

Key Question: How to develop a novel system for managing, formatting, curating, 
and enabling access to fusion experimental and simulation data for optimal usability 
in applying AI/ML algorithms. 

Priority Research Directions: High Energy Physics (HEP) 

AI/ML techniques have been eagerly embraced by investigators in HEP. The application of AI/ML 
algorithms to particle physics problems has enabled marked advances in sensitivity or scientific 
output, in many cases leading to state-of-the-art results. Many other problems remain 
intractable, however, because current ML techniques are not suited to these 
challenges.  Advancing the discovery potential and reaping the rewards of the investment in the 
large facilities that support HEP requires a new era of AI development and application. The AI for 
Science Town Hall events identified some major scientific challenges arising in the next decade 
that can be met with the development of suitable AI technology to acquire, analyze, and simulate 
datasets of unprecedented size and accuracy: 

1. Create usable tools for large-scale distributed training and optimization of ML models 
to enable physicists to scale up the complexity of their models by several orders of 
magnitude above the current “laptop-size.” 

The larger AI ecosystem provided by DOE Leadership Class Facilities will be a critical 
element in the development and training of the sophisticated AI models needed to 
accomplish the scientific goals.  Enabling rapid training and optimization will accelerate 
discovery. 

Key Question: Can we reconstruct the History of the Universe? Rich datasets from a host 
of new telescopes plus exascale cosmological simulations will generate a wealth of 
astrophysical data with unparalleled resolution and depth. To optimally extract 
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information from this data while maintaining robustness, new AI techniques combined 
with statistical methods and HPC simulations are needed. This combination will enable 
predictions deep into the nonlinear regime of structure formation, spanning a large mass 
and spatiotemporal dynamic range.  This will enable us to enhance our understanding of 
dark matter, dark energy, and the history of the early universe back to the era of Inflation 
and beyond.  

2. Develop training methodologies that can detect rare features in high-dimensional 
spaces while being robust against systematic effects. 

Unsupervised learning, AI-based system controls, and many other aspects of the future 
HEP science program will rely on AI algorithms to make decisions and react to rare events 
in highly complex environments. This could include particle physics triggers, transient 
detection in astronomy, accelerator control, and new particle searches. Robust, 
trustworthy AI will be required. 

Key Question: Can we discover New Physics with zettascale datasets? New instruments 
capable of generating zettabytes of data will be deployed, challenging all aspects of the 
scientific process. In order to maximize the chances of discovery, these instruments will 
need to be AI-controlled and have AI-enabled filters to examine incoming data with near-
zero latency.  AI-based simulation and analysis will be required to process rapidly the vast 
quantities of data with finite computing resources.  Unsupervised AI searches for “new 
physics” will be deployed to exploit the data fully.  

3. Design tools to quantify the impact of systematic effects of the accuracy and stability of 
complex ML models. 

Uncertainty Quantification (UQ) is imperative for physical measurements. While AI 
algorithms have proliferated, general techniques for understanding their accuracy and 
stability in complex environments have not. If these techniques are to become fully useful 
in deriving measured quantities, work is needed in this area to develop models whose 
uncertainties can be described in a manner appropriate to the measurement. 

Key Question: Can we understand Large Scale Cosmic Structure Formation? Advances in 
AI could allow an automated cosmology experiment that would be able to combine new 
survey data and detailed simulations to generate optimized observing strategies. Such an 
endeavor could benefit from the increased processing speed afforded by AI algorithms to 
oversee a cluster of instruments and to gather data in such a way as to minimize 
systematic errors, to optimize calibrations, and to maximize sensitivity to cosmological 
parameters that could shed light on the dark universe. 

These are not the only scientific areas that can be dramatically enhanced with developments in 
ML/AI. AI techniques are heavily used in cosmological studies, for example in red-shift estimation 
from photometric data, galaxy image processing, and feature extraction.  AI Applications in 
theoretical calculations include kernel estimation, model optimization in large parameter spaces, 
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searches for new models, and the estimation of parton distribution functions. As a specific 
example of a massive theoretical computational problem, Lattice QCD calculations could realize 
exponential gains in speed if AI can be applied to path integral estimation. Advances in the 
foundations of AI, especially including constraints from physical systems in ML, will have dramatic 
impacts on these and many other physical problems. 

Priority Research Directions: Nuclear Physics (NP) 

AI has tremendous potential within NP Research. It can provide new insights and discoveries from 
both experimental and computational data produced at user facilities. As identified in the January 
2020 Roundtable Meeting on AI/ML in NP Facilities [13], all the top priorities of the 2015 NP Long-
Range Plan on Research Opportunities and Directions can benefit from AI. At the same time, a 
number of activities and technologies in the diverse NP research portfolio have the potential to 
contribute to the emerging AI programs. For example, NP presents data on short time scales and 
with many different configurations that expose the limitations of current methods and could 
contribute to making AI more interpretable for the long term. Some of the most notable grand 
challenges for NP identified in the AI for Science Town Hall report include:  

● Automate and/or optimize the operation of accelerators and detector systems 

Key Questions: Development and validation of virtual diagnostics; improvement to beam 
sources and injector performance; data-driven system maintenance; automated learning 
for operator support; anomaly detection and mitigation? 

● Improve experimental design and real-time tuning 

Key Questions: improving experiments by intelligently combining disparate data sources 
such as accelerator parameters, experimental controls, and detector data. AI enables 
intelligent decisions about data reduction and storage and can improve the physics 
content through data compactification, sophisticated triggers (both software and 
hardware-based), and fast-online analysis. 

● Improving simulation and analysis  

Key Questions: Improving sensitivity to allow more information to be extracted from 
datasets, which decreases uncertainty in results and increases discovery potential. 
Decreasing simulation and analysis time to save costs and ultimately allow for a higher 
volume of scientific output by accelerating the feedback loop between experiment, 
analysis, and theory. 

● Game changers in nuclear theory 

Key Questions: Several case studies were identified by the community including 
identifying rare events, quantified computations of heavy nuclei using realistic inter-
nucleon force, and dense matter equation of state. 
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In the AI for Science Town Hall report, it was identified that the NP community could benefit from 
using existing AI/ML solutions. For example, the Exascale Computing Project (ECP) has created 
tools that can accelerate computationally expensive tasks. Similarly, the ECP ExaLearn project is 
now developing scalable tools to address common AI/ML challenges such as developing 
surrogate models, inverse problems, and automated design and controls challenges. These tools 
could save a significant amount of development time and allow the NP community to focus on 
solving domain specific challenges. However, as the NP community expands its use of AI/ML 
technologies, it will require access to greater computing resources. In addition, the current AI 
tools and methodologies have limitations that have to be addressed in the long term. The 
following needs have been identified by the NP community for successful collaboration with 
AI/ML and increasing scientific output: 

● Need for problem-specific tools 

NP applications are unique in that they are often aimed at accelerating calculation, 
whether in the evaluation of models where one can use AI techniques to identify the most 
promising calculative pathways to simulations where AI-determined parametrizations can 
be used to circumvent performance-limiting elements. While traditional ML tools may be 
applied to these problems, significant effort is required in the careful tuning of ML tools 
(hyperparameter determination) to optimize performance in each application domain. 

● Enabling Infrastructure for AI in NP 

To maximize the usefulness of the data, it will be important to have standards on the 
processing of data, the application of theoretical assumptions, and the treatment of 
systematic uncertainties that will be used as training samples or as part of the combined 
analysis. AI techniques are computationally intensive and success in using these 
techniques will require access to GPU computing and disk storage at appropriate scales. 

● Need for uncertainty quantification 

A common theme is to investigate and apply AI methods with well-understood UQ, both 
systematic and statistical, to accelerator science, NP experimentation, and NP theory. The 
commonly used ML algorithms do not provide error estimations with model predictions, 
which are essential to understand outcomes. In addition, an assessment of metrics for 
the evaluation and comparison of uncertainty predictions using different modalities is 
required for the widespread use of AI in NP. 

 

6.3  AI Algorithms and Foundations 

Advances in algorithms have given scientists the tools to model and simulate nature at an 
unprecedented range of scales: from computing the history and fate of the cosmos and the 
explosion of supernovae to the evolution of the climate system and the properties of materials 
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to the smallest of subatomic particles. These efforts have traditionally relied on mathematical, 
modeling, and computational building blocks whose properties are well established. Despite 
having access to tremendous computational resources, the fact remains that scientists cannot 
explore all possible theories or easily simulate phenomena across multiple space and time scales. 

 AI presents a unique opportunity for bridging this gap. Modern methods in AI, defined broadly 
to include ML, optimization, statistical inference, and supporting systems, are yielding 
unprecedented results in many application areas. Recent AI successes, unimaginable even a short 
time ago, can be attributed to colossal datasets, enormous computing power, and innovations in 
the underlying mathematics, statistics, formulations, and algorithms. Meanwhile, in the physical 
sciences, increasingly powerful sensors and facilities are generating overwhelming quantities of 
data.  

However, commercial or off-the-shelf AI tools are often unable to fully extract the knowledge 
contained in these datasets, for several reasons: 

• First, scientific datasets are often limited in size and seldom annotated with the sort of 
information required for many algorithms designed for large-scale data.  

• Second, scientific data can often be very expensive to obtain: experiments carried out at 
facilities can require tremendous resources.  

• Third, extracting correct information often requires enforcing additional constraints and 
physical principles. 

• Fourth, in many scientific and engineering applications, the price of being wrong is high, 
and guarantees on applicability and errors are required. 

Developing new algorithms that meet these challenges is a core effort that will profoundly 
advance the impact of AI/ML for science.  

Additionally, many AI/ML algorithms can be ‘brittle,’ failing to perform when applied to situations 
or problems different from those for which they were designed. In order to build and apply these 
new algorithms with confidence, a parallel effort is needed to understand some of the key 
foundational issues underlying the applicability and reliability of these new methods, particularly 
in their application to scientific and engineering challenges. Common challenges arising in the 
physical sciences include AI-informed adaptive design of experiments, statistical inference, and 
quantification of uncertainties, understanding of dynamical systems in far-from-equilibrium 
regimes, integration of physical models and simulations into ML methodology, anomaly or rare-
event detection, inference based on heterogeneous data, and the design interpretable, robust AI 
methods. A central challenge will be constructing ML algorithms that naturally comprehend what 
is already understood, and then build on this to better understand what is observed. 

Altogether, we have a unique opportunity to develop algorithms, new foundations, and new tools 
that will dramatically advance the frontiers of both AI and physical sciences. Key areas of 
algorithmic and foundational AI emphasis for discoveries in physics, material science, and other 
scientific DOE domains include: 
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• Effective ML training for small or sparse datasets. Outside the realm of computer vision 
and natural language processing, many scientific areas have very small numbers of 
datasets with labeled training data, either because they are difficult to generate or the 
parameters of the systems are such that they cannot be produced. This applies to fields 
ranging from material sciences and astronomy to various engineering disciplines and 
biological applications. Many current AI algorithms, for example, deep neural networks, 
cannot perform well when trained on these limited samples. New developments in 
foundational AI, such as few-shot learning, self-supervised learning, mixed-scale dense 
networks, and meta-learning techniques, need to be developed to enable broad AI 
applications to many new fields.  

• Incorporation of physical models into AI structure. The current theory and practice of AI 
struggles to best incorporate mathematical models into the learning process. Here, prior 
physics domain knowledge is expressed in terms of equations, including differential 
equations, conservation laws, invariances, symmetries, and distributions, that can be 
computationally encoded. At the same time, AI frameworks that incorporate known 
physics will perform better, require less data to train effectively, and will be more robust. 
Formulations of new AI algorithms structured to include physical models, rather than 
having to “learn” the physics, will allow the designs of new classes of AI applications 
optimized exactly for the scientific tasks that require them. To do so will require advances 
in such formalisms as projection operators that enforce physical principles, data 
structures that encode symmetries and constraints, and the construction of physical 
priors and their injection into mathematical models.  

• Creation of surrogates. AI presents a unique opportunity for creating data-driven 
surrogate models that are potentially orders of magnitude faster to run than first-
principles simulation codes and can be particularly effective in the ability to simulate 
physical processes that span many spatial and temporal scales. Some of the unique 
challenges for AI systems revolve around a careful characterization of the generalization 
limits, proofs of interpolation/extrapolation, robustness, assessment of confidence 
associated with predictions, and effects of the input data. 

• Dimensional reduction, data synthesis and compression, and reduced order models.  
Extracting smaller models from large datasets provides a powerful way to rapidly evaluate 
and test theories, examine the range of viable parameters, and point to under-resolved 
areas. Developing workable and robust algorithms to do so requires linking together 
aspects of approximation theory, statistical and probabilistic methods, and compression 
methods, as well as coupling coarse-fine grain representations of equations of motion 
and state into the development of new AI/ML methods.  

• Control and AI-enabled experimental design. Facilities for high-throughput screening 
and automated control of experiments have the potential to transform how the DOE 
collects data. The scientific method of conducting experiments, analyzing data, forming 
hypotheses, and designing future experiments may be revolutionized by AI methods that 
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can identify patterns in data with potential scientific significance.  However, existing AI 
tools generally do not account for the interactive nature of this process and can result in 
biased or misleading analyses. Control, active learning, reinforcement learning, 
derivative-free optimization, Gaussian processes, surrogate models, and optimization 
methods incorporating scientific priors incorporating known constraints and principles, 
and experimental design are all critical elements of an AI-enabled scientific method.  

• Operation of experimental facilities. AI/ML technologies are rapidly permeating the design 
and operation of scientific instruments as well as the experimental facilities. This trend is 
expected to grow in extent and intensity, strongly eroding the partition between hardware 
and software. Optimal design, construction, and operation of major user facilities require a 
deep co-design approach integrating hardware, software, and edge computing on an equal 
footing. It is therefore important that ASCR further enhance its strong and concerted support 
for AI/ML based co-design throughout the design, construction, and operation cycles of major 
facilities.  

• Inference and calibration. Inference refers to providing confidence intervals or 
quantifying the uncertainty about the output of an AI system. Calibration refers to 
avoiding or correcting for overfitting in AI systems to ensure the validity of inference 
claims. DOE-relevant AI challenges often require precise measures of uncertainty, 
particularly when a guess-and-check method development is not feasible due to safety 
concerns or expense. The DOE needs a comprehensive framework for assessing the 
uncertainty associated with AI predictions and leveraging this knowledge to develop 
better predictors. 

• Real-time processing. Many DOE experiments and facilities produce large quantities of 
data, often so large that the data cannot all be stored even temporarily and therefore 
must be filtered in real-time to identify experiment-relevant components for future 
analysis. Many existing AI systems are not amenable to large-scale streaming data and 
integrating systems constraints into state-of-the-art learning systems is a pervasive 
challenge. Additional applications including the steering of experiments by using results 
of past experiments to construct surrogate models which then suggest new experiments 
targeted at under-resolved/underexplored areas.   

• Self-learning algorithms. The availability of precise mathematical models and precise 
microsimulations of various physical processes, combined with advances in the 
understanding of inverse problems, can enable the creation of AI frameworks that can 
effectively do self-learning. Techniques such as GANs (Generative Adversarial Networks), 
ANNs (artificial neural networks), and Auto-encoders are being explored to ‘learn’ how to 
express the results of complicated multi-scale simulations in an AI algorithm.  This work, 
as applied to physics processes, is still largely in its infancy.  Dramatic improvements in 
the understanding of these techniques would lead to, for example, AI versions of heavily 
computational simulations codes that could run exponentially faster than their stochastic 
counterparts. 
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• Time-series data and real-time decision making. Many facilities in the DOE portfolio and 
beyond generate vast quantities of potentially heterogeneous data that must be analyzed 
in real-time. While advances in the processing of such data have been made in the case 
of autonomous vehicles, for example, further work is required to achieve sub-
microsecond decision times for applications such as particle physics, real-time particle 
accelerator or fusion reactor control, or the kinds of processing required for applications 
such as radio astronomy. 

• Predictive maintenance and event prediction.  Predicting the occurrence of events such 
as material failures, incipient fault detection, condition assessment, and failure 
progression prediction in complex scientific experimental facilities requires the 
development of new AI algorithms and new training strategies.  Predictive Maintenance 
methods are increasingly used to predict the failure of assets and have been used in IoT 
industrial applications and predictive maintenance where likely equipment faults are 
foreseen and proactively handled. There has been some success in accomplishing 
analogous tasks in biomedicine where methods are being developed to predict which 
patients will develop a given disease and to integrate multi-scale information over time 
to predict which patients will respond to a particular treatment. There are many different 
ways prediction problems can be formulated and solved often requiring the solution of a 
myriad of computational and mathematical challenges associated with the coupled 
analyses of highly interrelated but structurally disparate information sources.  

• Anomaly detection. Many scientific endeavors are searching for the “needle in the 
haystack” of tiny signals or transients hidden among enormous backgrounds. As in many 
other situations, being physically anomalous is potentially different from being 
statistically anomalous.  The development of AI anomaly detection algorithms that can 
incorporate physical (or other) models in order to define anomalies would lead to 
powerful new methods of discerning small signals of interest.  

• AI methods for management of computational resources and workflows.  Computer 
systems employed in high-end scientific applications have become extremely 
complex.  Computer architectures have deep hierarchies with multi-core CPU and GPU 
components, are often heterogeneous, and are increasingly integrated into distributed 
systems that incorporate edge computing.  AI methods are being developed to schedule 
and coordinate execution of workflows and to choreograph applications that include 
capture, reduction, assimilation, and analysis of streaming data.    

• AI Models and Security.   It is generally advantageous to train AI models with data from 
a variety of sources.  Some attributes of training data can be reconstructed from 
models.  Development of methods that create models that cannot be used to reconstruct 
secure data would make it possible to use data from a variety of secure and open 
applications to train models.  It is of equal importance to develop methods to determine 
when the release of a model, trained on secure data, would constitute a security breach. 
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• Training data variability and noise.  Variability in sensor characteristics and varying 
statistical characteristics of noise create challenges in quantifying the accuracy of models 
trained using sensor data.  These impact models created from photon and neutron 
sources as well as weather and climate models. Further challenges arise in models that 
are trained using combinations of experimental and simulated data.  

• Interpretable models and algorithms. There is a dichotomy between two views of what 
it means to “understand” a phenomenon: on one hand is a model that explains the 
result based on known or discovered laws, equations, etc. and on the other hand is a 
model that predicts results with accuracy, but provides no insight as to its inner 
workings. The quest to build interpretable models and algorithms bridges this gap, and 
aims to provide extractable insight in to why and how a model is producing a particular 
output. This is important, both to provide understanding, as well as to shed light as to 
the applicability of the model.  
 

• Robustness and applicability. It is critical to understand when and where an AI/ML 
algorithm can be applied. While an AI/ML algorithm may be well-suited for interpolation, 
in which the algorithm is applied to an input that lies within the space of its training, when 
is it possible to use it for extrapolation when the algorithm predicts results outside the 
arena of what it has previously seen? Typically, the parameter space of possibilities is very 
large—how can one faithfully know the limits of an AI/ML algorithm? 

• Coupling simulations and experiment. A tantalizing opportunity comes in using AI/ML to 
couple experiment to simulation, iterating between using data to refine parameters and 
terms in equations, and using simulations to solve these equations to further interpret 
the data. Doing so will require marrying a host of mathematical methods across such 
areas as partial differential equations, stochastic modeling, dimensional reduction and 
reduced order models, to new AI/ML algorithms.  

• Graph-based ML and AI. Graphs arise naturally in many scientific domains (e.g., 
molecules, protein interaction networks, community networks). Structuring data and 
knowledge representations in terms of graphs and exploiting the topology information 
available from a graph representation can be critical to realizing tractable algorithms and 
obtaining better outcomes in tasks such as classification, clustering, and prediction of 
missing data. 

This list is not comprehensive. Continuing use-inspired research constantly reveals the limitations 
of current methodology and opportunities for new foundational advances. Tackling these areas 
of emphasis will require a combination of new algorithm and methods development along with 
the need to understand, adapt, and generalize AI methods whose creation was motivated by 
application scenarios that arise in many areas of science, engineering, and medicine.  AI 
challenges arising from several of the areas of DOE AI emphasis listed above have a great deal of 
overlap with AI challenges in the NCI domain, i.e. prediction of  treatment response in cancer 
patients requiring  analysis and integration of temporal sequences of combined clinical 
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observations, clinical notes, radiological imaging, pathology images, molecular data, and 
treatment data.   

6.4  AI Software Infrastructure 

There are a few notable gaps between state-of-the-art and DOE scientific requirements when it 
comes to software for AI. First, DOE researchers produce massive amounts of data from 
simulations and models that can benefit from the integration of AI capabilities. These are often 
challenging datasets with multidimensional data and can also include non-image-based data. 
Second, DOE’s unique user facilities that produce petabytes of data, have no counterpart in 
industry and require new AI software and capabilities. Third, many of the DOE scientific datasets 
need the scale of HPC systems for analysis, and those systems can have unique architectural 
features that require software attention and investment, such as large-scale I/O subsystems and 
heterogeneous compute elements. With DOE’s challenging datasets and deep expertise in data 
analytics, simulation, and modeling, DOE researchers are well-positioned to contribute unique 
enhancements to the AI software stack. 

As AI for Science matures, DOE computing workloads will primarily consist of AI-driven scientific 
computing. These computations will be deployed, in part, on evolved versions of the specialized 
accelerators that are emerging to execute AI applications such as artificial neural 
networks, machine vision, and machine learning. These new AI accelerators will, in turn, need a 
specialized software stack if they are to be able to optimize the performance of scientific 
applications within a node and across nodes. This will require a rethinking of all elements of the 
software stack to take the new hardware as well as these fundamentally new requirements into 
account. There is thus an urgent need to design and develop a software stack to meet DOE needs 
in this space, consisting of specialized programming models, compilers, and runtime (including 
communication software) support for AI-based scientific computing. 

The coupling of scientific codes with AI workloads is not a straightforward process. The 
framework, software, and libraries are distinct and currently there do not exist any APIs 
(application programming interface) that might help a domain scientist couple simulation codes 
and ML codes seamlessly. Moreover, AI technologies being deployed are continuously evolving. 
For example, graph-based machine learning is a new learning technique that demands new 
specialized APIs for effective deployment on AI accelerators. The ML programming environment 
should be rich enough to handle all these challenges. Because scientific datasets are very large, 
distributed machine learning is critical for DOE ML workloads. The Horovod framework from Uber 
has become the lingua franca for distributed machine learning. In particular, Horovod has been 
shown to scale to the full scale of current DOE HPC facilities. However, although the Tensorflow 
and Pytorch frameworks both support distributed machine learning they do not scale so well. 
Significant investment is needed to further develop distributed parallel programming models to 
overcome these scaling and performance issues. 

We highlight several specific areas that need R&D and deployment in the subsections below: 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Machine_vision
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• Data Management and Engineering. There is a distinct mismatch between existing data 
management tools and the needs of AI solutions in science. Designed for large, static 
dataset management (Spark, Hadoop, iRODS), these systems do not cope well with the 
flexible streaming nature of many AI training frameworks. Furthermore, while the overall 
training data volume for AI applications is very large, the actual data points are small and 
require a much more fine-grained data management and movement approach than these 
tools can provide. To fully support AI applications during training and operation will 
require new customized solutions. These also need to take into account topics such as 
metadata descriptions appropriate for selecting data samples suitable for AI model 
training. 
 

• User environments. Software areas highly relevant to AI for Science include core 
infrastructure and software development and information-technology operations, 
parallel computing (MPI), big data machine/deep learning kernels, data management and 
engineering, workflow management, resource management, edge computing, and 
simulation. The deep learning kernels have the world’s attention today with their 
implementations of the latest AI algorithms and optimization of the compute-intensive 
deep learning that has revolutionized AI. Here, there is a natural collaboration with 
Industry with DOE aiming at scalable supercomputer solutions exploiting the rich 
available parallelism (data, model, pipeline, hyper-parameter). However, all the software 
areas are important and need to be combined into a system to give the required user-
friendly AI environments for science. The deep learning kernels are probably less than 
10% of the needed software. 
 

• Workflow and resource management. Scientific workflows are already transforming 
modern science. They enable the composition and automated execution of complex 
computational and data management tasks. The workflows today are somewhat 
disconnected in that data and initial data processing are done close to the instruments 
while other workflows retrieve the calibrated or pre-processed data from storage and 
perform additional analysis. There is a clear need to merge the two workflow phases and 
enable semi- and fully automated experiment steering. The challenges for achieving this 
include robustness of workflow management systems, efficient workflow execution, 
efficient resource management, and meaningful communications between the software 
layers working together to support the workflow execution, among others. AI has the 
potential to make workflow management systems better performing, more adaptive, and 
more robust. AI can also push the boundaries of automation, suggesting or building 
appropriate workflows based on the data a scientist collects and their research goals. 

At the same time, AI workflows have their challenges as well, requiring a diverse set of 
resources, access to large amounts of data, exploration of potentially large 
hyperparameter spaces, and coordination of distributed learning processes.  In some 
cases, AI workflows need to run at the edge, imposing additional resource constraints and 
the need to operate in potentially volatile environments, where power and network 
demands pose challenges that are not well addressed by current workflow management 
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systems. New solutions are needed to efficiently and reliably address and perform 
resource and workflow selection, management, checkpointing, and coordination, as well 
as handling many other aspects of reliable and efficient management of AI workflows.  

• Simulation. In the simulation area, DOE has clear leadership in developing simulations at 
all scales, but there is a software gap in the support for incorporating AI, with its multiple 
opportunities for enhancement, into simulations.  One such gap is in the provision of 
infrastructure to enable real-time machine learning needed for the time-critical response 
for instrument control. Recent DOE progress has been seen in real-time identification of 
tokamak instabilities and real-time analysis of light-source data, but training datasets are 
difficult to acquire, and validation of performance is difficult. Similarly, virtually every area 
of science would like to advance their capability to simulate processes (whether physical, 
chemical, or biological) across a broader range of spatial and temporal scales.  Through 
the application of AI techniques, researchers are beginning to extend the reach of 
multiscale simulations. However, the workflows required are complex, dynamic, and not 
well supported in existing software infrastructure. In many cases, surrogate AI models can 
be used to provide substantial acceleration for simulations. Here, too, the software 
infrastructure to support multiple execution modalities is lacking. 

 
As we move to the new applications opened up by AI for Science it is important to look at 
the whole software stack that supports simulation methods and derive updated 
requirements that can be compared to the capabilities of existing software. Such an 
analysis should be coordinated across DOE, academia, and industry; there will be 
important similarities and differences.  This analysis will pave the way for the 
development of support cyberinfrastructure that will enable and accelerate the creation 
of AI-based simulations. 
 

• Compilers. Domain-specific machine learning compilers are emerging that offer the 
promise of more flexible ML frameworks and better exploitation of hardware. Today, 
these compilers struggle to effectively optimize the low-level computation within ML 
applications. Moreover, these optimizations are focused on goals that will not lead to 
meeting the requirements of DOE ML workloads. There is a great need to further develop 
machine learning compiler technology to improve the performance of DOE applications 
and to enhance the expressivity of machine learning frameworks.  This may include 
rethinking the ML compiler design and scope to meet DOE-specific needs, from tightly 
integrated AI-driven scientific computations through edge ML scenarios. 
 

• Runtime. Future node architectures may be highly heterogeneous systems, with a variety 
of accelerators configured. As with scientific computations, the behavior of AI 
applications on these platforms may be complex and difficult to characterize and 
predict.  New mechanisms for deploying ML computations may include the creation of 
smarter runtimes that can respond to system inefficiencies and changes in workload by 
adapting execution details to provide the best possible performance. Such a runtime 
might facilitate the dynamic coupling of simulations and machine learning in AI-driven 
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scientific computations and contribute to their further integration.  DOE must invest in 
adaptive runtime systems that can take on the challenge of managing such workloads on 
future, complex node architectures to effectively exploit their heterogeneous resources.  
 

• Reproducibility/reuse: A fundamental question that can be asked of any AI algorithm is 
what are the limits of its applicability.  An answer to this should include information about 
its structure, training methods, training data sets, and, potentially, the hardware on which 
it was trained. Infrastructure capable of automatically capturing such provenance 
information needs to be created as part of the large-scale training and validation 
workflows that will be necessary for complicated AI applications.  Without this, reuse will 
be difficult and the sharing of resources non-existent.   A related topic is the creation of 
large, annotated datasets for training.  Datasets that are created to be FAIR (Findable, 
Accessible, Interoperable, and Reusable) can form the cornerstone of AI research [15]. 
Significant effort is required to provide tools that will enable the creation of massive FAIR 
datasets from target scientific applications. Only these will contain the appropriate 
physical constraints, salient features, and underlying complexity that can enable training 
and validation of new AI algorithms targeted at the science. 
 

• Workload analysis and benchmarking. These are critical areas of work for all four integral 
components described in this subsection. In addition to co-design, a standardized and 
rigorous process for characterizing and benchmarking existing AI application workloads is 
needed to understand computational requirements and evaluate system performance. A 
collection of AI science benchmarks with FAIR datasets and reference implementations 
would have multiple benefits. The benchmarks could be used for the comparative 
measurements of the performance of different systems; they would provide exemplars 
for users having similar requirements and allow Kaggle style challenges to develop 
improved algorithms and systems. 

6.5  New Hardware Technologies for AI 

The DOE computing systems such as Summit, Perlmutter, Aurora, and Frontier will 
simultaneously support the use of existing large-scale simulations, development of new hybrid 
HPC models with AI surrogates, and the exploration of new types of generative models emerging 
from multi-model data streams and sources. Future systems envisioned over the next decade 
may need to support even richer workloads of traditional HPC and next-generation AI-driven 
scientific models. 

The types of hardware that exist in DOE leadership computing (LCF) facilities to support training 
may differ from the hardware needed to support inference at the edge or in the real-time use 
cases. Edge devices typically require very low power, while devices for training may be among 
the most power-hungry chips ever produced.  In addition, many edge devices need to be able to 
operate in harsh conditions such as low temperatures or with radiation exposure. The industry is 
developing a wide variety of solutions that may fit multiple use cases, ranging from purpose-built 
devices designed for low-precision tensor operations to more traditional GPU and CPU 
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architectures optimized for machine learning. However, some deployment situations are so 
specialized that the DOE may need to provide the required solutions, as it does today for more 
traditional computing support at the edge.  Both the hardware demands of AI software (as noted 
in the previous section) and the marketplace of devices are likely to continue to dramatically 
evolve in the coming years. 

DOE should create a focused strategy to shape AI hardware to serve its science mission. Key to 
success is a strategy that leverages DOE, community, and industry investments in technology and 
scalable solutions. The industry will continue its dramatic pace of advancement over the next 
decade, but those advances are focused on goals that will not lead to meeting the requirements 
of DOE computational science and experimental data applications. In particular, the AI use cases 
for scientific applications will differ significantly, requiring extreme data rates, low-latency 
response, and extensive exploitation of explicit knowledge. Second, the rapid growth of AI 
training costs will create sustainability challenges to the growing burden of AI computing, forcing 
new approaches.  

Looking further ahead, the ASCR facilities will continue to design complex, technically advanced 
networking and computing systems for future science generations where the needs of the AI 
ecosystem will be an integral part of any initial design. Given the pace of change in AI technology 
and techniques, these future facilities will also need to be designed with flexibility in mind to take 
advantage of the advances that will inevitably come from application work over the next decade. 

6.6  Instrument to Edge Computing 

Edge Computing 

At DOE’s modern user facilities, it is well known that it can take months for users to analyze data 
collected in only a few experimental shifts.  The shortage of widely available, science-driven, 
AI/ML tools for rapid data-analysis and inference, together with appropriate computing, data 
storage, and networking support, is now a critical bottleneck hindering the extraction of new 
scientific knowledge from major DOE facilities. With new facilities coming on-line, and the 
planned upgrades of existing experimental facilities, this data-analysis bottleneck will become 
more severe and scientists will genuinely be overwhelmed with data. Some have referred to this 
data overload as a ‘looming crisis’ while Turing Award winner, Jim Gray, preferred to work with 
scientists who were ‘drowning in data’ to help them exploit modern computer science 
technologies. Thus, an important component of any AI for Science initiative must be the 
mitigation of this data analysis bottleneck with the development of new, domain-aware AI/ML 
methods and provision of appropriate software and hardware infrastructure.  

The number of network-connected devices (instruments, computers, data stores) is growing at 
an exponential rate. New AI/ML technologies, including deep learning, will be critically important 
to fully exploit complex instruments and facilities, replacing pre-programmed hardware event 
triggers with algorithms that can learn and adapt, as well as discover unforeseen or rare, rate-
limiting events that would otherwise be lost in compression. Sensors and other real-time 
hardware and software together with other significant edge computing resources located at the 
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facilities are needed both to detect events and anomalies more efficiently and to reduce the raw 
instrument data rates to manageable levels. 

The goal of DOE’s ‘Instrument-to-Edge’ activity is to chart a course for deploying data analysis 
methodologies, tools, and services for SC experimental user facilities that exploit new AI/ML 
technologies, based on some commonality of hardware and software infrastructure.  These edge 
resources at the facilities need also close linkage to the major SC computing facilities (LCF, NERSC) 
that can support the advanced use of simulation, and AI to optimize and steer experiments as 
needed.  

Hardware-Software-Algorithm Co-design 

The use of AI/ML technologies is rapidly permeating the design and operation of scientific 
instruments.  This trend is expected to grow in extent and intensity, eroding the traditional 
partition between hardware and software.  Optimal design, construction, and operation of major 
user facilities, therefore, require a deep co-design approach that integrates user experiments 
with developments in hardware, software, and edge computing. The DOE Labs’ co-design culture 
has matured during the Exascale Computing Project (ECP) and involves teams of scientific users, 
instrument providers, physicists, mathematicians, and computer scientists as well as hardware 
designers. As recommended by the ASCAC ECP Transition Report [10], ASCR should take 
advantage of this legacy of co-design expertise to develop a major ‘Instrument-to-Edge initiative 
with BES and the facilities. For example, two of the six ECP co-design centers are of immediate 
relevance to an AI for Science initiative: 

• The ExaLearn Co-design Center is identifying the fundamental machine learning 
challenges associated with ECP applications and developing scalable AI/ML technologies 
for the analysis of data generated not only by exascale applications but also by the DOE 
user facilities.  

• The goal of the Center for Online Data Analysis and Reduction at the Exascale (CODAR) is 
to produce a coherent software infrastructure and to release appropriate software tools 
and libraries.   

Much of the ECP experience in co-design and software infrastructure development can, 
therefore, be leveraged to assist in the creation of new AI/ML capabilities and tools that can be 
readily applied across the agency’s diversity of instruments, facilities, and infrastructure. ASCR 
therefore needs to provide strong and concerted support for AI/ML based co-design throughout 
the design, construction, and operation cycles of major facilities.   

6.7  AI/ML Workforce: Training, Focusing, and Retention 

Industry, national laboratories, government, and broad areas of academic research are making 
more use than ever before of AI, ML, and simulation-based decision-making. This trend is broadly 
apparent across many domains such as energy, manufacturing, finance, and transportation. 
These are all areas in which AI is playing an increasingly significant role, with many more examples 
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across science, engineering, business, and government. Research and innovation, both in 
academia and in the private sector, are increasingly driven by large-scale computational 
approaches using AL and ML technologies.  With this significant and increased use comes a 
demand for a workforce versed in technologies necessary for effective and efficient AI/ML-based 
computational modeling and simulation as well as in data science. There is a high demand for 
graduates with the interdisciplinary expertise needed to develop and/or utilize AI techniques and 
methods to advance the understanding of physical phenomena in a particular scientific, 
engineering, or business field and to support better decision-making. 

Training and retention of a cadre of young people for DOE SC in the area of AI is vital. Over the 
past 20 years, the IT industry has expanded dramatically, driven by e-commerce, social media, 
cloud services, and smartphones, with the IoT, healthcare sensors, industrial automation, and 
autonomous vehicles further expanding the domain of big data analytics and services.  In 
response to seemingly insatiable workforce demands, most students are now trained in software 
tools and techniques that target these commercial opportunities rather than scientific computing 
and HPC. Few students outside of scientific domains learn C, Fortran, or numerical methods, 
which could be considered the traditional ‘tools of the trade’ in computational sciences, and 
engineering. This trend is an extension of one that began in the 1990s and is irreversible. 
Consequently, the scientific community is beginning to embrace new tools and approaches for 
artificial intelligence, and machine learning for science while also encouraging students to learn 
both HPC and data analytics tools. 

A strong research program will crucially rely on a complementary education component, which 
is as important as adequate infrastructure support. A continuing supply of high-quality 
computational and data scientists available for work at DOE laboratories is critical. For example, 
the DOE Computational Science Graduate Fellowship (CSGF) program has successfully provided 
support and guidance to some of the nation’s best scientific graduate students, and many of 
these students are now employed in DOE laboratories, private industry, and educational 
institutions. To meet the increasing need for computational and data scientists trained to tackle 
exascale and data-intensive computing challenges, there is now a significant requirement for a 
similar fellowship program supporting training in exascale and data intensive computing and 
related areas, as outlined previously in this report. 

Other examples that could be replicated to help train both new scientists, as well as focus and 
retrain existing scientists to utilize exascale computing and data analytics are the Argonne 
School on Extreme-Scale Computing and the Berkeley Summer School on Deep Learning for 
Science. Expanding or replicating such summer schools on an AI for Science theme and 
introducing similar courses on data-intensive computing could help train a new generation of 
scientists capable of tackling the challenges of AI for Science and data intensive computing. 
Such schools would also serve to update and upgrade the skills of existing experimental 
scientists and computational scientists in these important areas as well. The schools would also 
provide a unique opportunity for the Office of Science to create a skilled diverse and inclusive 
workforce that is valued both by the DOE Lab community and by US industries [9, 10].  
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In addition to courses and schools, training the workforce for AI for Science will require the 
availability of well-curated, relevant datasets.  Much of AI instruction today relies on commonly 
available public datasets (e.g. Youtube videos) that are not appropriate for teaching and training 
the appropriate AI techniques relevant to the DOE mission.   The DOE could produce and provide 
open datasets relevant to various areas of the DOE mission and share them broadly both for in-
house programs and for universities.  

6.8  University Partnerships 

University-based investigators have driven conceptual advances in fundamental computer 
science that have furthered the frontiers in AI from the start. Many important breakthroughs in 
AI have been accomplished at universities, often in collaboration with technology companies and 
national laboratories. During the past two decades, US universities have been growing their 
research activities in AI to varying degrees. These have typically been cross-disciplinary activities 
involving a subset of computer science, mathematics, statistics, and electrical engineering 
departments as well as traditional science departments. At several institutions, joint institutes or 
centers and technology hubs have been successfully established. These university-based 
activities have played an essential role in establishing the currently existing AI workforce, 
including scientists, engineers, and developers at national laboratories, technology companies, 
and startups. They have been instrumental, along with the national laboratories, in training 
engineers and technical support for AI infrastructure. University engagement is typically through 
sponsored research agreements and is particularly effective via stable, long-term funding 
programs that allow sustained partnerships to flourish. 

National laboratories, universities, and technology companies and startups have begun to 
convene consortia in various forms to extend capacity in AI. National laboratories and universities 
have established agreements with technology companies and startups to provide them with 
mutually beneficial collaborative access to computational resources and data science experts. 
The scope of research at the national laboratories typically encompasses elements integral to the 
AI programs supported by the DOE Advanced Scientific Computing Research (ASCR), Basic Energy 
Sciences (BES), Biological and Environmental Research (BER), Fusion Energy Sciences (FES), 
Nuclear Physics (NP), and High Energy Physics (HEP) Offices. Participants in these partnerships 
benefit from sharing expertise and resources, which accelerates the development of new AI-
related ideas and empowers them to explore technologies built from these advances.  

The stakeholders of ASCR, BES, BER, FES, NP, and HEP together should consider the following: 

• New funding mechanisms to encourage universities and laboratories to hire scientists, 
engineers, and developers with expertise at the interface of AI and BES, BER, FES, NP, and 
HEP into early-career positions that have long-term opportunities.   

• Development of flexible arrangements that support the engagement of DOE laboratory 
staff with technology companies and startups. 
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• Increasing the availability of fellowships and visiting scholar positions at the national labs 
to foster the growth of collaboration with the ASCR, BES, BER, FES, NP, and HEP 
communities needed to build this multi-disciplinary community. 

AI for Science will be defined in many ways by new thinking. It is difficult to overstate the 
importance of bringing young people into this effort to create and explore the new ideas that will 
be required. At the same time, one must ensure that sufficient funding is in place to ensure that 
the workforce development as a whole – from educating undergraduates, to nurturing young 
professionals and researchers, to establishing fulfilling permanent positions – is realistically 
supported. Collaboration with the NSF in relevant research and training programs will be 
important, as will funding to encourage the development of university partnerships so that 
universities can play a major role in this AI for Science agenda. 

6.9  Collaboration with Industry  

AI for Science has many opportunities for interactions between DOE and industry that have major 
benefits for both parties. These are naturally divided into two important classes: corresponding 
to the ‘AI’ and ‘Science’ parts of the proposed initiative. DOE is already interacting with industry 
on three aspects of AI technology – software, hardware, and algorithms.  Software activities 
include optimizing DOE supercomputers and their AI/Exascale follow-ons to run the complex 
compute-intensive deep learning algorithms at the heart of AI that are often coming from 
technology companies. DOE is already looking at the products of the many startups developing 
novel AI hardware. DOE’s research in algorithms (applied mathematics) and in computer science 
will be a key part of their interaction with the AI-oriented industry.  

AI will certainly transform science over the next 10 years but it will also transform large parts of 
the industry. AI/ML methods developed for science will have both direct and indirect importance 
for Industry.  

• DOE’s work on the AI design of novel materials will be the basis of interactions with the 
manufacturing industry and illustrates the importance of AI designed surrogates to speed 
up complex simulations of material properties. Surrogates give a direct and fast map from 
structure to properties and are also seen for chemicals and the drug industry (the new 
QSAR). Such surrogates are also allowing engineering to be model-based, by using digital 
twins for designs and decision making. They are seen in General Electric’s use of 
surrogates to provide their engineers with immediate response on the aerodynamic 
implications of design decisions for their engine industry [14].  
 

• Fusion research is conducted as a partnership between national labs, universities, and a 
growing number of private companies engaging in both research and development of 
fusion concepts.  DOE’s AI for control of fusion devices such as the tokamak becomes the 
basis of an interaction with industry which is just one illustration of the opportunities for 
AI to assist in monitoring and control across industries.  
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• Naturally, AI is having and will have an important impact on the broader energy industry. 
AI opportunities here include optimization of energy production including both oil and 
renewable sources such as wind farms. Control of electrical power grids will increase the 
opportunities for AI as heterogeneous microgrids, virtual power plants, and smart energy-
saving homes become more common. Optimization of distributed batteries including 
those in e-cars is a new possibility to support sporadic power sources such as solar. More 
traditionally AI will monitor global power grids and help avoid instabilities leading to 
unplanned blackouts. It is also thought that AI will give better algorithms for the trading 
of power between regions and providers. 
 

• Other major industries impacted dramatically by AI-enhanced science include 
automobile/transportation (reinventing itself as the mobility industry through the use of 
AI), space, and environmental engineering. AI for Space is a natural collaboration with 
NASA, with AI for remote system control, AI for remote robots, and AI for analysis of 
satellite imagery. Environmental engineering will need to combine smart sensors with 
novel hardware devices and real-time edge-based AI; it will contribute to a huge increase 
of new AI (today, deep learning) to interpret an explosion of geospatial time-series data.  
 

• During the Covid-19 crisis, DOE’s support for large-scale AI-driven simulations interacting 
with the drug industry is just one area where DOE research will accelerate the use of AI in 
the medical industry. Other examples are nanoscale sensors and complex systems 
simulations from the small (cells) to large scale (global pandemics).  

One existing model for industry partners wishing to enhance its own AI/ML capabilities that could 
be followed is for SC to establish an industry collaboration for AI for Science similar to the High-
Performance Computing for Manufacturing program (HPC4Mfg) supported by the Office of 
Energy Efficiency and Renewable Energy (EERE). This program connects industry to DOE Lab 
researchers in simulation and modeling and, in the first year, pays for a DOE employee or scientist 
to work on building and/or applying simulation packages to meet the specific industrial need. A 
similar AI for Science program to this HPC4Mfg program could direct industrial attention to the 
potential of DOE developed AI/ML technologies for their company. Another opportunity is to 
increase DOE’s interaction with the largely industry-driven MLPerf organization that is developing 
open-source datasets and algorithm implementations for their large-scale performance-sensitive 
applications. DOE can collaborate with the IT Industry sponsors of the MLPerf consortium and 
expand the scope of the program to cover the performance of AI relevant to science. 

We have deliberately discussed the science and engineering-related industries; however, 
algorithms and software will be generic to many fields and DOE will have the potential to interact 
with other industries transformed by AI, including commerce, entertainment, and sports. 

6.10 Inter-Agency Collaboration 

The DOE is clearly the lead agency for applications in big science, big data, and big computing at 
the DOE experimental facilities. It has also established national and international leadership in 
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both Supercomputing and in the application of AI/ML technologies to the very large scientific 
datasets from their large-scale experimental Facilities. DOE has an existing successful 
collaboration with the NIH National Cancer Institute (NCI) through the ECP CANDLE project. In 
addition, the DOE is developing an MOU with both the NSF and NIH on collaborative research in 
a Computational Neuroscience program.  

In the context of AI for Science, SC should explore the creation of one or more Joint Research 
Institutes with NSF as well as the possibility of joint research calls. The subcommittee also 
believes it would be worthwhile for SC, working in coordination with DOE’s Artificial Intelligence 
and Technology Office, NNSA, and other DOE programs as appropriate, to explore synergistic 
opportunities to work with other funding agencies such as NIST and DOD.  

6.11 International Collaboration 

There is a need for broad-based, coordinated action by like-minded international partners to 
harness the global scientific software community to address the research opportunities provided 
by data-intensive science. This reflects the fact that computational and data analytical methods 
driven by AI/ML are now universally accepted as indispensable to future progress in science and 
engineering.  The last time a disruption of comparable dimensions occurred – during the 
transition from Petascale to Exascale supercomputers more than a decade ago – only a relatively 
small part of the scientific community felt the consequences of the struggle to manage the 
wholesale replacement of programming models, numerical and communication libraries, and all 
the other software components and tools on which application scientists were already building.  
AI/ML applied to computational and data science is still relatively young, and methods are still 
largely the province of relatively few scientific elites in a small number of physical sciences.   

Today, aided by the success of the scientific software research and development community, 
researchers in nearly every field of science and engineering are beginning to turn to AI/ML 
approaches to assist in opening new areas of inquiry (e.g. the very small, very large, very 
hazardous, very complex). The goal is to dramatically increase research productivity and to 
amplify the social and economic impact of their work. Recent reports – such as the AI for Science 
Town Hall report and others (see Appendix C) – make a compelling case, in terms of both scope 
and importance, for the profound expansion of our research horizons that will occur if we can 
rise to the challenge of exploiting AI/ML technologies in computational and data science.  
However, in light of the radical changes in computing that are currently occurring, it is clear that 
the software infrastructure necessary to make these opportunities a reality does not yet exist 
and that we are a long way from being in a position to create it.   

International leadership in AI for Science over the coming decade will hinge on the realization of 
an integrated set of programs spanning the four interdependent areas noted above – new 
applications, AI algorithms and foundations, software infrastructure, and hardware tools and 
technologies. In terms of an international effort rationale, scientists in nearly every research field 
and most countries will now depend on the development of software infrastructure for high-end 
computing and data analysis in order to open up new research fields and to dramatically increase 
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their research productivity. Such an AI/ML exascale software infrastructure will underpin the 
global scientific communities who need to work together on problems of global significance and 
be able to leverage distributed resources in trans-national configurations. In terms of feasibility, 
the dimensions of the task – totally redesigning and recreating, in the period of just a few years, 
the massive software foundation of computational and data science to meet the new realities of 
AI for Science – are simply too large for any one country to undertake on its own. 

To realize this vision, the Office of Science needs to: 

• Provide a framework for organizing the software research community  

An organizational framework needs to be designed to enable the international software 
research community to work together to deliver a more capable and productive AI for 
Science environment. The framework should include elements such as initial working 
groups, outlines of a system of governance, alternative models for shared software 
development with common code repositories, feasible schemes for selecting valuable 
software research, and incentivizing its translation into usable, production-quality 
software for application developers, etc. This organization must also foster and help 
coordinate R&D efforts to address the emerging needs of users and application 
communities on new platforms. 

• Create a thorough assessment of needs, issues, and strategies 

As part of its planning process, the international effort should assess the short-term, 
medium-term, and long-term needs of applications in an AI-enabled future. Participation 
in the effort from representative application communities and vendors will help ensure 
the adequacy of these assessments. The work of the organization that emerges from the 
effort must be prepared to provide DOE and other domestic and like-minded foreign 
research-oriented agencies with a series of well-crafted reports on the critical technical 
issues in the development of an AI for Science software infrastructure and with alternative 
strategies, both technical and programmatic, for solving these problems. 

• Initiate development of a coordinated software roadmap 

Working with the results of its application needs assessment, the international effort will 
initiate the development of a coordinated roadmap to guide open-source AI for Science 
software development with better coordination and fewer missing components. This 
roadmap will help to guide both cooperative development and joint research efforts. 

• Encourage and facilitate collaboration in education and training  

The magnitude of the changes in programming models, software infrastructure, and tools 
brought about by the transition to AI for Science will produce tremendous challenges in 
the area of education and training. The international effort will, therefore, provide a plan 
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for cooperation in the production of education and training materials to be used in 
curricula, at workshops, and online. 

• Engage and coordinate vendor community in crosscutting efforts 

To leverage resources and create a more capable software infrastructure for supporting 
AI for Science, the international effort should engage and coordinate with vendors across 
all of its other objectives. Vendor participation in, and contributions to, all of these 
objectives – the comprehensive application needs assessment, well-ordered but adaptive 
software roadmap, an organized framework for cooperation, coordinated R&D programs 
for new exascale software technologies – will be encouraged and facilitated. 

Within the DOE’s Office of Science, ASCR is well suited to take on these challenges. 

6.12 Importance of ASCR’s long-term Applied Mathematics and Computer 
Science Research Programs 

Advancing the mathematical, statistical, and information-theoretic foundations of artificial 
intelligence are vital to realizing the full potential of AI for Science. These foundations are now a 
bottleneck for scientific discovery and the practical application of AI/ML remains predominantly 
an art. As discussed in section 6.3 on AI algorithms and foundations, significant progress is 
required on multiple fronts. These efforts must be complemented by advances in the computer 
science and mathematical foundations of AI that will be required to complement capabilities in 
hardware and software and realize the full potential of AI in DOE’s science and engineering 
missions. 

Existing efforts within the ASCR Applied Mathematics and Computer Science program are 
complementary to key directions for AI foundations research outlined in Section 6.4. For 
instance, optimization algorithms, differentiation techniques, and models form the foundation 
of training in AI. Opportunities exist for fundamental advances in this area to impact AI for 
Science from the HPC facility to the edge. Similarly, graphs arise naturally in many scientific 
domains (e.g., molecules, protein interaction networks, community networks), and modern ML 
research focused on learning with graph structures complements ASCR investments in graph 
theory. Finally, given the data explosion at DOE facilities, there is a need for smart detectors and 
associated high performance embedded computing at the edge to complement work on AI 
software and hardware described in Sections 6.3 and 6.5. These efforts complement ASCR work 
on data management and advanced networking, e.g., real-time distributed computing from 
detector directly to a facility for processing. 

Traditional applied mathematics and computer science research are essential to progress in the 
areas of AI and ML. Applied mathematics and computer science research are vital for scientific 
computing and its central role in US economic vitality, energy security, the environment, and 
national security. For the US to maintain an international edge in AI and ML, the subcommittee 
supports the recommendation of the ECP Transition report that ASCR should substantially 
reinvest in this research program and renew a stable environment for basic research [10]. 
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7. Summary of Conclusions 

The subcommittee makes six major recommendations to the Office of Science: 

1. Creation of a 10-year AI for Science Initiative 
2. Structure of an SC AI for Science Initiative 
3. An Instrument to Edge Initiative 
4. Training, focusing, and retention of AI/ML workforce 
5. Inter-Agency collaboration 
6. International collaboration 

In addition, the subcommittee stresses the importance for all six of the Office of Science 
programs to work together on the issue of hardware-software-algorithm co-design and data 
analysis at their major user facilities. Finally, the subcommittee supports the recommendation of 
the ECP Transition report [10] that stresses the importance of ASCR’s long-term Applied 
Mathematics and Computer Science research programs.    
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Figures 

Figure 1: AI, Machine Learning, Deep Learning in a Nutshell 
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Figure 2: What is a Data Scientist? 
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Figure 3: Structure of SC AI for Science 10-year Initiative 
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