
Center for Efficient Exascale
Discretizations (CEED)

Tzanio Kolev (LLNL)
CEED PI

2 Labs, 5 Universities, 30+ researchers

ceed.exascaleproject.org

Better HPC
✔️ multiple levels of parallelism

✔️ inter-device parallel sparse linear algebra

✔️ on-device dense linear algebra

✔️ batched tensor contractions

✔️ FLOPs/bytes increase with order

FEM benchmark problems on GPU (left) and CPU (right):
high-order kernels have up to 5x better performance for

same #dofs

Better science
✔️ naturally support unstructured and curvilinear grids

✔️ increased accuracy for smooth problems

✔️ sub-element modeling for problems with shocks

✔️ better symmetry, conservation, robustness, …

✔️ many apps: compressible flow, AM, fusion, …

8th order Lagrangian
shock hydro (MFEM)

6th order DNS

turbulence (Nek)

Why High-Order?

Additive Manufacturing (ExaAM)

Climate (E3SM)

Magnetic Fusion

(WDMApp)
Modular Nuclear

Reactors (ExaSMR) Wind Energy (ExaWind)

Subsurface (GEOS)

Urban systems (Urban)
Compressible flow (MARBL)

Combustion (Nek5000)

We are interested in working with other applications!

CEED Target Applications

Engine simulation (DOE VTO)

Heart Modelling

(Cardioid)

Topology optimization for

additive manufacturing

(LiDO)

Hot strip mill slab

modeling (U. S. Steel)

Electric aircraft design Adaptive MHD island

coalescence (SciDAC)

Core-Edge tokamak EM

wave propagation (SciDAC)

Additional Application Collaborations

Reactor simulation (DOE NEAMS)

CEED Discretization Libraries

CEED Miniapps
ceed.exascaleproject.org/miniapps

✔️useful for vendor engagements, collaboration ✔️ part of CORAL-2, ECP, ASC proxies

• / (Nek5000)
– A lightweight subset of Nek5000; solves a standard Poisson equations; weak-scaled to 6 million MPI ranks. Currently support

OpenACC/CUDA-based GPU variants.

•
– An experimental testbed for multi-level parallel implementations of high-order finite element computations; under development.

• (MARBL)
– A proxy for the Lagrangian component of MARBL; solves the time-dependent Euler equation of compressible gas; makes use of

unstructured moving meshes.

• (MARBL)
– A proxy the Eulerian component of the MARBL; solves the pure advection equations that are used to perform monotonic and

conservative discontinuous field interpolation (remap) in ALE methods.

• (ExaAM)
– A miniapp for the ExaAM project based on MFEM evaluating constitutive material properties at continuum scale.

•

libParanumal

✔️ libParanumal = reference library of highly optimized GPU implementations of high-order finite
element and discontinuous Galerkin based PDE solvers.

github.com/paranumal/libparanumal

✔️ Developed by Tim Warburton’s group at Virginia Tech

Laghos
github.com/ceed/laghos

3D Taylor-Green
smooth test problem

3D Sedov blast
shock test problem

✔️ Miniapp for HO compressible shock hydrodynamics

• moving (high-order) curved meshes

• explicit time integration

✔️ Proxy for LLNL’s Blast code

✔️ Based on MFEM

• quick to prototype, C++

• inherits/motivates performance improvements

✔️ Laghos-3.0: device support based on MFEM-4.0

✔️ Procurement benchmark for CTS-2 at LLNL

✔️ Used for El Capitan’s node architecture decision

✔️ Strong collaboration with NVIDIA

• Summit on Summit meetings

• Optimizing the Laghos-2.0 CUDA version

libCEED: CEED’s Low-Level API Library

✔️ API between frontend apps and backend kernels

✔️ Efficient operator description (not global matrix)

✔️ Clients use any backend as a run-time option

✔️ Backend can be added as plugins without recompiling

✔️ Backends compete for best performance, latency vs

throughput, optimize for order/device, use JIT, …

lightweight, portable & performant high-order operator evaluation

backend kernels

frontend apps

libXSMM, AVX

✔️ Extensible backends

• CPU: reference, vectorized, libXSMM

• CUDA using NVRTC cuda-gen

• OCCA (JIT): CPU, OpenMP, OpenCL, CUDA

• MAGMA

github.com/ceed/libceed

libCEED v0.6

FEM Operator Decomposition

✔️

T-vector L-vector E-vector Q-vector

global domain

all (shared) dofs

sub-domains

device (local) dofs

elements

element dofs

quadrature

point values

P

PT

G

GT

B

BT

D

✔️

✔️ ✔️

✔️ CEED's bake-off problems (BPs) are high-order kernels/benchmarks

designed to test and compare the performance of high-order codes.

BP1: Solve {Mu=f}, where {M} is the mass matrix, q=p+2

BP2: Solve the vector system {Mui=fi} with {M} from BP1, q=p+2

BP3: Solve {Au=f}, where {A} is the Poisson operator, q=p+2

BP4: Solve the vector system {Aui=fi} with {A} from BP3, q=p+2

BP5: Solve {Au=f}, where {A} is the Poisson operator, q=p+1

BP6: Solve the vector system {Aui=fi} with {A} from BP3, q=p+1

✔️ Mixture of compute-intensive + nearest-neighbor communication +

vector reductions

✔️ Compared Nek, MFEM, deal.ii on BG/Q, KNLs, GPUs.

✔️ Goal is to learn from each other, benefit all HO applications
BP terminology: T- and

E-vectors of HO dofs

CEED benchmarks
github.com/ceed/benchmarks

CEED Bake-off Problem 1 on CPU

✔️

✔️

✔️

✔️ github.com/kronbichler/ceed_benchmarks_dealii

✔️

✔️

✔️

✔️

CEED Bake-off Problem 1 on CPU

AVX libXSMM

PETSc-BP1, 3D, Intel Xeon E5-2680 v3, 24 cores/node (Haswell)

p=1 p=1

p=2 p=2

p=4

p=4

p=15

p=13

p=7

p=7

BP1/CPU: AVX + libXSMM backends

BP3/GPU: CUDA-ref + CUDA-gen backends

CUDA-ref CUDA-gen

p=1

p=2

p=8

p=6
p=9

MFEM-BP3, 3D, Lassen 4 x V100 GPUs / node, n0.8 about 7.5x larger than Haswell

p=1
p=2

p=6

p=13

MFEM performance on multiple GPUs

Best total performance: 2.1 TDOF/s

Largest size: 34 billion

1 GPU 4 GPUs 1024 GPUs

Optimized kernels for MPI buffer packing/unpacking on the GPU

GPU-aware MPI ready

MFEM-BP3, 3D, Lassen 4 x V100 GPUs / node

0

0.2

0.4

0.6

2 4 8

2D BP3 solve time (s)

cuda-ref cuda-reg

cuda-shared cuda-gen

0

10

20

2 4 8

3D BP3 solve time (s)

cuda-ref cuda-reg

cuda-shared cuda-gen

cuda-ref: 2.7 ms

cuda-reg: 1.8 ms

cuda-shared: 1.7 ms

cuda-gen: 0.6 ms

GPU backend performance evolution

 Internal collaboration + bake-off based

on the BPs has been critical!

adds initial GPU support in many linear algebra and finite element operations

Device support in MFEM-4.0

✔️ Kernels can be specified via loop-body lambda-capture, or raw CUDA, OCCA; many have single source

✔️ Backends are runtime selectable, can be mixed ✔️ Recent additions: support for AMD/HIP

GPU

CPU

HardwareBackendsKernelsLibrary

Kernel

Memory

Execution

RWR Wlinalg

fem

mesh
OCCA

CUDA

RAJA

OMP

libCEED

HIP

order (same #dofs)

ru
n

ti
m

e
(s

e
c
o
n
d

s
)

single core

multi-core

GPU

Example 1, 200 CG-PA iterations, 2D, 1.3M dofs, GV100 + 16 core Skylake (Linux)

backends

Initial results with MFEM-4.0

libCEED

libCEED

• strong scales (2000 pts/rank) to > 1 million cores (Gordon Bell winner)

• based on + (Warburton et al., V. Tech.)

– Using GPUs, NekRS is about 10-15x faster than all-CPU code on Summit

– Main kernels get about 2 TFLOPS on Nvidia V100 (FP64)

– Principal kernels have been tested on AMD and Intel Gen9

NekRS - GPU

Nek5000 - CPU

Nek5000

(BG/Q)

NekRS turbulence simulation
for pebble-bed reactor using

66 GPUs on Summit

NekRS: GPU-oriented version of Nek5000

General Interpolation

High-order Meshes Unstructured AMR Tensor contractions

Scalable matrix-free solvers High-Order Operator Format

More info at: http://ceed.exascaleproject.org/fe

High-Order Visualization

Performance portability

OCCA

www.libocca.org

x86
Xeon
Phi

AMD
GPU

NVIDIA
GPU

OpenCL

NVIDIA
CUDA

Threads

OCCA API

OCCA is an open-source library that facilitates programming in an environment
containing different types of devices. We abstract devices and let the user pick at run-
time, for example: CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

Features include:

• JIT compilation for kernels

• Single kernel language for all
backends (OKL)

• Works with MPI

• API in multiple languages

• MIT License

• Extensible backend API, allowing
for future features. For example,
we support unified memory in
CUDA and mapped memory in
OpenCL.

High-Order Software Ecosystem

http://ceed.exascaleproject.org/fe/

• Website:

http://ceed.exascaleproject.org

• Software:

https://github.com/ceed

• Publications:

https://ceed.exascaleproject.org/pubs

• ECP:

https://confluence.exascaleproject.org/display/CEED

• Email:

ceed-support@llnl.gov

• Applications

• Elia Merzari

• Vladimir Tomov

• Robert Rieben

• Sofware

• David Medina

CEED Resources

• Hardware

• Jean-Sylvain Camier

• Ian Karlin

• Scott Parker

• Finite Elements

• Tzanio Kolev

• Panayot Vassilevski

http://ceed.exascaleproject.org/
https://github.com/ceed
https://ceed.exascaleproject.org/pubs/
https://confluence.exascaleproject.org/display/CEED
mailto:ceed-support@llnl.gov

This work performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore Nat ional Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-790865

Disclaimer

This document was prepared as an account of work sponsored by an agency of the

United States government. Neither the United States government nor Lawrence

Livermore National Security, LLC, nor any of their employees makes any warranty,

expressed or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States government or

Lawrence Livermore National Security, LLC. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States

government or Lawrence Livermore National Security, LLC, and shall not be used for

advertising or product endorsement purposes.

