# Recent Progress on Application Development in ECP

Andrew Siegel, Director of ECP Application Development

Erik Draeger, Deputy Director of ECP Application Development





# **Big Picture**





## Where we started

| National security                                                                                                                                                              | Energy security                        | Economic security                                          | Scientific discovery                                                             | Earth system                                                                                           | Health care                                                                     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| Next-generation,<br><b>stockpile</b><br><b>stewardship</b> codes<br>Design and                                                                                                 |                                        | Additive<br>manufacturing<br>of qualifiable<br>metal parts | <b>Cosmological probe</b><br>of the standard model<br>of particle physics        | Accurate regional<br>impact assessments<br>in <b>Earth system</b><br>models                            | Accelerate<br>and translate<br><b>cancer research</b><br>(partnership with NIH) |  |  |  |  |  |
| <ul> <li>• 25 application</li> <li>• Includir</li> <li>• Representation</li> </ul>                                                                                             | tions and 6 co-de<br>ng 51 separate co | esign projects<br>odes                                     | Validate fundamental<br>laws of nature<br>Plasma wakefield<br>accelerator design | Stress-resistant crop<br>analysis and catalytic<br>conversion<br>of <b>biomass-derived</b><br>alcohols |                                                                                 |  |  |  |  |  |
| <ul> <li>Nepresenting over 10 million mes of code</li> <li>Many supporting large user communities</li> <li>Covering broad range of mission critical S&amp;E domains</li> </ul> |                                        |                                                            |                                                                                  |                                                                                                        |                                                                                 |  |  |  |  |  |
| <ul> <li>Mostly all MPI or MPI+OpenMP on CPUs</li> <li>Each envisioned innovative S&amp;E enabled by 100X increase in computing power</li> </ul>                               |                                        |                                                            |                                                                                  |                                                                                                        |                                                                                 |  |  |  |  |  |
| <ul> <li>Path to harnessing 100-fold improvement initially unknown likely to have disruptive impact on software unlike anything in last 30 years</li> </ul>                    |                                        |                                                            |                                                                                  |                                                                                                        |                                                                                 |  |  |  |  |  |
| → Massive software investments                                                                                                                                                 |                                        |                                                            |                                                                                  |                                                                                                        |                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                |                                        |                                                            |                                                                                  |                                                                                                        |                                                                                 |  |  |  |  |  |

## Where we are now

- Significant progress on multi-GPU nodes across all project, particularly on Summit and Sierra, speedups from 7-200X baseline
- **Co-design Centers** have surpassed original vision, developed into best practice
- Refactoring code for heterogeneous machine has required fundamental changes to data structures, data movement and algorithms that independent of specific accelerator features.
- AD projects are guinea pigs in exercising performance portable programming models





#### Where we are going Department of Energy (DOE) Roadmap to Exascale Systems



# Early access hardware

#### **Tulip** Frontier Center of Excellence System



- 8 Compute nodes, each with:
  - 1x AMD EPYC 7601(32C/180W/2.2GHZ)
  - 256GB 2666 DDR Memory
  - 1x ConnectX-5 EDR adapter
  - 1x 480GB SSD
- 6 of the nodes have AMD GPUs:
  - 4x AMD MI60 32GB 300W GPU PCIe
- 2 of the nodes have Nvidia GPUs:
  - 4x NVIDIA V100 32GB 250W GPU PCIe

# Iris

Aurora Center of Excellence System



- 20 Compute nodes, each with:
  - 1x Intel Xeon E3-1585 v5 CPU w/ Intel Iris Pro Graphics P580 (Intel Gen9 GPU)
  - 64GB DDR4 (operating at DDR4-2133)
  - 1Gbit ethernet
  - OneAPI beta SDK
  - /home, /soft NFS mounted storage



#### Bird's-eye View Application Development Timeline





## We have committed to quantified Key Performance Parameters (KPPs)

| KPP ID | Description of Scope                                         | Threshold KPP                                                                 | Objective KPP                                                                           | Verification<br>Action/Evidence                                                                                                                            |   |
|--------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| KPP-1  | Performance improvement<br>for mission-critical<br>problems  | 50% of selected<br>applications achieve<br>Figure of Merit<br>improvement ≥50 | 100% of selected<br>applications achieve<br>their KPP-1 stretch goal                    | Independent assessment<br>of measured results and<br>report that threshold goal<br>is met                                                                  |   |
| KPP-2  | Broaden the reach of exascale science and mission capability | 50% of selected<br>applications can<br>execute their challenge<br>problem     | 100% of selected<br>applications can<br>execute their challenge<br>problem stretch goal | Independent assessment<br>of mission application<br>readiness                                                                                              |   |
| KPP-3  | Productive and sustainable software ecosystem                | 50% of the weighted impact goals are met                                      | 100% of the weighted impact stretch goals are met                                       | Independent assessment verifying threshold goal is met                                                                                                     | þ |
| KPP-4  | Enrich the HPC hardware ecosystem                            | Vendors meet 80% of<br>all the PathForward<br>milestones                      | Vendors meet 100% of<br>all the PathForward<br>milestones                               | Independent review of the<br>PathForward milestones<br>to assure they meet the<br>contract requirements;<br>evidence is the final<br>milestone deliverable |   |

# Measuring Progress: KPP-1





# Figure of Merit (FOM) Dashboard





## ExaSMR FOM updates

|                                                                                                                                                                                                                    | 8        | 2.2.2.03<br>Depl         | <u>3 ExaSMR</u> / ADSE08-95 ExaSMR MC / ADSE08-101<br>leted SMR calculation with updated algorithm on Titan                                                                     |                                 |                                                         |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------|---------------|
| 2.2.2.03 ExaSMR / ADSE08-95                                                                                                                                                                                        |          | Edit Q                   | Comment Assign More - To Do In Progress Done                                                                                                                                    |                                 | < 🏦 Export 🛩                                            |               |
| ExaSMR MC                                                                                                                                                                                                          | ⊻ D      | etails                   | ✓ Xporter                                                                                                                                                                       |                                 |                                                         |               |
| ·                                                                                                                                                                                                                  | T)<br>Pr | ype:<br>riority:         | KPP-1 Run Report Status: TODD (View Workflow) Template     High Resolution: Unresolved                                                                                          | Document I                      | Review Issue List 🗸 🕐                                   |               |
| ✔ Edit Q Comment Assign More 	V Needs Attention Concerns On Track                                                                                                                                                  | C        | omponent/s               | s: None Output f                                                                                                                                                                | ormat PDF                       | ~                                                       |               |
| Details                                                                                                                                                                                                            |          | 8                        | 2.2.2.03 ExaSMR / ADSE08-95 ExaSMR MC / ADSE08-102<br>Depleted SMR calculation with original algorithm on Summit                                                                |                                 |                                                         |               |
| Type: ON TRACK                                                                                                                                                                                                     | Vie      | 🖌 Edit                   | Q Comment Assian More + To Do In Progress Done                                                                                                                                  |                                 | ሩ ቆ Ex                                                  | (port v       |
| Priority: ~ High Resolution: Unresolved                                                                                                                                                                            |          | v Detai                  | le                                                                                                                                                                              | Y Xporter                       |                                                         |               |
| Component/s: None                                                                                                                                                                                                  | ~        | Type:                    | KPP-1 Run Report Status: TO DO (View Workflow)                                                                                                                                  | Template                        | Document Review Issue List                              | _             |
| Labels: None                                                                                                                                                                                                       |          | Priori                   | ty: Aligh Resolution: Unresolved                                                                                                                                                | Template                        |                                                         |               |
| Science Rate Units: neutrons/second                                                                                                                                                                                |          | Com<br>Labe              | 2.2.2.03 ExaSMR / ADSE08-95 ExaSMR MC / ADSE08-100                                                                                                                              |                                 |                                                         |               |
| FOM Baseline?: Yes                                                                                                                                                                                                 |          | Scier                    | Depleted SMR calculation on Summit                                                                                                                                              |                                 |                                                         |               |
| FOM Measure: 10,390,000                                                                                                                                                                                            |          | FOM<br>Mach              | ✓ Edit Q Comment Assign More → To Do In Progress Done                                                                                                                           |                                 | <                                                       | 🗄 Export 🛩    |
| Machine: Titan                                                                                                                                                                                                     | 1        | Num                      | ✓ Details                                                                                                                                                                       | <ul> <li>Xporter</li> </ul>     |                                                         |               |
| Number of Compute 18,688                                                                                                                                                                                           | × 4      | Node                     | Type: 🔂 KPP-1 Run Report Status: TO BO (View Workflow)                                                                                                                          | Template                        | Document Review Issue List 🗸 🗸 🕐                        |               |
| NODES:                                                                                                                                                                                                             |          | <ul> <li>Desc</li> </ul> | Priority: A High Resolution: Unresolved<br>Component/s: None                                                                                                                    | Output forma                    | at PDF 🗸                                                |               |
|                                                                                                                                                                                                                    | L        | Ident<br>activ           | Labels: None                                                                                                                                                                    |                                 | .+. Export                                              |               |
| Description                                                                                                                                                                                                        | × ,      | calcu                    | Science Rate Units: neutrons/second<br>FOM Measure: 242,100,000                                                                                                                 |                                 |                                                         |               |
| Quarter-core, 3D SMR benchmark model, fuel compositions after 30 day depletion. Active cycle particle rate tallies in each of 592 900 tally regions (77y77y100 mesh tally)                                         | trac     | gains                    | Machine: Summit                                                                                                                                                                 | <ul> <li>People</li> </ul>      |                                                         |               |
| Paralles and deliver to 52,000 tany regions (77777700 mean tany).                                                                                                                                                  |          | esun                     | Number of Compute 4,096 Nodes:                                                                                                                                                  | Assignee:                       | Steven Hamilton                                         |               |
| Baseline calculation uses history-based GPU implementation in Shift with the windowed pole method for<br>Simulation used 81.9 million neutrons per eigenvalue cycle (200.000 per GPU) for 20 inactive and 20 activ | cros     | 🖌 Attao                  |                                                                                                                                                                                 | Reporter:                       | Steven Hamilton                                         |               |
| tracking rate is averaged over active cycles. Achieved tracking rate of 2.28 million neutrons/s on 4096 no                                                                                                         | de       |                          | Description<br>Identical problem setup as baseline FOM calculation on Titan. 24.6 billion neutrons per cycle (1 million per GPU) for 20 inactive and 20 active cycles. Reported | Votes:                          | 0 Vote for this issue                                   |               |
| nodes of full Titan machine using linear scaling.                                                                                                                                                                  | _        | l                        | tracking rate is from active cycles only. Uses event-based GPU algorithm in Shift, which is an algorithmic improvement relative to the history-based algorithm                  | Watchers:                       | 1 Start watching this issue                             |               |
|                                                                                                                                                                                                                    |          | 🖌 Activ                  | neutrons/s on 4096 Summit nodes (using all 6 GPUs per node). Extrapolation to full machine 4608 nodes using linear scaling is 272 million neutrons/s.                           | ✓ Dates                         |                                                         |               |
| Attachments                                                                                                                                                                                                        |          | All                      | v Attachmante                                                                                                                                                                   | Created:                        | 2018-10-19 13:20                                        |               |
| ~                                                                                                                                                                                                                  |          | There                    |                                                                                                                                                                                 | Updated:<br>Date of Run:        | 2019-07-08 08:31<br>2019-05-04                          |               |
| $\langle \uparrow \rangle$ Drop files to attach, or browse.                                                                                                                                                        |          |                          | (م) Drop files to attach, or browse.                                                                                                                                            |                                 |                                                         |               |
|                                                                                                                                                                                                                    |          | Q Cor                    | × Activity                                                                                                                                                                      | <ul> <li>Development</li> </ul> | t                                                       |               |
| Sub-Tasks                                                                                                                                                                                                          |          | _                        | All Comments Work Log History Activity                                                                                                                                          |                                 |                                                         |               |
|                                                                                                                                                                                                                    |          |                          | There are no comments yet on this issue.                                                                                                                                        | ✓ Agile<br>View on Board        | d                                                       |               |
| 1. Depieted SMR calculation on Summit                                                                                                                                                                              | TODO     | Steven                   |                                                                                                                                                                                 | view off bodi                   | <u>v</u>                                                |               |
| 2. Depleted SMR calculation with updated algorithm on Titan 🚺 To r                                                                                                                                                 |          |                          | Q Comment                                                                                                                                                                       | Slack                           | e discussions, first confirm access to your Slack accou | unt(s) in the |
| 3. Depleted SMR calculation with original algorithm on Summit                                                                                                                                                      | TO DO    | Steven                   |                                                                                                                                                                                 | following wor                   | kspace(s): Exascale Computing Project                   |               |
|                                                                                                                                                                                                                    |          |                          |                                                                                                                                                                                 |                                 |                                                         |               |

Example of JIRA issues entered by PI to log FOM calculation

## WarpX FOM updates

|                                                                                                                          |                 |               |                      |                  |              |                              | <ul> <li>Details</li> </ul>                       |                                      |
|--------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------------|------------------|--------------|------------------------------|---------------------------------------------------|--------------------------------------|
| <br>2.2.2.06 WarpX /                                                                                                     | ADSE06-85       |               |                      |                  |              |                              | Type:<br>Priority:<br>Componen<br>Labels:         | t/s: Non                             |
| WarpX                                                                                                                    |                 |               |                      |                  |              |                              | Science Ra<br>FOM Meas<br>Machine:                | te Units: (alpl.<br>ure: 378,<br>Sum |
| Sedit Q Comment                                                                                                          | t Assign        | More 🗸        | Needs Attention      | Concerns         | On Track     |                              | Number of<br>Nodes:                               | <b>2.2.2</b>                         |
| ✓ Details                                                                                                                |                 |               |                      |                  |              |                              |                                                   | KPI                                  |
| Туре:                                                                                                                    | 🙆 KPP-1         |               |                      | Status:          |              | ON TRACK (View Workflo       | <ul> <li>Descriptio</li> <li>8Physical</li> </ul> | 🖋 Edit 🛛 🤇                           |
| Priority:                                                                                                                | 🔶 High          |               |                      | Resolution:      |              | Unresolved                   | PLASMA: p                                         | <ul> <li>Details</li> </ul>          |
| Component/s:                                                                                                             | None            |               |                      |                  |              |                              | LASER: a0                                         | Type:                                |
| Labels:                                                                                                                  | None            |               |                      |                  |              |                              | E- BEAM: 0                                        | Priority:<br>Componen                |
| Science Rate Units:                                                                                                      | (alpha*# grid   | l cells + bet | a*# macroparticles   | * # time steps   | s * BA / (wa | ll clock time)               | Number of                                         | Labels:                              |
| FOM Baseline?:                                                                                                           | Yes             |               |                      |                  |              |                              | GRID: Nx*N                                        | Science Ra                           |
| FOM Measure:                                                                                                             | 15,000,000,0    | 000           |                      |                  |              |                              | Particles: ~                                      | Machine:                             |
| Machine:                                                                                                                 | cori            |               |                      |                  |              |                              | Scaling fac                                       | Number of<br>Nodes:                  |
| Number of Compute                                                                                                        | 6,625           |               |                      |                  |              |                              | Simulation                                        |                                      |
| Nodes:                                                                                                                   |                 |               |                      |                  |              |                              | Mesh refin                                        | <ul> <li>Description</li> </ul>      |
|                                                                                                                          |                 |               |                      |                  |              |                              | BA = Boos                                         | Physical pa<br>PLASMA: n             |
| <ul> <li>Description</li> </ul>                                                                                          |                 |               |                      |                  |              |                              | Runtime: ~                                        | LASER: a0                            |
| The exascale challenge                                                                                                   | e problem is th | e modeling    | of a chain of up to  | 100 plasma aco   | celerator st | ages (each accelerating t    | FOM_base                                          | E- BEAM: C                           |
| ~10 GeV). The current state-of-the-art is the modeling of one stage in 3-D. The initial FOM is thus given on the modelin |                 |               |                      |                  |              |                              |                                                   | Number of                            |
| laser-driven plasma ac                                                                                                   | celerator stag  | e. For collia | er design studies, e | nsemple simul    | ations of th | le accelerator chain will no | eed to be                                         | Numerical                            |
| Simulated.                                                                                                               |                 |               |                      |                  |              |                              |                                                   | GRID: NX*N                           |
| Physical parameters:                                                                                                     |                 |               |                      |                  |              |                              |                                                   | Scaling fac                          |
| PLASMA: plasma density = 1.7e17 cm-3 • Channel matched radius Rc = 50 um • Length = 0.36 m                               |                 |               |                      |                  |              |                              | Simulation                                        |                                      |
| LASER: a0 = 1.7 • w0 = 50 um • Duration = 73 fs • Lambda = .81 um                                                        |                 |               |                      |                  |              |                              | Code used                                         |                                      |
| E- BEAM: Charge = 0.15 nC • Width = 0.6 um • Length = 3um • Emittance = 0.25 mm.mrad                                     |                 |               |                      |                  |              | Mesh refin                   |                                                   |                                      |
| Number of time steps = 1000                                                                                              |                 |               |                      |                  |              |                              | BA = Boost                                        |                                      |
| Numerical parameters:                                                                                                    |                 |               |                      |                  |              |                              | Runtime: ~<br>FOM: ( 5.9)                         |                                      |
| GRID: Nx*Nv*Nz = 140                                                                                                     | 8*1408*14016    | o ~ 2.8e10    |                      |                  |              |                              |                                                   | _                                    |
| Particles: ~ 5.6e10 (pla                                                                                                 | sma) + 5e4 (e   | - beam); cu   | ubic shape factor    |                  |              |                              |                                                   |                                      |
| Scaling factors: alpha=0.1; beta=0.9 (from time/cell and time/particle in uniform plasma test)                           |                 |               |                      |                  |              |                              |                                                   |                                      |
| Simulation boosted fra                                                                                                   | me relativistic | factor gami   | ma: 30               |                  |              |                              |                                                   |                                      |
| Code used: Warp                                                                                                          |                 |               |                      |                  |              |                              |                                                   |                                      |
| Mesh refinement: None                                                                                                    |                 |               |                      |                  |              |                              |                                                   |                                      |
| BA = Boost coming from                                                                                                   | m algorithm in  | nprovement    | s = 1. (by construct | ion, no boost fr | rom algorith | nm improvements in base      | line)                                             |                                      |
| Runtime: ~ 3519 secon                                                                                                    | ds              |               |                      |                  |              |                              |                                                   | - 1                                  |
| FOM baseline: ( 2 Pol                                                                                                    | )x01+56e10v     | 0.9)×1000/    | 3519 ~ 1 5610        |                  |              |                              |                                                   |                                      |
|                                                                                                                          | CONTRACTOR IN A | 0.0101000/    | AND IN THE LOOK IN   |                  |              |                              |                                                   |                                      |









# **Coordinated Publication Efforts**

#### Special Issue Journal themes (led by Julia White)

- ✓ Co-design Centers/computational motifs
  - Contributors: AMReX, CEED, Copa, CODAR, FFT, ExaGraph, ExaLearn
  - International Journal of High Performance Computing Applications
  - Timeline: gather articles by end of August 2020, review by Nov., publication by end of CY20
- Coupled-application codes using accelerated systems
  - Contributors: MFIX-Exa, ExaStar, EFFIS, ExaAM
  - International Journal of High Performance Computing Applications
  - Timeline: gather articles by end of August 2020, review by Nov., publication by end of CY20
- Challenges and best practices for using accelerated nodes
  - One to two issues per year, multiple years
  - Timeline: Finalize contributors by March 2020
- Phil Transactions Review article, published Jan 2020: <u>https://doi.org/10.1098/rsta.2019.0056</u>



# ECP Industry Council Deep Dive: ANL (Virtual), March 10-11

- When does this wave hit mid-range computing?
  - Is it inevitable?
  - What are viable alternatives in the next several years?
  - architectures? **55** From Industry Council Portability across GPU vendors Member Companies Incremental migration to GPUs **12** Non-member Company Representatives 160 **76** ECP and DOE Labs total attendees **3** Federal Agency **15** Industry Council 20 (1 NASA, 2 DOE) Member Companies companies 14 unable to categorize represented **5** Other Industry

How long will multi-GPU-node systems be relevant?

What is software cost of porting to GPU

- What is next and how do these systems evolve?
- Should I wait and see

## Technical Assessment AD Annual Report





#### FY19 ECP AD Assessment Report



| 4 | Key | Perfo   | rmance Parameters for AD                           |  |  |  |  |  |  |  |  |
|---|-----|---------|----------------------------------------------------|--|--|--|--|--|--|--|--|
|   | 2.1 | KPP-1   |                                                    |  |  |  |  |  |  |  |  |
|   | 2.2 | KPP-2   | 2                                                  |  |  |  |  |  |  |  |  |
|   | 2.3 | KPP-3   | B for Co-design                                    |  |  |  |  |  |  |  |  |
| 3 | Che | mistry  | and Materials Applications                         |  |  |  |  |  |  |  |  |
|   | 3.1 | Lattice | atticeQCD                                          |  |  |  |  |  |  |  |  |
|   |     | 3.1.1   | LatticeQCD: Science Challenge Problem Description  |  |  |  |  |  |  |  |  |
|   |     | 3.1.2   | LatticeQCD: Figure of Merit                        |  |  |  |  |  |  |  |  |
|   |     | 3.1.3   | LatticeQCD: KPP Stretch Goal                       |  |  |  |  |  |  |  |  |
|   |     | 3.1.4   | LatticeQCD: Progress Toward Advanced Architectures |  |  |  |  |  |  |  |  |
|   |     | 3.1.5   | LatticeQCD: Review Recommendations                 |  |  |  |  |  |  |  |  |
|   | 3.2 | NWCł    | memEx                                              |  |  |  |  |  |  |  |  |
|   |     | 3.2.1   | NWChemEx: Science Challenge Problem Description    |  |  |  |  |  |  |  |  |
|   |     | 3.2.2   | NWChemEx: Figure of Merit                          |  |  |  |  |  |  |  |  |
|   |     | 3.2.3   | NWChemEx: KPP Stretch Goal                         |  |  |  |  |  |  |  |  |
|   |     | 3.2.4   | NWChemEx: Progress Towards Advanced Architectures  |  |  |  |  |  |  |  |  |
|   |     | 3.2.5   | NWChemEx: Review Recommendations                   |  |  |  |  |  |  |  |  |
|   | 3.3 | GAMI    | $\mathbf{ESS}$                                     |  |  |  |  |  |  |  |  |
|   |     | 3.3.1   | GAMESS: Science Challenge Problem Description      |  |  |  |  |  |  |  |  |
|   |     | 3.3.2   | GAMESS: KPP Stretch Goal                           |  |  |  |  |  |  |  |  |
|   |     |         |                                                    |  |  |  |  |  |  |  |  |
|   |     | 3.3.3   | GAMESS: Progress Towards Advanced Architectures    |  |  |  |  |  |  |  |  |

- 24 different applications 6 co-design projects

# Common Themes Emerging from Report

- 1. Flat performance profiles
- 2. Strong Scaling
- 3. Understanding/analyzing accelerator performance
- 4. Choice of programming model
- 5. Selecting mathematical models that fit architecture
- 6. Managing software dependencies



#### 3) Understanding/analyzing accelerator performance



#### **GPU-specific kernels**

- Isolate the computationally-intensive parts of the code into CUDA/HIP/SYCL kernels.
- Refactoring the code to work well with the GPU is the majority of effort.

#### Loop pragma models

- Offload loops to GPU with OpenMP or OpenACC.
- Most common portability strategy for Fortran codes.

#### **C++** abstractions

- Fully abstract loop execution and data management using advanced C++ features.
- Kokkos and RAJA developed by NNSA in response to increasing hardware diversity.

#### **Co-design frameworks**

- Design application with a specific motif to use common software components
- Depend on co-design code (e.g. CEED, AMReX) to implement key functions on GPU.







#### 6) Managing software dependencies

#### Dependencies by Consumer

Note: By default, this chart only shows AD consumers. To show ST consumers, select "ST Consumers" in the second dropdown.



# AD codes use a mix of languages and programming models



Many codes are still in flux, with quite a few still deciding on a final programming model. A few Fortran codes are being rewritten in C++, but most are not.



# OpenMP/OpenACC: mostly Fortran users

| Application Project | Code        | Main Language | GPU Programming Model     |
|---------------------|-------------|---------------|---------------------------|
| ExaStar             | FLASH       | Fortran       | OpenMP                    |
| ExaStar             | CASTRO      | Fortran, C++  | OpenMP, OpenACC           |
| E3SM-MMF            | E3SM        | Fortran       | OpenACC, moving to OpenMP |
| Combustion-PELE     | PeleC       | Fortran       | CUDA, OpenACC             |
| Combustion-PELE     | PeleLM      | Fortran       | CUDA, OpenACC             |
| ExaSMR              | Nek5000     | Fortran       | OpenACC                   |
| ExaSMR              | OpenMC      | C++           | OpenMP, OpenCL or SYCL    |
| WDMApp              | GENE        | Fortran       | OpenMP                    |
| WDMApp              | GEM         | Fortran       | OpenACC                   |
| WDMApp              | XGC         | Fortran       | OpenMP, OpenACC           |
| ExaBiome            | GOTTCHA     | C++           | OpenMP, HIP, SYCL         |
| ExaBiome            | HipMCL      | C++           | OpenMP, HIP, SYCL         |
| QMCPACK             | QMCPACK     | C++           | OpenMP                    |
| ExaAM               | MEUMAPPS-SS | Fortran       | OpenMP, OpenACC           |
| ExaAM               | Diablo      | Fortran       | OpenMP                    |
|                     |             |               |                           |

# COVID-19 R&D in AD

- Change in scope requires ECP and DOE approval.
- Formal tracking of costs/scope
- Discourage sharp detour if can be avoided syngeristic, fundamental R&D.
- ExaBiome
  - Performance evaluation, parallelization of the SpatialSim code
  - Exploring ancestral recombination and evolutionary origins of SARS-CoV-2 for vaccine development
- CANDLE
  - Workflow to identify small molecules that collectively target the entire SARS-CoV-2 proteome
  - identify protein targets, pockets, and drugs to combine; Identify proteins and binding pockets; accelerate search through billions of compounds
- ExaLearn
  - Apply surrogate and control techniques to emulate large-scale agent-based epidemiological models and explore dynamic (adaptive) intervention policies
  - Apply surrogate, design, inverse modeling capabilities to molecular drug design in partnership with CANDLE



# Recent Highlights by Category





## **Performance Improvements**

• WarpX (Jean-Luc Vay, LBL): new FOM measurement using 4,263 nodes (out of 4,608) of Summit. The new FOM is now 54 times the baseline FOM (measured on 6,625 KNL nodes, out of 9,688), when extrapolating both FOM values to the full machines access to discrete AMD and Intel GPUs that are likely the foundation of their custom exascale accelerators

ExaSky (Salman Habib, ANL): new "GPU-resident" variant of the HACC code's first order CRK (Conservative Reproducing Kernel)-SPH hydrodynamic solver, designed to efficiently utilize accelerators, and maintain load balancing across millions of processors. Compared to the heavily optimized tree-based algorithms previously designed for CPU systems, the new solver achieves 8-12x performance improvements of the computationally demanding hydro solvers

 CANDLE (Rick Stevens, ANL): new FOM calculation, showing significant performance improvements after reducing memory usage of the P3B4 model, which allowed for restructuring the model to improve data motion and expose additional parallelism during training. As a result of this restructuring, P3B4's GPU utilization was improved on the NVIDIA V100s on Summit and recorded an FOM which is a significant improvement over the previously reported values.



## **Capability Demonstration**

- ExaBiome (Kathy Yelick, LBL): developed an experiment to demonstrate measurable advantages of co-assembly over multi-assembly, including improved assembly of low depth (e.g., 5x depth) genomes (80% for co-assembly vs 5% for multi-assembly). Also demonstrated was the increased detection of genomes in real data (50% more genomes overall, with 4x more of high quality), improved contiguity, and reduced error rates.
- EQSIM (David McCallen, LBL) : carried out a validation exercise for the coupling of the regional-scale geophysics finite difference wave propagation code SW4 with the structural / soil system finite element codes ESSI and Opensees. The coupling is accomplished through the Domain Reduction Method (DRM) and the intercode comparisons provided a validation of the implementation of the DRM. The validation exercise demonstrated that the ground motions created with an SW4 simulations exactly matched the ground motions generated with SW4 with an embedded soil island grid



## Code Release

- CEED (Tzanio Kolev, LLNL): released version 4.1 of the MFEM finite element library, https://mfem.org. New features
  in the 4.1 release include: improved GPU capabilities including support for HIP, libCEED, Umpire, debugging and faster
  multi-GPU MPI communications; GPU acceleration in many additional examples, finite element and linear algebra
  kernels; many meshing, discretization and matrix-free algorithm improvements; ParaView, GSLIB, HiOp and Ginkgo
  support; 18 new examples + miniapps; significantly improved testing; and a new BSD license. More details can be found
  at
- Proxy Applications (Dave Richards, LLNLL): released version 3.0 of the ECP Proxy App Suite at proxyapps.exascaleproject.org. The new release replaces the CANDLE benchmarks with a new miniGAN proxy app and updates the versions of existing proxies. This release also highlights selected proxies that are likely to be of significant interest to the ECP community. For example, AMD has released HIP versions of SW4lite, Quicksilver, and PENNANT. miniGAN is our first attempt to explore new proxies for Machine Learning (ML)
- CODAR (Ian Foster, ANL): released version 0.2.0 of the Feature Tracking Kit (FTK) that incorporates start-of-the-art topological, statistical, and deep learning feature tracking algorithms for scientific applications. The FTK is scalable and thus enables in situ feature tracking with the simulations that run on today's and future leadership computing facilities. This release includes new optimizations for tracking critical points in parallel with MPI and CUDA-based acceleration of these algorithms. A ParaView plugin that tracks minima, maxima, and saddle points in two dimensional scalar fields is developed and included in the release.



## New Model or Algorithm

- ExaFeL (Amedeo Perazzo, SLAC): published a paper applying pixel-level X-ray tracing to the data reduction step of protein crystallography diffraction experiments for X-ray Free Electron Laser light sources. This is a highly anticipated development, because it promises increased accuracy in the measurement of small atomic structural details that are critical for understanding chemistry. The paper shows (in simulation) that the new method is sensitive enough to locate even a single electron at a metal atom within a protein.
- Pele (Jackie Chen, SNL): Completed an initial GPU-portable multi-regime spray impingement. Modeling of spray impingement upon a piston or cylinder surface is important for hydrocarbon emission and soot predictions in simulations of internal combustion engines with direct injections.



## **Next Steps**

- Continue pushing performance envelope and testing on Summit, Sierra, and similar
- Work closely with ST to manage timeline and requirements for software dependencies
- Explore deeply and downselect of exascale programming model(s), including push/pull with vendors on compilers
- Develop and test new gpu-resident physics models for KPP-2 applications
- Understand key performance issues for initial target exascale architecture

