
ECP Update

Doug Kothe (ORNL), ECP Director
Lori Diachin (LLNL), ECP Deputy Director
Lois Curfman McInnes (ANL), ECP Math Libraries Lead

Winter ASCAC Meeting
Washington, DC
January 13-14, 2020



ECP Update
CD-2/3 Review

Doug Kothe (ORNL) 
ECP Director



3

ECP recent activities (since Sep 2019 ASCAC)
• Application Development (AD)

– Reviewed all subprojects (with external SMEs), leading to an updated Application Assessment Report

– Focus of review: scrutinize progress on pre-exascale hardware, with focus on GPU utilization

• Software Technology (ST)
– Reviewed all subprojects (with external SMEs), leading to an updated Capability Assessment Report (CAR)

– Release v1.0 of ECP’s Extreme Scale Scientific Software Stack: 50 full- & 6 partial-release products (e4s.io)

• Hardware & Integration (HI)
– App performance engineers now in place @ ALCF, OLCF, NERSC; Aurora & Frontier deep-dive workshops

– Coordination with ALCF & OLCF HPC Vendor Centers of Excellence for hackathons, early hardware access

• Review for approval of Critical Decision (CD) 2 / 3 (ECP’s FY20-24 Performance Baseline)
– Oct 15-19, 2019 Red Team Review uncovered a key corrective action, e.g., AD <-> ST scope dependency 

• Outreach activities
– With ECP’s Industry Council, NOAA, NASA, CERN (LHC), UK (UKRI / STFC), Japan (Riken), Switzerland 

(CSCS), NSF, DoD (HPCMP)

• Participation in Town Halls on AI for Science and ASCAC subcommittee on ECP Transition

• Planning for our 4th Annual Meeting (Houston, TX; Feb 3-7, 2020)



4

Key ECP preparations for approval of Critical Decision 2 / 3

Project Management
• Set FY20-23 Performance 

Baseline, updated BoEs

• Refined AD & ST Performance 
Measurement methodology 

• Continued tracking CPI / SPI 
and began variance reporting

• Established living database of 
critical AD - ST dependencies

• Evolved Project Dashboard

Application Development
• Finalized KPP-1/2 

applications and their 
completion criteria

• Finalized KPP-1/2 metrics

• Refined planning approach for 
application development with 
longer-duration mileposts

• Established prioritized 
application focus for Facilities

Software Technology
• Finalized KPP-3 integration 

goals and metrics

• Refined planning approach to 
incorporate more agility

• Defined ST product dictionary 
to aid dependency tracking

• Established SDK -> E4S 
delivery process

Hardware and Integration
• For KPP-4, authorized all 

remaining PathForward 
milestones 

• Revised and baselined the 
Facility Engagement Plans

• Negotiated exascale system 
and early hardware access 

• Hired Facility performance 
engineers to focus on specific 
ECP applications



5

The road ahead to ECP completion is busy

• Project 
Completion (plan 
date – Q4)

• Access to El 
Capitan 

• Deliver KPP 
completion 
evidence

FY23

• Status IPR
• AD and ST 

readiness 
demonstrated

• Access to El 
Capitan early 
hardware

• Access to Aurora 
and Frontier full 
system

FY22

• Status IPR
• AD application 

projections firm 
for target system

• ST integration 
goals assessed

• Access to Aurora 
and Frontier Test 
and Development  
Systems

FY21

• CD-2/3 Review and 
Approval

• Did PathForward 
deliver? Are AD and 
ST performance and 
integration 
projections on 
track?

• Access to Aurora 
and Frontier early 
hardware

FY20

• IDR of Final Design
• Establish 

performance 
baseline

• AD KPP completion 
criteria and ST 
integration goals set

• Access to pre-
exascale systems

FY19

Project Critical Decision

Project Review

Project Design



6

ECP is proactively accounting for critical external dependencies

• Facilities
– Scope for ECP / Facility collaboration defined for training, AD and ST performance optimization, application 

integration, continuous integration, and access to exascale hardware resources (early hardware, test and 
development [TDS], and full systems).

– Schedule for ECP access to Aurora and Frontier agreed to.

– Process for pre-exascale system allocations for ECP development resources in place.

– Application integration prioritized for specific Facilities (ALCF, OLCF, NERSC).

• HPC Vendors
– Regular ECP-vendor interactions (through established nondisclosure agreements [NDAs]) now occurring 

including information meetings, training sessions, hackathons. Helps ECP identify “gaps.”

• Open Source Software
– ECP relies on and benefits from evolving standards (MPI, OpenMP, C++, etc.). ECP is pushing these 

standards to benefit HPC by having a strong presence on standards committees.

– LLVM compiler technology is becoming the nexus for vendor and community compiler development and 
evolution. ECP scope is helping to drive this development.



7

CD-2/3 Review Charge Questions for ECP

Have the recommendations from the October 2018 IPR and Final Design Review been addressed? YES1

Are the proposed cost and schedule and scope baselines sufficient to meet the KPPs and complete the project? YES2

Have the risks been adequately identified and have appropriate risk responses been developed for this phase of the 
project?  Is there adequate contingency? YES3

Is the management of the ECP appropriately structured and empowered to ensure the project’s success?  Has ECP 
accounted for the critical external dependencies required for ECP success? YES4

Has the project met all the requirements for a CD-2/3 and is the project ready for CD-2/3 approval? YES5



8

ECP CD-2/3 review recommendations and comments

• Recommendations (respond before project completion)
– Capture, archive, and publish experience with the solution Dashboard, including design philosophies, 

successes, failures and challenges.
– Prior to turning over applications to science sponsors, publish a Community Outreach Document to 

disseminate knowledge and experience gained and document maturity for supporting scientific discovery.

• Key comments
– Application Development (AD): document milepost concept, continue strong integration with ST & HI
– Software Technology (ST): coordinate testing resources, CI, software ecosystems (including AD apps)
– Hardware & Integration (HI): release hardware evaluation reports; continue to work NDA issues
– Project Office (PO): monitor critical paths; evaluate schedule impact of PCRs; monthly cost reviews
– Project Management (PM): strengthen relationship with ALCF; address personnel retention risk; develop 

contingency spend plan



AD-ST Dependency 
Database

Lori Diachin (LLNL) 
ECP Deputy Director



10

The ECP is proactively managing several dependencies both within 
the project and with the DOE Facilities

DOE Facility Dependencies

• ECP requires access to Facility 
resources to develop, test, and 
demonstrate KPPs

• ECP software stack must 
leverage and complement 
vendor and Facility software 
stack

• PathForward program 
designed to keep US industry 
healthy and feed into Facility 
procurements

AD
• App team dependence on 

co-design software and 
tools

• App teams interacting

ST
• Integrated Software Stack 

(SDKs, E4S)
• Programming models 

used throughout
• Math library dependencies
• Use of development tools 

for productivity

HI
• Hardware evaluation with 

PathForward
• Joint surveys to determine 

software stack at Facilities

AD/ST
• Strong dependence of apps 

on ST tools and libraries

ST/HI
• Continuous integration 

process for software 
testing

• Spack package 
management

AD/HI
• Application integration at 

Facilities
• First movers program

AD/ST/HI
• App performance optimization
• Software stack determination for 

Facilities
• Access to Facility resources
• Training and Productivity



11

Managing AD-ST complexity was initially done through 
extensive surveys
• We currently have significant usage of ST and co-

design products by AD application teams.

• To manage dependencies, it was necessary to first 
gather accurate data:
– AD applications filled out detailed tables of 

software specs and dependencies on Confluence.
– ST teams reported application dependencies.
– HI interviews with application teams.

• Data was not initially fully consistent:

– ST teams reported working with applications who 
didn't list them as dependencies.

– Applications reported depending on ST projects 
who didn't list them as clients.

• Consistent interdependency data now being imported 
into ECP’s database for configuration control, analysis 
and planning.



12

ECP has developed and evolved a Jira database that allows more 
rigorous tracking of AD/ST/CD dependencies

• Identify producer and consumer from pre-
defined ST and AD code lists

• Dependency Level
• Critical: entirely dependent, no alternates
• Important: best path forward, some 

alternates exist
• Interested: will try to adapt it for their work

• Functionality Description
• Trigger event if known

• Now working to enhance level of detail 
captured on dependency functionality, 
POCs, verification for KPP-3 scores



13

Official AD and ST product lists enable rigorous dependency 
tracking

ST Product List

70 products with descriptions, points of contact and 
deployment scope.

Use widely-recognized product names. Enables 
mapping between AD & Facilities dependencies 
and ST development efforts.

• MPI – MPICH, OpenMP
• C++/C/Fortran - LLVM
• Fortran – Flang
• hypre – hypre

https://confluence.exascaleproject.org/display/1ST/
ECP+ST+Product+Dictionary

https://confluence.exascaleproject.org/display/12AD/
AD+Application+Code+Summary

AD Code List

45 application codes used by project teams

Clear statement of languages used, GPU 
strategy, some notes on integration



14

ECP’s use of Jira to track these dependencies allows for significant 
real-time data analytics
Can show data by
• Level of dependency
•Consumer
• Producer
•Cross products thereof



15

The Jira dashboard allows both high level and detailed drill down to 
help manage critical dependences



16

We are using the database to proactively manage key dependency 
information
• Applications have clear critical dependencies on programming 

models and math libraries in general

• Particular tools/libraries with high dependencies:
– Greater than 10 Critical: MPI, OpenMP, hypre, Kokkos, HDF5, 

C++, BLAS, LAPACK, CUDA
– Greater than 10 Critical/Important: Above plus Fortran, LLVM, 

ALPINE, vtk-m, AMReX, SUNDIALS, SuperLU, Trilinos, Spack

• Data and visualization/IO libraries and software ecosystem 
tools are important to applications
– Often not considered on the critical path for KPP-1/KPP-2 

verification
– May require additional KPP-3 verification runs

• Allows proactive determination of software stack needs for 
applications at the Facilities

• Identifies opportunities for additional integration activities
– “Interested” dependency level
– Applications that may be over or under leveraging ST tools

C++

MPI
OpenMP

HDF5

Cuda

Kokkos
BLAS

hypre
LAPACK



17

Some interesting statistics from an analysis of the database (both 
AD and ST consumers)

Programming 
Model Crit Imp Int

MPI 52 4 1

OpenMP 32 14 6

OpenACC 1 3 2

CUDA 15 7 0

Kokkos 15 8 7

RAJA 4 5 5

Legion 2 0 2

UPC++ 1 2 4

SYCL 3 5 2

Programming 
Language Crit Imp Int

Fortran 11 7 2

C++ 28 1 0

C 8 0 0

Highly Leveraged ST 
Libraries (>25) Crit Imp Int

C++ 28 1 0

Kokkos 15 8 7

MPI 52 4 1

OpenMP 32 14 6

ALPINE 10 16 3

HDF5 17 14 8

LAPACK 17 6 4

Spack 8 55 1

Apps that highly 
leverage ST (>20) Crit Imp Int

NWChemEx 4 11 6

Nalu-Wind 9 7 8

PeleM 5 7 7

XGC 18 6 3

MARBL 14 5 5

AMReX 4 9 8

CEED 7 7 12

COPA 13 6 7

• MPI and OpenMP 
dominate the programming 
models space

• CUDA codes will need to 
migrate

• Significant uptake of 
performance portability 
tools

• Limited update of alternate 
programming models

• Large dependence on C++

• 1/4 of app codes depend 
on Fortran

• Provides insight into the 
tools that AD teams are 
relying on

• Provides insight into app 
teams with significant 
reliance on ST tools



ECP Math Libraries

Lois Curfman McInnes (ANL)
ECP Math Libraries Lead



19

Math Libraries Deep Dive

•Objectives, projects

•Collaborations: ECP applications and math library teams

•What’s new from a math libraries community perspective

• ECP ST software architecture: E4S/SDKs/Products



20

Programming 
Models & Runtimes 
• Enhance & prepare 

OpenMP and MPI 
programming 
models (hybrid 
programming 
models, deep 
memory copies) for 
exascale

• Development of 
performance 
portability tools (e.g. 
Kokkos and Raja) 

• Support alternate 
models for potential 
benefits and risk 
mitigation: PGAS 
(UPC++/GASNet) 
,task-based models 
(Legion, PaRSEC) 

• Libraries for deep 
memory hierarchy & 
power management

Development 
Tools 

• Continued, 
multifaceted 
capabilities in 
portable, open-
source LLVM 
compiler 
ecosystem to 
support expected 
ECP architectures, 
including support 
for F18 

• Performance 
analysis tools that 
accommodate new 
architectures, 
programming 
models, e.g., PAPI, 
Tau 

Math Libraries 
• Linear algebra, 

iterative linear 
solvers, direct 
linear solvers, 
integrators and 
nonlinear solvers, 
optimization, FFTs, 
etc.

• Performance on 
new node 
architectures; 
extreme strong 
scalability 

• Advanced 
algorithms for multi-
physics, multiscale 
simulation and 
outer-loop analysis 

• Increasing quality, 
interoperability, 
complementarity of 
math libraries 

Data and 
Visualization

• I/O libraries: 
HDF5, ADIOS, 
PnetCDF,

• I/O via the 
HDF5 API

• Insightful, 
memory-efficient 
in-situ 
visualization and 
analysis – Data 
reduction via 
scientific data 
compression

• Checkpoint restart
• Filesystem 

support for 
emerging solid 
state 
technologies. 

Software 
Ecosystem

• Develop features in 
Spack necessary to 
support all ST 
products in E4S, and 
the AD projects that 
adopt it 

• Development of 
Spack stacks for 
reproducible turnkey 
deployment of large 
collections of 
software

• Optimization and 
interoperability of 
containers on HPC 
systems

• Regular E4S 
releases of the ST 
software stack and 
SDKs with regular 
integration of new 
ST products 

NNSA ST
• Projects that have 

both mission role 
and open science 
role

• Major technical 
areas: New 
programming 
abstractions, math 
libraries, data and 
viz libraries

• Cover most ST 
technology areas

• Open source NNSA 
Software projects

• Subject to the same 
planning, reporting 
and review 
processes

ECP software technologies are a fundamental underpinning in 
delivering on DOE’s exascale mission

10-8

10-4

100

104

 0  100  200  300  400  500  600  700  800  900

R
e

s
id

u
a

l

Iteration

PAPI SDE Recorder: Residual per Iteration (662-bus: 662 x 662 with 2,474 nonzeros)

CG
CGS

BICGSTAB



21

ECP Math Libraries: Context for the portfolio
Vision Provide high-quality, sustainable extreme-scale math libraries that are constantly improved by 

a robust research and development effort and support exascale needs of the ECP community

Challenges 
Need advances in algorithms and data structures to exploit emerging exascale architectures 
(high concurrency, limited memory bandwidth, heterogeneity); need new functionality to 
support predictive simulation and analysis

Mission Research, develop, and deliver exascale-ready math libraries to ECP applications
Objective Provide scalable, robust, efficient numerical algorithms, encapsulated in libraries that 

applications can readily use in combination to support next-generation predictive science
Starting Point Existing HPC math libraries, used by broad range of ECP applications for the most advanced 

technologies available in math and computer science R&D

Portfolio Goals

Advanced 
algorithms

• Advanced, coupled multiphysics and multiscale algorithms (discretizations, 
preconditioners & Krylov solvers, nonlinear & timestepping solvers, coupling)

• Toward predictive simulation & analysis (optimization, sensitivities, UQ, ensembles)

Performance • Performance on new node architectures
• Extreme strong scalability

Improving library 
sustainability & 

complementarity

• Math library interoperability and complementarity through the xSDK
• Improving package usability, quality, sustainability
• Community coordination and collaboration while retaining package autonomy



22

ECP Math Libraries: Projects
Project Short Name PI Name, Inst Short Description/Objective

xSDK Ulrike Meier Yang, 
LLNL

xSDK (Extreme-scale Scientific Software Development Kit): community policy-based 
approach to value-added aggregation of independently developed math libraries 
(increasing quality, combined usability, interoperability)

PETSc / TAO Barry Smith, ANL PETSc (scalable linear & nonlinear solvers, integrators), TAO (numerical optimization), 
libEnsemble (ensemble management for exascale platforms)

STRUMPACK / 
SuperLU / FFTX Xiaoye Li, LBNL STRUMPACK & SuperLU (scalable sparse direct solvers, preconditioners), FFTX (FFT 

stack, including symbolic analysis and code generation)

SUNDIALS / hypre Carol Woodward, 
LLNL

SUNDIALS (adaptive time integrators, nonlinear solvers), hypre (scalable linear 
solvers, with emphasis on algebraic multigrid)

CLOVER Jack Dongarra, 
UTK

SLATE (exascale-capable dense linear algebra), FFT-ECP (scalable FFTs), PEEKS 
(latency-tolerant preconditioned iterative solvers, via Trilinos, Ginkgo, MAGMA-sparse), 
KokkosKernels (portable performance kernels for linear algebra and graph algorithms)

ALExa / ForTrilinos John Turner, 
ORNL

DTK (parallel data transfer between grids, search tree capability), Tasmanian 
(uncertainty quantification, surrogate modeling), ForTrilinos (automatic generation of 
Fortran interfaces for Trilinos)



23

ECP Math Libraries: Continual advancements toward predictive science

ECP 
Math 

libraries

Performance  
on new node 
architectures

Extreme   
strong 

scalability

Advanced, 
coupled 

multiphysics, 
multiscale

Optimization, 
UQ, solvers, 

discretizations

Interoperability, 
complementarity:

xSDK

Improving 
library quality, 
sustainability, 

interoperability 

Next-generation 
algorithms

Advances in 
data structures 
for new node 
architectures

Toward 
predictive 
scientific 

simulations

Increasing 
performance,  

portability, 
productivity

xSDK
release 1

xSDK
release 2

xSDK
release n…..Timeline:

Math Libraries 
Approach:

As motivated & validated 
by the needs of ECP 
applications:
• Establish performance 

baselines 
• Refactor, revise 

algorithms and data 
structures for new 
architectures

• Research into new 
numerical algorithms 
for next-generation 
predictive science 



24

xSDK – ECP Applications & Facilities

xSDK provides sustainable 

coordination and delivery of math 

libraries across independent efforts.
• xSDK-0.5.0 released Nov 2019
• Impact: Improving quality and 

sustainability, foundation for broader 
work on multi-level interoperability 
and performance

PETSc/TAO – Subsurface flow

PETSc provides GPU-enabled GAMG 

(geometric-algebraic multigrid) 

solvers to reduce simulation time for 
ECP subsurface simulations.
• PETSc-3.12 released Sept 2019 

incorporates improved GPU support 
for GAMG solvers
– Chombo-Crunch uses PETSc Krylov

solvers + GAMG algebraic multigrid for 
Poisson and Helmholtz solves

• Impact: Faster overall runtime for 
ECP subsurface simulations

STRUMPACK/SuperLU - ExaGraph

• Factorization-based sparse solvers 

leverage ExaGraph co-design 

center partnership.

• Developed distributed-memory 
maximum-weight perfect matching 
algorithm for stable pivot selection
– https://www.exascaleproject.org/exagraph-

with-strumpack-superlu/

• Impact: Faster sparse solvers, as 
needed by various ECP applications

2.3.3. Math Libraries: Example Integration Activities with AD, ST, Facilities

MC64

MC64+gather

Parallel AWPM

Number of cores (log)

Ti
m

e
 i
n
 s

e
co

n
d
s 

(l
o
g
)

64 256 1024 4096 16384
0.25

1

4

16

64

256

The parallel algorithm runs 300x faster than the 
sequential algorithm on 16K cores of NERSC/Cori.

Optimized sparse GEMM (using sparse MKL 
primitives, rowmerge algorithm) for coarse operator 
construction in GAMG improve on-node performance.

Chombo-Crunch 
simulated flow 
and pH inside a 
crushed calcite 
capillary 
experiment.

2016: hypre, PETSc, SuperLU, Trilinos

2017: MAGMA, MFEM, SUNDIALS

2018: AMReX, deal.II, DTK, Omega_h, PHIST, 

PLASMA, PUMI, SLEPc, STRUMPACK, TASMANIAN

2019: ButterflyPACK, Ginkgo, libEnsemble, preCICE

xSDK-0.5.0

https://www.exascaleproject.org/exagraph-with-strumpack-superlu/
LOIS MCINNES




25

SUNDIALS/hypre – Multiphysics

SUNDIALS incorporates support for 
many-vectors, as needed for 
multiphysics in CEED co-design 
center and MARBL app (LLNL ATDM).

• SUNDIALS v5.0.0 (Oct 2019) includes 
many-vector support, where vector 
data structure can be a collection of 
vectors

• Impact: Improved multirate integrators 
for multiphysics, including MARBL and 
other apps served by MFEM (CEED)

CLOVER – Predictive wind plant flow

Communication-avoiding and 
pipelined Krylov solvers provide 
advances for ExaWind app (predictive 
wind plant flow)
• Integration and performance 

assessment of MAGMA-sparse and 
CA/pipelined Krylov solvers (Trilinos) 
in ExaWind, presented at CSE19

• Impact: Faster overall runtime for 
ExaWind simulations

ALExa – Additive manufacturing

DataTransferKit (DTK) provides 
scalable solution transfer for ExaAM
app (additive manufacturing)
• Synthesized DTK testing in ExaAM

and developed a set of problems and 
requirements (algs, performance)

• Impact: Efficient, scalable solution 
transfer via DTK in ExaAM coupled 
simulations

2.3.3. Math Libraries: Example Integration Activities with AD, ST, Facilities

ManyVector in process-
based multiphysics
decompositions, where 
Comm1 connects 
processes 0 and 1, 
Comm2 connects 
processes 2 and 3; an 
MPI intercommunicator
allows multiphysics
coupling.

Test problems 
reflecting strong 
mismatch in the 
size of 
computational 
grids used in 
ExaAM coupling 
problems allow 
the assessment 
of accuracy and 
stability.

256 512 1024 2048 4096

Process count

102

103

T
o

ta
l s

o
lu

tio
n

 t
im

e

pressure system (n=95M) with s-step GMRES+AMG on Cori Haswell

1.4x 1.4x 1.4x 1.3x
1.4x 1.3x 1.3x 1.3x
1.5x 1.4x 1.4x 1.4x
1.4x 1.4x Infx

GMRES+ICGS
s-step, newton, CGS+CholQR
s-step, newton, low-synch CGS2x+CholQR2
s-step, newton, low-synch CGS+CholQR2
s-step, monom, low-synch CGS+CholQR2
linear

Performance assessment of new Krylov solvers for 
ExaWind (up to 1.5x on Cori Haswell).



26

Deep Dive: 2.3.3.07: STRUMPACK / SuperLU:  
Sparse direct solvers & preconditioners

• Team:

– PI: X. Sherry Li (LBNL)

– Co-PI: Pieter Ghysels

– Postdocs: Gustavo Chavez, Yang Liu

Scope & Intent R&D Themes Delivery Process Target ECP Users Support Model 
Fill the gap of robust 

and scalable direct 

solvers and 

preconditioners for 

algebraic systems.

• Lower complexity 

approximation 

algorithms

• Communication-

reduction 

algorithms

• Synchronization-

reduction 

algorithms 

• Regular release 

of software and 

documentation

• Open access to 

production code 

at GitHub

• In xSDK

• Many apps, 

including CEED, 

ExaSGD,  

WDMApp

• Many math 

libraries, including 

hypre, PETSc, 

SUNDIALS, and 

Trilinos

• Email, issue 

tracking portals 

on GitHub

• Comprehensive 

web-based 

documentation

• Tutorials at 

various venues

• Dedicated POC 

for each ECP 

app. 

BSSw blog article: 

X. Li, April 2018,

https://bssw.io/blog_posts/superlu-how-advances-in-software-

practices-are-increasing-sustainability-and-collaboration

https://bssw.io/blog_posts/superlu-how-advances-in-software-practices-are-increasing-sustainability-and-collaboration


27

STRUMPACK / SuperLU: App users and roles in software ecosystem

ECP Applications and Co-Design Centers

Center for Efficient 
Exascale

Discretizations (CEED)

Combinatorial Methods for 
Enabling Exascale

Applications (ExaGraph)

More ECP 
Co-Design 

Centers

Optimizing Stochastic 
Grid Dynamics at 

Exascale (ExaSGD) 

High-Fidelity Whole Device 
Modeling of Magnetically Confined 

Fusion Plasmas (WDMApp) 

More ECP 
Apps

Mathematical Libraries

SuperLU STRUMPACK
external 
software

Development
Tools

Programming
Models &
Runtimes

Data & 
Visualization

NNSA ST

(Broad Use, 
Open Source 

Efforts)

More ECP 
math libraries

hypre Trilinos

PETSc
SUNDIALS SLATE

xSDK (coordination and interoperability among 
complementary math libraries, see later slides)

more 
details

Specific app     
and co-design 
partnerships for 
STRUMPACK   
& SuperLU

Each ECP math 
library has 
similar 
collaborations

ECP ST Software Ecosystem



28

STRUMPACK / SuperLU: App users and roles in software ecosystem
• Applications

– ExaSGD: Optimizing Stochastic Grid Dynamics at Exascale
• Use STRUMPACK as inexact direct solver for saddle point systems in PIPS (parallel inter-point optimization solver)
• Initial result with saddle-point system of order 1.5M from PIPS NLP: 6x improvement on 1536 cores
• Implementing new algorithm for matrix inertia in STRUMPACK

– WDMApp: High-Fidelity Whole Device Modeling of Magnetically Confined Fusion Plasmas
• SuperLU/STRUMPACK used in multiphysics, multiscale magneto-hydrodynamics (MHD) codes

• Co-Design Centers
– CEED: Center for Efficient Exascale Discretizations

• Enhances MFEM with direct solvers and preconditioners for a range of challenging PDE problems
• Integrated in MFEM; evaluating solvers for the electromagnetic problems in frequency domain

– ExaGraph: Scalable parallel pivoting (ECP highlight)
• Math Libraries

– xSDK: coordinated release and interoperability among complementary packages
– hypre: provide coarse-grid solvers; SUNDIALS: provide internal linear solvers
– PETSc, Trilinos: provide direct solver / preconditioner options
– SLATE: Replace existing calls to LAPACK and ScaLAPACK with calls to SLATE counterparts

• Identified and resolved interoperability issues, initial performance experiments 
• Led to significant extension and improvement of the LAPACK and ScaLAPACK compatibility APIs in SLATE



29

• When SuperLU is used in preconditioning, need many 
solves per factorization

• Developed new algorithm to reduce synchronization, 
remove communication hot-spot, improve overlap
– Customized binary broadcast & reduction trees
– Selected inversion of diagonal blocks

• Software available since Version-6 release

SuperLU: Advances during ECP
Novel communication-avoiding 3D sparse LU achieved 24x 
speedup on 4096 Titan nodes (32768 CPUs + 4096 GPUs)

• Need to reduce communication and increase parallelism 
for sparse LU factorization

• Algorithm innovation: 3D grid of MPI processes, Z-
dimension has some data replication, but reduced 
communication and increased parallelism

• Software available in Version-7 release on GitHub
• Theory: communication volume reduced by sqrt(log(n)) 

factor, latency reduced by log(n) factor
• Result: compared to 2D pre-ECP code, 3D code 

achieved 27x speedup on 24,000 cores Edison, 24x 
speedup on 4096 Titan nodes with GPUs

New synchronization-reducing sparse triangular 
solver achieved 7x speedup on Cori-Haswell cores

24 48 96 192 384 768
2D-Grid

1
2

4
8

1
6

3
2

Pz

0.036 0.044 0.055 0.065 0.064 0.073

0.093 0.12 0.17 0.21 0.23 0.24

0.28 0.42 0.49 0.48 0.49 0.53

0.67 0.93 0.91 1.1 0.97 0.94

1.1 1.3 1.5 1.7 1.3 0.81

1.7 2 2 1.5

0.4

0.8

1.2

1.6

2.0 2D to 3D:
à 23x speedup

32x more cores 
à 2x speedup

Matrix K2D5pt4096 on 24,576 cores Edison
Teraflop/s 

IPDPS’18, JPDC’19
SIAM CSC’18

7x speedup for ExaSGD problem 
globalmat118_1536

Can use 10x more cores in strong scaling
WDMApp: M3D-C1 matrix05 

16 64 256 1024 2025 4096
processor count

0.04

0.08

0.16

0.32

So
lv

e 
tim

e

globalmat118_1536 (flat)
globalmat118_1536 (binary)

1 4 16 64 256 1024 2025 4096
processor count

10-2

10-1

So
lv

e 
tim

e

matrix05 (flat)
matrix05 (binary)



30

Many ECP app teams rely on math libraries, often in combination

Combustion-Pele, EXAALT, ExaAM, 
ExaFEL, ExaSGD, ExaSky, ExaStar, 

ExaWind,  GAMESS, MFIX-Exa,  
NWChemEx, Subsurface, WarpX, 

WDMApp, WarpX, ExaAM, 
ATDM (LANL, LLNL, SNL) apps, 

AMReX, CEED, CODAR, CoPA, ExaLearn

SuperLU

DTK

STRUMPACK

ECP AD Teams ECP Math Libraries

Examples:
• ExaAM: DTK, hypre, PETSc, Sundials, Tasmanian, Trilinos, FFT, etc.
• ExaWind: hypre, KokkosKernels, SuperLU, Trilinos, FFT, etc.
• WDMApp: PETSc, hypre, SuperLU, STRUMPACK, FFT, etc.
• CEED: MFEM, MAGMA, hypre, PETSc, SuperLU, Sundials, etc.
• And many more …

MFEM



31

What’s new/different from a perspective of math libraries?

ECP apps need sustainable coordination among math libraries,
along with other ST products – all with continually advancing 
functionality, exploiting new extreme-scale architectures

• Needs of science applications
– Expanded needs for new math library functionality … new and broader/deeper collaborations

• Software advances for exascale architectures
– Partnerships drive advances

• Sustainable community software ecosystem
– xSDK approach and advances

Logos for
Laghos, CEED,
NALU, ExaWind,
Truchas, ExaAM



32

Scope and objectives
• Demonstrate the impact of community policies to 

simplify the combined use and portability of 
independently developed software packages.

• Increase formality of xSDK release process.
• Expand xSDK package members to include additional 

key ECP numerical libraries as well as packages in the 
broader community.

Project accomplishment and impact

• xSDK-0.5.0 released November 2019
• Improve access to numerical libraries for ECP apps.
• Lay the groundwork for addressing broader issues in 

software interoperability and performance portability.
• Build roles and experience for future exascale platform 

porting.

Spack graph for xSDK-0.5.0

xSDK release 0.5.0 for ECP
ECP WBS WBS 2.3.3.01

PI U.M. Yang (LLNL)
Members ANL, LBNL, LLNL, ORNL, SNL, UC Berkeley, UTK

Deliverables https://xsdk.info/download https://xsdk.info/installing-the-software https://xsdk.info/packages
https://xsdk.info/release-0-5-0 https://github.com/xsdk-project/installxSDK https://xsdk.info/policies

tested on key platforms at ALCF, NERSC, 
and OLCF, also Linux and Mac OS X.

Milestone lead: Jim Willenbring, SNL

Spack

Original xSDK math libraries: 

hypre, PETSc, SuperLU, 
Trilinos

Added 2017: MAGMA, MFEM, 
SUNDIALS

Added 2018: AMReX, 
deal.II, DTK, Omega_h, PHIST, 
PLASMA, PUMI, SLEPc, 
STRUMPACK, TASMANIAN
Added 2019: ButterflyPACK, 
Ginkgo, libEnsemble, preCICE

https://xsdk.info/download
https://xsdk.info/installing-the-software
https://xsdk.info/packages
https://xsdk.info/release-0-5-0
https://github.com/xsdk-project/installxSDK
https://xsdk.info/policies


33

xSDK community policies

xSDK compatible package: Must satisfy 
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options. 
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures. 
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called 
packages. 
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the 
software.
M9. Use a limited and well-defined symbol, macro, library, and include file 
name space. 
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or IO statements that cannot be turned off.
M12. For external dependencies, allow installing, building, and linking against 
an outside copy of external software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional. 
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible 
with the xSDK install tool and xSDK metapackage.

Also recommended policies, which currently are 
encouraged but not required:

R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to test for 
memory corruption issues. 
R3. Adopt and document consistent system for error 
conditions/exceptions.
R4. Free all system resources it has acquired as soon as they 
are no longer needed.
R5. Provide a mechanism to export ordered list of library 
dependencies. 
R6. Document versions of packages that it works with or 
depends on, preferably in machine-readable form
R7. Have README, SUPPORT, LICENSE, and CHANGELOG 
files in top directory.

xSDK member package: Must be an xSDK-compatible  
package, and it uses or can be used by another 
package in the xSDK, and the connecting interface is 
regularly tested for regressions. 

We welcome feedback.  What policies 
make sense for your software?

https://xsdk.info/policies

BSSw blog article: 
P. Luszczek and U. Yang, Aug 2019,

https://bssw.io/blog_posts/building-community-through-software-policies

https://xsdk.info/policies
https://bssw.io/blog_posts/building-community-through-software-policies


34

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Nov 2019

Tested on key machines at ALCF, 
NERSC, OLCF, also Linux, Mac OS X

Multiphysics Application C

Application B

Impact: Improved code quality, 
usability, access, sustainability

Foundation for work on 
performance portability, deeper 

levels of package interoperability

Each xSDK member package uses or 
can be used with one or more xSDK 
packages, and the connecting interface 
is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More 

libraries

PFLOTRAN

More domain 
components

MFEM

SUNDIALS

HDF5

BLAS

More 
external 
software

STRUMPACK

SLEPc AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

November 2019
• 21 math libraries
• 2 domain components
• 16 mandatory (7 

recommended) xSDK 
community policies

• Spack xSDK installer

MAGMA preCICE

ButterflyPack

Gingko

libEnsemble

xSDK version 0.5.0: November 2019 https://xsdk.info



35

Math Libraries: Preparing for exascale platforms

• Project reviews, Sept 2019:  Focus on GPU porting efforts, capability integration
– Strategy, progress, challenges

• Status and plans for on-node (and internode) parallel computing capabilities
– Sharing information among math libraries (via xSDK survey/report)

• Also PMR (programming models and runtime) libraries, applications

•New scope to address emerging needs: mixed precision for math libraries

Volta Tensor Core matrix 
multiply and accumulate. 
[Source: NVIDIA Corp.]

– Centered in joint xSDK project for leverage across all math libraries
– Goals:

• Efficiently leverage compute power available in low precision tensor cores
• Reduce arithmetic precision format complexity without impacting algorithmic stability
• Reduce communication volume on all levels: main memory, I/O, inter-node communication
• Enable higher performance for solvers, preconditioners, FFT, machine learning kernels, etc.



36

Breakout Session at 2020 ECP Annual Meeting 

Speed Dating for ECP: 1-on-1 Conversations between Applications Teams 
and Math Library Developers (abstract) 

Re-examine (1) what math functionalities ECP applications need, (2) what 
capabilities ECP math libraries provide and plan to develop in FY20-23, and 
(3) how to expand and deepen collaborations, so that together we can more 
effectively work to achieve next-generation science goals.

Pre-meeting homework: Sharing 1-page summaries of math library capabilities and 
plans, using ECP Dependency Database (working with AD L3s, teams)

Contacts: Rob 
Falgout and Ulrike 
Yang (LLNL)

SuperLU

DTK

STRUMPACK

MFEM

2020 ECP Annual Meeting

https://whova.com/embedded/subsession/aecm_202001/799251/801408/
https://ecpannualmeeting.com/


37

Software Development Kits (SDKs): Key delivery vehicle for ECP
A collection of related software products (packages) where coordination across package teams improves usability 

and practices, and foster community growth among teams that develop similar and complementary capabilities  

• Domain scope
Collection makes functional sense

• Interaction model
How packages interact; compatible, complementary, interoperable

• Community policies
Value statements; serve as criteria for membership

• Meta-infrastructure
Invokes build of all packages (Spack), shared test suites

• Coordinated plans
Inter-package planning. Augments autonomous package planning

• Community outreach
Coordinated, combined tutorials, documentation, best practices

ECP ST SDKs: Grouping similar products 

for collaboration & usability

Programming Models & 

Runtimes Core

Tools & Technologies

Compilers & Support

Math Libraries (xSDK)

Viz Analysis and Reduction

Data mgmt., I/O Services & Checkpoint/ 

Restart

“Unity in essentials, otherwise diversity”



38

Extreme-scale Scientific Software Stack (E4S)
A Spack-based distribution of ECP ST products and related and dependent software tested for interoperability 
and portability to multiple architectures
Lead: Sameer Shende, University of Oregon

• Provides distinction between SDK usability / general 
quality / community and deployment / testing goals

• Will leverage and enhance SDK interoperability thrust

• Releases:
– Oct 2018: E4S 0.1: 24 full, 24 partial release products
– Jan 2019: E4S 0.2: 34 full, 10 partial release products
– Nov 2019: E4S 1.0: 50 full, 6 partial release products

• Current primary focus: Facilities deployment

• Ideal mechanism for collaborations with other 
institutions, agencies, countries

http://e4s.io



39

Software Technology Ecosystem

ST 
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant, 
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products



40

Conclusions

• ECP had a very successful CD-2/3 review; ESAAB approval expected in February

• The AD/ST dependency data base has evolved significantly in the past 4 months
– Verified by AD and ST teams

– Used to manage critical and important dependencies

– Gives key insights into what is needed at the Facilities and KPP-3 integration status with application 
projects

• ECP Math Libraries teams are:
– Delivering to the supercomputing community (via DOE facilities and the xSDK / E4S.io effort) high-quality 

mathematical libraries that
• provide scalable, robust algorithms that facilitate efficient exascale simulations
• interoperate with the ECP software stack
• can be readily used in combination by ECP applications 

– Integrating these math libraries capabilities with ECP applications … collaborating to achieve next-
generation science goals



Questions?


