

### Data Science at OLCF

Bronson Messer Scientific Computing Group Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory

Mallikarjam "Arjun" Shankar Group Leader – Advanced Data and Workflows Group Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy



## OLCF Data/Learning Strategy & Tactics

1. Engage with applications

Applications

Algorithms

Infrostructure

ational Laboratory

- Summit Early Science Applications (e.g., CANDLE)
- INCITE projects (e.g., Co-evolutionary Networks: From Genome to 3D Proteome, Jacobson, et al.)
- Directors Discretionary projects (e.g., Fusion RNN, MiNerva)
- 2. Create leadership-class analytics capabilities
  - Leadership analytics (e.g., Frameworks: pbdR, TensorFlow + Horovod)
  - Algorithms requiring scale (e.g., non-negative matrix factorization)
- 3. Enable infrastructure for analytics/AI and data-intensive facilities
  - Workflows to include data from observations for analysis within OLCF
  - Analytics enabling technologies (e.g., container deployments for rapidly changing DL/ML frameworks, analytics notebooks, etc.)

### Applications Supported through DD/ALCC: Selected Machine Learning Projects on Titan: 2016-2017

| Program | PI                 | PI Employer | Project Name                                                                                                                         | Allocation (Titan core-hrs) |
|---------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| ALCC    | Robert Patton      | ORNL        | Discovering Optimal Deep Learning and Neuromorphic Network Structures using Evolutionary<br>Approaches on High Performance Computers | 75,000,000                  |
| ALCC    | Gabriel Perdue     | FNAL        | Large scale deep neural network optimization for neutrino physics                                                                    | 58,000,000                  |
| ALCC    | Gregory Laskowski  | GE          | High-Fidelity Simulations of Gas Turbine Stages for Model Development using Machine Learning                                         | 30,000,000                  |
| ALCC    | Efthimions Kaxiras | Harvard U.  | High-Throughput Screening and Machine Learning for Predicting Catalyst Structure and Designing<br>Effective Catalysts                | 17,500,000                  |
| ALCC    | Georgia Tourassi   | ORNL        | CANDLE Treatment Strategy Challenge for Deep Learning Enabled Cancer Surveillance                                                    | 10,000,000                  |
| DD      | Abhinav Vishnu     | PNNL        | Machine Learning on Extreme Scale GPU systems                                                                                        | 3,500,000                   |
| DD      | J. Travis Johnston | ORNL        | Surrogate Based Modeling for Deep Learning Hyper-parameter Optimization                                                              | 3,500,000                   |
| DD      | Robert Patton      | ORNL        | Scalable Deep Learning Systems for Exascale Data Analysis                                                                            | 6,500,000                   |
| DD      | William M. Tang    | PPPL        | Big Data Machine Learning for Fusion Energy Applications                                                                             | 3,000,000                   |
| DD      | Catherine Schuman  | ORNL        | Scalable Neuromorphic Simulators: High and Low Level                                                                                 | 5,000,000                   |
| DD      | Boram Yoon         | LANL        | Artificial Intelligence for Collider Physics                                                                                         | 2,000,000                   |
| DD      | Jean-Roch Vlimant  | Caltech     | HEP DeepLearning                                                                                                                     | 2,000,000                   |
| DD      | Arvind Ramanathan  | ORNL        | ECP Cancer Distributed Learning Environment                                                                                          | 1,500,000                   |
| DD      | John Cavazos       | U. Delaware | Large-Scale Distributed and Deep Learning of Structured Graph Data for Real-Time Program Analysis                                    | 1,000,000                   |
| DD      | Abhinav Vishnu     | PNNL        | Machine Learning on Extreme Scale GPU systems                                                                                        | 1,000,000                   |
| DD      | Gabriel Perdue     | FNAL        | MACHINE Learning for MINERvA                                                                                                         | 1,000,000                   |
|         |                    | TOTAL       |                                                                                                                                      | 220,500,000                 |

- Highlighted rows are Algorithm and Infrastructure Examples; Rest are Primarily Science Applications



3

## Gordon Bell Prizes in 2018: Peak Performance on Summit



#### Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction Wayne Joubert, Deborah Weighill, David Kainer, Sharlee Climer, Amy Justice, Kjiersten Fagnan, Daniel Jacobson

### **Exascale Deep Learning for Climate Analytics**

Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston,



## Methods: Leadership Data Analytics Capabilities



http://pbdr.org

- Engage parallel math libraries at scale
- R language unchanged
- New distributed concepts
- New profiling capabilities
- New interactive SPMD parallel
- In-situ distributed capability
- In-situ staging capability via ADIOS

HPC libraries and their R/pbdR connections



• Significantly improved throughput compared to, e.g., Apache Spark

- "PCA of a 134 GB matrix: 'hours on . . . Apache Spark, . . . less than a minute using R.'" – June 2016, HPCWire

### Scaling Deep Learning for Science with ORNL's MENNDL ORNL-designed algorithm leverages Titan to create high-performing neural networks





Evolve

ORNL Data Analytics Group used Titan to develop an evolutionary algorithm to search for optimal hyperparameters and topologies for ML networks.

Steven R. Young, Derek C. Rose, Travis Johnston, William T. Heller, Thomas P. Karnowski, Thomas E. Potok, Robert M. Patton, Gabriel Perdue, and Jonathan Miller, "Evolving Deep Networks Using HPC." In *Proceedings of the Machine Learning on HPC Environments*. Paper presented at *The International Conference for High Performance Computing, Networking, Storage and Analysis*, Denver, Colorado (November 2017), doi: <u>10.1145/3146347.3146355</u>.

An image generated from neutrino scattering data captured by the MINERvA detector at Fermi National Accelerator Laboratory. Researchers are using MENNDL and the Titan supercomputer to generate deep neural networks that can classify high-energy physics data and improve the efficiencies of measurements.

# Key Data Science and Learning Methods

**CAK RIDGE** National Laboratory

PCA, K-Means, etc. excel on "traditional HW" part of the node due to the node's memory, CPU, and on-chip bandwidth

50 GB/s

50 GB/s

6.0 GB/s Read 2.2 GB/s Write

Code suites are in the CORAL2 (Collaboration of Oak Ridge, Argonne, Livermore laboratories) benchmark suite: https://asc.llnl.gov/coral-2-benchmarks/



## Big Data Analytic Suite

Weak Scaling of Data Benchmarks on Titan





8

### Deep Learning Suite





Scaling of Resnet-50 based on Keras (Tensorflow backend) and Horovod on ImageNet data

9

### Infrastructure - Cross-Facility Design Pattern



From: Policy Considerations when Federating Facilities for Experimental and Observational Data Analysis, Mallikarjun (Arjun) Shankar, Suhas Somnath, Sadaf Alam, Derek Feichtinger, Leonardo Sala, and Jack Wells, (2018, Submitted Book Chapter)



## CADES runs BEAM and Pycroscopy for SNS and CNMS

11



Lingerfelt et al., Procedia Computer Science 80, 2276-2280 (2016).

### Towards Data Service Offerings and Easier Data Access Across Facilities

- Categories of Data Services
  - **Type 1** data repository program for *"data-only"* projects.
  - **Type 2** data services program for user communities.
  - Type 3 computational and data science end station program.
- "DataFed" prototype to enable federated data access across facilities (currently being tested)



DAK RIDGE National Laboratory Data Services Program POC: Val Anantharaj; DataFed POC: Dale Stansberry