NERSC Data Strategy

Debbie Bard
Lead for Data Science Engagement

ASCAC meeting, March 2019
NERSC is the mission HPC and data facility for the Office of Science

Largest funder of physical science research in U.S.

7,000 Users
800 Projects
700 Codes
~2000 publications per year

Simulations at scale

Data analysis support for DOE’s experimental and observational facilities
NERSC supports a large number of users and projects from DOE SC’s experimental and observational facilities.

~35% (235) of ERCAP projects self identified as confirming the primary role of the project is to 1) analyze experimental data or; 2) create tools for experimental data analysis or; 3) combine experimental data with simulations and modeling.
NERSC Systems: present and future

NERSC-7: Edison
Multicore CPU

NERSC-8: Cori
Manycore CPU

NERSC-9: Exa system
CPU and GPU nodes
Continued transition of applications and support for complex workflows

NERSC-10: Beyond Moore
Exa system

NERSC-11: Beyond Moore

NESAP Launched: transition applications to advanced architectures

2016
2020
2024
2028
NERSC-9: Optimized for Science

Cray Shasta System providing 3-4x capability of Cori system. First NERSC system designed to meet needs of both large scale simulation and data analysis from experimental facilities

- Includes both NVIDIA GPU-accelerated and AMD CPU-only nodes
- Cray Slingshot network for Terabit-rate connections to system
- Optimised data software stack enabling analytics and Machine Learning at scale
- All-flash file system for accelerated IO

Coming in 2020
<table>
<thead>
<tr>
<th>Data Features</th>
<th>Cori experience</th>
<th>N9 enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O and Storage</td>
<td>Burst Buffer</td>
<td>All-flash file system: performance with ease of data management</td>
</tr>
<tr>
<td>Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Production stacks</td>
<td>User defined images with Shifter NESAP for data</td>
<td>Production analytics workflow benchmark. Data apps in NESAP at start</td>
</tr>
<tr>
<td>- Analytics libraries</td>
<td>New analytics and ML libraries</td>
<td>Optimised analytics libraries and deep learning application benchmark</td>
</tr>
<tr>
<td>- Machine learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workflow integration</td>
<td>SchedMD Real-time and interactive queues</td>
<td>SLURM co-scheduling Workflow nodes integrated</td>
</tr>
<tr>
<td>Data transfer and streaming</td>
<td>SDN</td>
<td>Slingshot ethernet-based converged fabric</td>
</tr>
</tbody>
</table>
This project will:

- Deploy large scale computing and storage resources at NERSC;
- Define policies that support data science workloads;
- Provide reusable building blocks for experimental scientists to build pipelines;
- Provide scalable infrastructure to launch services;
- Provide expertise on how to optimize pipelines.
Enabling new discoveries by coupling experimental science with extreme scale data analysis and simulations

Superfacility: A model to integrate experimental, computational and networking facilities for reproducible science

Interconnected facilities where data is acquired, stored, analyzed and served

User Community

Expertise

Computing and Data Facilities

Experimental Facilities

ESnet

Telescopes

Particle Detectors

Microscopes

Environmental Sensors

Light Sources

Sequencers
User Engagement

Engage with experimental, observational and distributed sensor user communities to deploy and optimize data pipelines for large-scale systems.

Data Lifecycle

Mange the generation, movement and analysis of data for scalability, efficiency and usability. Enable data reuse and search to increase the impact of experimental, observational and simulation data.

Automated Resource Allocation

Deliver a framework for seamless resource allocation, calendaring and management of compute, storage and network assets across administrative boundaries.

Computing at the Edge

Design and deploy specialised computing devices for real-time data handling and computation at experimental and computational facilities.
Engage with experimental, observational and distributed sensor user communities to deploy and optimize data pipelines for large-scale systems.
Engagement: DOE synchrotron light sources

Support multiple coherent & full-field experiments using high frame rate 2D detectors.

Increasing demands in data volume and computation.
- 50-200MB/s, 30-60 TB raw data per week per detector today
- GPUs increasingly used for data processing

HPC computing and data needs:
- Real-time computing for fast feedback
- Streaming data into compute nodes
- Automated data movement, archiving and retention
- Easy data sharing across multiple facilities and communities
Explain Dark Energy through multiple science probes: Galaxy catalogs, supernovae, lensing.
Survey covers the whole sky every few nights using 3.2 Gpix camera built by DOE.
- 10M alerts/night
- 15 PB catalog data (~0.5 EB total data)

HPC computing and data needs:
- Large-scale simulation production
- Real-time analysis of streaming data
- Jupyter for data analysis across sites
- Automated data movement, archiving and retention
- Easy data sharing across multiple facilities and communities
Data science at scale

● Big Data Software Stack
 ○ Big Data Center
 ■ NERSC/Intel/Cray/IPCC collaborations
 ■ Production-level big data software stack that can be used to solve leading scientific challenges at full HPC scale

● NESAP program for Cori & Perlmutter
 ○ NESAP for Simulations (13 projects)
 ○ NESAP for Data (currently 7 projects)
 ○ NESAP for Learning (currently 6)

https://www.nersc.gov/users/application-performance/nesap/nesap-projects/
Machine Learning at Extreme Scale

Scientific data is typically large and complex
• Harder to find optimal hyperparameters
• Need lots of prototyping and model evaluation

Key metric: *time to scientific insight*
• Don’t want to wait for days to train a single model
• Fast turnaround of ideas and exploration

→ use supercomputers to scale machine learning algorithms for superfast training
ML at scale: determining fundamental constants of cosmology

- Achieved unprecedented accuracy in cosmological parameter estimation from the matter distribution in 3D simulation boxes.
- Scaled to 8192 CPU nodes; 20min training time; 3.5PF sustained performance.
- Largest application of TensorFlow on CPU-based system with fully-synchronous updates.

ML at scale: Characterising Extreme Weather in a Changing Climate

- High quality segmentation results to identify extreme weather events.
- Network scaled out to 4560 Summit nodes (27,360 Volta GPUs).
- 60min training time, 0.99 EF sustained performance in 16-bit precision.
- Largest application of TensorFlow on GPU-based system, first Exascale DL application.

https://arxiv.org/abs/1810.01993
Thank You