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Relevance to DOE and ASCR 

! why DOE/ASCR? 
○ requires national lab compute facilities 
○ requires domain specific knowledge in climate sciences 
○ requires HPC knowledge only available in ASCR  

! benefits to DOE 
○ successful collaboration between national lab and hardware vendor 
○ successful cross-lab effort 
○ visibility and recognition helps talent acquisition 
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Understanding Climate 

● How will the global weather develop by 2100? 
○ will the globe warm up by 1.5 or 2.0 C? 
○ will the sea level rise by 1 or 2 feet?   

● How will extreme weather develop by 2100? 
○ will there be more hurricanes? 
○ will they become more intense? 
○ will they make landfall more often? 
○ will atmospheric rivers carry more water? 
○ will they make landfall over California? 
○ will they mitigate droughts? 
○ will they cause heavy precipitation and flooding? 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Impact Quantification of Extreme Weather Events 

● automatically finding hurricanes 
and atmospheric rivers in climate 
model projections requires pixel-
level segmentation  

● enable extreme weather impact 
predictions to very high resolution  

● gear up for future simulations with 
~1 km2 spatial resolution 
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Unique Challenges for Climate Analytics 

● climate data is complex 
○ many input channels 
○ channels have very different properties 
○ high resolution desired because each   

pixel occupies a large area of 25 km2 

○ no static background, highly variable   
in time and space   

● interpret as segmentation problem 
○ 3 classes - background (BG), Tropical Cyclones (TC), Atmospheric Rivers (AR) 
○ high imbalance - most pixels are background (>95% on average) 
○ high variance - shape of events change over time and in-between themselves 
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Deep Learning 101 

! define neural network that computes predictions for arbitrary input:  ~y = f(x;~ 

! assemble a training set of sample inputs ~xi and expected outputs ~yi 
NX1 2 w) =  [yi � f (xi; w)]~~~~! define a loss function: l( 

N 
i=1 

! find the weights that minimize the loss: ⇤ = argmin l( )~ww 

! typically solved using stochastic gradient descent (SGD): 

~ 

⇣ ⌘XB
(s) (s)○ g̃ =

1 rlw ~x⇡j ; w~ 
B j=1 

(s+1) (s) � (s)○ w~ = w~ · g̃ 

○ iterate until converged 
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Unique Challenges for Deep Learning 

● need labeled data for supervised approach 
○ can leverage labels from existing heuristic-based approaches   

● which neural network architecture to use? 
○ balancing act between compute performance and model accuracy 
○ employ high-productivity/flexible framework for rapid prototyping 
○ performance optimization requires a holistic approach -- cannot focus on single set of 

kernels   

● hyperparameter tuning (learning rate, regularization, etc.) 
○ necessary for convergence and accuracy 
○ finding hyperparameters which perform well at multiple concurrencies 
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Unique Challenges for Extreme Scaling 

● data management 
○ shuffling/loading/preprocessing/feeding 20 TB dataset 
○ feed data fast enough to keep GPUs busy  

● multi-node synchronization 
○ synchronous reductions of O(50) MB across 27,360 GPUs after every iteration  

● convergence and accuracy at scale 
○ mitigate typical batch-parallel training generalization-gap at large effective batch 

sizes 
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Atmospheric River Label Creation 

1. The climate model 
predicts levels of water 

vapor, wind, and specific 
humidity. 

2. These fields are used 
to approximate the 

transport of water vapor 
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Atmospheric River Label Creation 

3. Integrated Vapor 
Transport (IVT) is binarized 

at the 95th percentile. 

4. A flood fill algorithm is used 
to identify the atmospheric 

rivers: long, narrow regions of 
high IVT in the mid-latitudes 
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Tropical Cyclone Label Creation 

1. Extract cyclone center and radius using 2. Binarize patch around cyclone 

thresholds for pressure, temperature, and vorticity 
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center using thresholds for water 
vapor, wind, and precipitation 



   

 
      

     
     

     
      

          

 
    

 
     

 

Software: TensorFlow and Horovod 

● TensorFlow 
○ high-productivity deep learning framework in Python with   

C++ backend, developed by Google 
○ dataflow-style programming and asynchronous graph execution 
○ makes use of optimized cuDNN library for   

performance sensitive kernels (e.g. convolutions) 
○ provides features for building I/O input pipeline 
○ can be combined with other Python modules to provide good flexibility  

● Horovod 
○ distributed-training enabling framework developed by Uber 
○ provides MPI callback functions and convenience wrappers for TensorFlow 
○ operates asynchronously with the TensorFlow dataflow scheduler 
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System 1: Piz Daint 

● Cray XC50 HPC system at CSCS, Switzerland, ranked 5th in Top500 (Nov 2018) 
● 5320 nodes with Intel Xeon E5-2695v3 and 1 Nvidia P100 GPU 
● Cray Aries interconnect in diameter 5 dragonfly topology 
● 54.4 PetaFlop/s peak performance (FP32)   
 
 
  

included to ensure and verify portability of our   
approach to other computing systems 

14 



  

  
 

          
     

     
    

 

System 2: Summit 

● leadership class HPC system at OLCF, ranked first on Top500 (Nov 2018) 
● 4608 nodes with 2 IBM Power 9 CPU and 6 Nvidia Volta GPU with Tensor Cores 
● 300 GB/s NVLink connection btw. 3 GPUs in a group 
● 800 GB available NVMe storage/node 
● dual-rail EDR Infiniband in fat-tree topology 
● ~3.45 ExaFlop theoretical peak (FP16)  

Our code stresses all above components of the system 15 



     

 

   

Deep Learning Models for Extreme Weather Segmentation 

Tiramisu, 35 layers,   DeepLabv3+, 66 layers,   
7.8M parameters, 4.2 TF/sample 43.7M parameters, 14.4 TF/sample 16 



 

 

     

 

 

    

1.5K sam
ples

1.
5K

Dataset Size Required BW 
(27K GPUs) 

GPFS/LUSTRE BurstBuffer NVM/e or DRAM 

20 TB (~63K samples) 3.8 TB/s ~400 GB/s ~2 TB/s ~26 TB/s 

Data Staging 

● 250 training samples/GPU ... (~15 GB), sample w/ replacement   

N
V
M
e 

es
 ● each file will be read at most once 

sa
mpl 

from FS  

● files shared between nodes via MPI shuffle 
(mpi4py)

es
1.5K

N
V
M 
e

N
V
M 
e

sam
pl
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On-Node I/O Pipeline 

● files are in HDF5 with single sample + label/file 

● list of filenames passed to TensorFlow Dataset API (tf.data) 

● HDF5 serialization bottleneck addressed with multiprocessing + h5py 

● extract and batch using tf.data input pipeline 

CPU 4-way parallel 
... ... read + preprocess 

data-2107-12-26-02-4.h5 data-2107-03-03-06-1.h5 
data-2107-12-26-03-1.h5 data-2107-05-24-00-4.h5 
data-2107-12-26-03-4.h5 data-2107-08-30-03-4.h5 
data-2107-12-26-04-1.h5 data-2107-10-29-01-4.h5

shuffle batchdata-2107-12-26-04-4.h5 data-2107-12-11-07-1.h5 
data-2107-12-26-05-1.h5 data-2107-08-14-03-4.h5 
data-2107-12-26-05-4.h5 data-2107-01-08-01-4.h5 
data-2107-12-26-06-1.h5 data-2107-09-08-04-1.h5 
data-2107-12-26-06-4.h5 data-2107-09-22-00-1.h5 
data-2107-12-26-07-1.h5 data-2107-07-16-03-4.h5 

asimovinstitute.org/neural-network-
zoo 

GPU 

... ... 
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Single Node Performance 

● GPU execution profiled with CUDA profiler, kernels grouped by category 
● convolution kernels: use latest cuDNN, favor higher computational intensity 
● pay attention to memory layout to reduce transposes and copies 
● tuning of input pipeline on CPU to keep off critical path 

Category 

DeepLabv3+ FP16 Training 
# Time Math Mem % % 

Kern (ms) (TF) (GB) Time Math 
% 

Mem 
n Convolutions Forward Point-wise 
n Convolutions Backward Point-wise 

Optimizer 
Copies / Transposes 
Allreduce (NCCL) 
Type Conversions 
GPU Idle 

158 147.9 9.61 27.6 18.1 52.0 
829 52.3 < 0.1 24.3 6.4 
195 300.2 19.21 50.5 36.7 51.2 
157 25.6 < 0.1 6.3 3.1 

1219 3.9 < 0.1 1.1 0.5 
708 213.2 - 92.6 26.1 
30 58.7 < 0.1 0.6 7.2 

201 1.3 - 0.6 0.2 
14.2 1.7 

20.7 
51.6 
18.7 
27.3 
31.3 
48.3 
1.1 

51.3 

Total 3497 817.3 28.82 203.6 28.2 27.7 19 



 

  

Horovod Control Plane Optimizations 

20 

w4 

w3 

w1 

..
. 

{1, 2, 5, 8, 13} 

{2, 3, 5, 10, 13} 

{1, 3, 5, 10, 13, 14} 

w2 {1, 3, 5, 7, 13} 

w1 

{5, 13} 

w1 

intersect lists 

al
lr

ed
uc

e 
5,

 1
3 

gather broadcast 

original control plane 

w4 

w3 

w1 

..
. 

w2 



 

 
  

 

Horovod Control Plane Optimizations 

asynchronous tree-based 
gather + intersect broadcast 
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Hybrid All-Reduce 

intra-node 4x inter-node 4x intra-node 

● NCCL uses NVLink for 
high throughput, but 
ring-based algorithms 
latency-limited at scale 

● hybrid NCCL/MPI 
strategy uses strengths 
of both 

● one inter-node allreduce 
per virtual NIC 

● MPI work overlaps well 

allreduce (NCCL) allreduce (MPI) broadcast (NCCL) 

with GPU computation 

22 



 

   

qN 

q1 

wN 

wN 

w1 

Gradient Pipelining (Lag) 

g3
k ḡk 

g2
k ḡk 

w1 

g1
k 

g1
k ḡk 

w1 
w1 

gN
k 

al
lr

ed
uc

e ...
 

q1 

..
.

..
. 

w3 

w2 

w3 

w2 qN 

..
. 

g1
k-1 

al
lr

ed
uc

e

ḡk-1 

..
...
. 

wN wN
gN

k ḡk ḡk-1gN
k-1 

lag-0 (fully synchronous) lag-1 23 



 

   

   

   
 

Scaling Tiramisu 

● FP16-model sensitive to 
communication   

● FP16-model BW-bound   
(only 2.5x faster than 
FP32)  

● almost ideal scaling for 
both precisions on 
Summit when gradient 
lag is used 
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Scaling DeepLabv3+ 

● FP16-model sensitive to 
communication   

● FP16-model BW-bound   
(only 2.5x faster than 
FP32)  

● excellent scaling for both 
precisions on Summit 
when gradient lag is used 
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999 PetaFlop/s   
(FP16) sustained 

DeepLabv3+, 4560 nodes (27360 GPU) 
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1.13 ExaFlop/s 
(FP16) peak 

DeepLabv3+, 4560 nodes (27360 GPU) 
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Concurrency/Precision and Convergence 
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Concurrency/Precision and Convergence 
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~2.1x improvement in time to solution 



 

 

Model/Lag and Convergence 
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Segmentation Animation 

● best result for intersection-over-union (IoU) obtained: ~73%   

● result at large scale (batch-size > 1500): IoU~55% 
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Conclusions 

● deep learning and HPC converge, achieving exascale performance   

● demonstrated that compute capabilities at LCF facilities can be utilized to 
tackle difficult scientific deep learning problems  

● software enhancements benefit deep learning community, in- and outside 
DOE   

● deep learning-powered techniques usher in a new era of precision analytics 
for various science areas 
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