ASCAC MEETING

UPDATE ON ASCAC SUBCOMMITTEE DOCUMENTING ASCR IMPACTS

PAUL MESSINA

Argonne National Laboratory

September 18, 2018 Washington, DC

CHARGE LETTER: HIGH-LEVEL OBJECTIVES

- Steve Binkley charged the ASCAC with producing a report that assesses and documents the historical accomplishments of the Advanced Scientific Computing (ASCR) program and its predecessors over the past four decades.
 - Highlight outstanding examples of major scientific accomplishments that have shaped the fields of ASCR research
 - Identify the lessons learned from these examples to motivate ASCR investment strategies in the future
 - Illuminate the guiding strategies and approaches that will be key to ensuring future U.S. leadership in the full range of disciplines stewarded by ASCR
 - Inform the future investment strategy of the Office of Science
- The report should provide technical details as needed for context but should be primarily concerned with the essence of each story as it relates to the larger progress of science
- Report is due December 31, 2018

SUBCOMMITTEE MEMBERS

- Buddy Bland, ORNL
- Jackie Chen, SNL
- Phil Colella, LBNL
- Jack Dongarra, University of Tennessee and ORNL
- Thom Dunning, PNNL
- Wendy Huntoon, KINBER
- Bill Johnston, LBNL (ret.)
- Paul Messina, ANL, Chair
- Jim Pool, Caltech (ret.)
- Dan Reed, University of Utah
- John Sarrao, LANL

SAMPLE MATERIAL GATHERED SO FAR COMPUTATIONAL SCIENCE (1)

- NERSC input
 - An Accelerating Universe Saul Perlmutter, Nobel Prize in Physics 2011
 - Oscillating Neutrinos The SNO team, Nobel Prize in Physics 2015
 - Multiscale Chemical Modeling Martin Karplus, Nobel Prize in Chemistry 2013
 - Understanding the Function of Biomolecules Joachim Frank, Nobel Prize in Chemistry 2017
 - The Birth of Precision Cosmology George Smoot, Nobel Prize in Physics 20
 - Our Changing Climate The 2007 Nobel Peace Prize
 - ..
- OLCF: Revealing the Quantum World of Materials (1995)

SAMPLE MATERIAL GATHERED SO FAR COMPUTATIONAL SCIENCE (2)

- NWChem: A Modern High Performance Quantum Chemistry Application
- Summary of ASCR contributions to research in other SC research offices (22 pages)
- Eight of the ten "significant advancements in computational science (Breakthroughs 2008 report)
- Input from SC Offices, e.g., Nuclear Physics Office
 - SciDAC: NUCLEI, UNEDEF
 - ECP: LQCD, Nucl Astro
- In preparation: document on the impact of SciDAC on BER, BES, FES, HEP, and NP as well as ASCR (see next two slides)

BACKGROUND OF SCIDAC

- Context
 - Major change in computer architectures in 1990s—parallel computers
 - Software technologies needed to use parallel computers in development
 - New mathematical algorithms required for parallel computers
 - Scientific codes not poised to take advantage of new computing systems
- Scientific Discovery through Advanced Computing
 - Fund teams of computational scientists, computer scientists and applied mathematicians to create new generation of codes
 - Fund development of software technologies needed by scientific applications to enable efficient and effective use use of parallel computers
 - Fund development of new algorithms need to optimize performance of scientific applications on parallel computers

STRUCTURE OF REPORT

- Background and Context
- ► General Observations
 - COV Report 2014: "SciDAC remains the gold standard nationally and internationally for fostering interaction between disciplinary scientists and HPC." (ASCR COV 2014)
- ► Impact of SciDAC
 - Science and Engineering Codes: Scientific Advancements
 - Software Technologies for Parallel Computing Systems
 - Mathematical Algorithms for Parallel Computing Systems

SAMPLE MATERIAL GATHERED SO FAR APPLIED MATHEMATICS

- Turning a Computer into a Numerical Microscope for Science (AMR story)
- What is the accuracy of our numerical simulations? (ADIFOR story)
- Auxiliary-space Maxwell Solver (AMS)

SAMPLE MATERIAL GATHERED SO FAR MATHEMATICAL SOFTWARE

- DOE Libraries narrative (12 page overview of math software and related libraries, by Jack Dongarra)
- xxxPACKs (input from Margaret Wright)
- Discrete/combinatorial mathematics (input from Margaret Wright)
- Discrete math story (Bruce Hendrickson)
- PETSc (comprehensive description of the project, uses, impact)

SAMPLE MATERIAL GATHERED SO FAR COMPUTER SCIENCE (1)

- 22 Computer science breakthroughs selected circa 2009, including
 - TCP Autotuning Highlights: 10x increase in TCP throughput on high bandwidth, high latency paths
 - Hybrid networks and virtual circuit services (OSCARS)
 - Bro Intrusion Detection System
 - Object Storage based Parallel File System Technology
 - FastBit: New algorithms for searching very large scientific datasets
 - Kepler: Facilitating dynamic monitoring and code-coupling of scientific large-scale simulations
 - Trilinos
 - Production-quality petascale visual data analysis software infrastructure
- The viz story: ASCR support for scientific discovery and the development of innovative visualization and analysis methods to address the challenge of understanding massive data

SAMPLE MATERIAL GATHERED SO FAR COMPUTER SCIENCE (2)

- Computer Science 7 years of breakthroughs compendium
 - Programming models
 - MPI
 - PGAS languages
 - · Global arrays library
 - Performance modeling
 - Architecture benchmarking
 - Performance tools
 - Lightweight OS
 - Analyzing, storing, accessing and moving large data sets
 - Parallel high-level I/O libraries
 - Grids and virtual organizations
 - Also includes material on scientific libraries and networking R&D

SAMPLE MATERIAL GATHERED SO FAR COMPUTER ARCHITECTURE

- Ultracomputer history
- Cedar Architecture and its software
- Birth of the Hypercube
- Parallel computing timeline
- Input from Justin Rattner
- Input from Al Gara
- Input from Jim Sexton, Paul Coteus and others in preparation

SAMPLE MATERIAL GATHERED SO FAR FACILITIES

- ASCR Facilities draft outline
- Argonne history of computing
- OLCF 25 Years of Leadership in High Performance Computing (draft)
- Timelines of ALCF, OLCF, NERSC (under preparation)
- 40 Years of Networking at the Speed of Science
 - The emergence of data-intensive science: ATLAS and CMS at the LHC
 - Extending ESnet to Europe with the same multiple hundred gigabit, reliable architecture, core as in the US to support Office of Science collaborations
 - Pioneering the next generation site connectivity: 400 Gb/s to support Super-Facilities
- The Importance of Research and Development in Networking
 - Tools supporting very large data transfers: ScienceDMZ and PerfSONAR
 - OSCARS: On-demand, guaranteed bandwidth (R&D 100)

SAMPLE MATERIAL GATHERED SO FAR IMPACT ON INDUSTRY

- Selection of project write-ups
 - Improving Aircraft Engine Combustor Simulations (Pratt & Whitney)
 - GE researchers perform simulations in pursuit of more efficient jet engines and wind turbines
 - Taming Turbulence and Achieving Stability to Generate Fusion Energy
 - Better Combustion for Power Generation
 - Improving Everyday Products (Procter & Gamble)
 - Building a smart truck
 - HPC-driven Fuel Well Discovery
 - ESnet Taps Ciena for 400G Research and Education Network
- Examples of HPC Leadership: Understanding Behaviors in the Extreme Environment of Natural Gas Turbine Generators (Hyperion Research article)
- Computer and network industries impacts

SAMPLE MATERIAL GATHERED SO FAR IMPACT ON WORKFORCE

- CSGF (have brief description, will request more)
- Training courses with access to state of art computers
 - Parallel programming short courses in the 1980s and 1990s
 - ATPESC
- ECP apps team participants who were traditionally funded by other than ASCR
- ECP new hires to labs

SAMPLE MATERIAL GATHERED SO FAR IMPACT ON EDUCATION

- University curricula influenced by ASCR activities and people
- Specific courses designed by university faculty in collaboration with ASCR-funded national lab staff, e.g., Harvard School of Engineering and Applied Sciences course "Extreme Computing: Project-based High Performance Distributed and Parallel Systems"
- University courses that use lectures from ATPESC archives as part of the course.
 - For the last several years all ATPESC lectures are available online, approximately 80 each year.

SAMPLE MATERIAL GATHERED SO FAR OTHER ACHIEVEMENTS AND CONTRIBUTIONS

- Awards and prizes
 - Nobel Prizes
 - Gordon Bell prizes and finalists
 - SIAM/ACM Prize in Computational Science and Engineering,
 - R&D100
 - DOE E.O. Lawrence Award
 - Best paper awards
- Support of standards committees
 - DOE Advanced Computing Committee Language Working Group c. 1977
 - National Lab staff participation in many formal and de facto standards committees

SAMPLE MATERIAL GATHERED SO FAR LESSONS LEARNED FROM DIFFERENT MODES OF FUNDING AND RECOMMENDATIONS FOR THE FUTURE

Have input from several people, gathering more

Too soon to summarize

SAMPLE MATERIAL GATHERED SO FAR APPENDIX A. COMPELLING STORIES

- NWChem: A Modern High Performance Quantum Chemistry Application
- ADIFOR story
- Rusty Lusk story: from automated theorem proving to UNEDEF
- Bruce Hendrickson story on discrete mathematics
- Examples of HPC Leadership: Understanding Behaviors in the Extreme Environment of Natural Gas Turbine Generators

INCOMING

- Impact of SciDAC program in BES, BER, FES, HEP, NP as well as ASCR
- ASCR-NNSA collaborations
- Insights from Dan Hitchcock and John Cavallini
- Computer vendor viewpoints and collaborations

YOUR INPUT IS SOLICITED – THERE IS STILL TIME TO USE IT

- Please suggest accomplishments to highlight, people to contact
- Your input on future directions
- Especially answers to these questions:
 - What are the key aspects of the ASCR's investment strategy that have had the greatest impacts?
 - Looking to the future, and building on the ASCAC reports, what research areas and funding strategies to pursue those areas could further strengthen ASCR in serving the DOE missions?
- Contact any subcommittee member to provide your input

NEXT STEPS

- Subcommittee meeting afternoon of Sept. 18th and morning of 19th
- Will examine all input gathered, decide whether to include in report and where, categorize as preliminary notes, rough draft, advanced draft
- In the remaining months, the daunting task of doing justice to all the input and producing an impactful report

SUMMARY

- ASCR's contributions to applied mathematics, computer science, computational science, computer architectures, computing facilities, networking – in short the scientific computing ecosystem – is astounding!
- Doing justice to its rich history will be challenging

