
exascaleproject.org

The ECP Software Stack

Michael Heroux
Director of Software Technology, Exascale Computing Project
Sandia National Laboratories

ASCAC
September 17, 2018

2

Scope

Capabilities across the entire HPC
software stack that complement
and coordinate with facilities,
vendors and other software
providers to enable effective
execution of ECP apps, and
deliver a capable, sustainable
exascale ecosystem.

Provide the next generation of
DOE software capabilities
targeted toward exascale
applications and platforms.
Provide these capabilities for the
specific exascale systems as a
high quality, sustainable product
suite.

Deliver a software stack that enables sustainable exascale capabilities

Mission
need Objective

3

Goal
Build a comprehensive,
coherent software stack
that enables application
developers to
productively write highly
parallel applications that
effectively target diverse
exascale architectures

ECP Software: Productive, sustainable ecosystem

Extend current technologies to exascale where possible

Perform R&D required for new approaches when necessary

Coordinate with and complement vendor efforts

Develop and deploy high-quality and robust software products

55 WBS L4 subprojects executing RD&D

185 L4 subproject (P6) milestones delivered in FY17

67 delivered so far in FY18, 77 in progress right now

564 L4 subproject (P6) milestones planned in FY18-19

4

Challenges
Qualitative changes:
Massive concurrency;
Multi-scale, multi-
physics, data-driven
science; Ecosystem
integration

ECP software: Challenges

Billion way concurrency: Several novel compute nodes.

Coupled apps: Physics, scales, in situ data, more.

Data-driven: New software HPC environments, containers.

Ecosystem: Part of a large, complex, evolving SW environment.

5

Hardware and Integration
2.4

Project Management
2.1

Project Planning
and Management

2.1.1

Project Controls and Risk
Management

2.1.2

Information Technology
and Quality Management

2.1.5

Business Management
2.1.3

Procurement Management
2.1.4

Communications
and Outreach

2.1.6

Chemistry and Materials
Applications

2.2.1

Energy Applications
2.2.2

National Security
Applications

2.2.5

Earth and Space Science
Applications

2.2.3

Application Development
2.2

Software Technology
2.3

Programming Models
and Runtimes

2.3.1

Development Tools
2.3.2

Software Ecosystem
and Delivery

2.3.5

Mathematical Libraries
2.3.3

Data and Visualization
2.3.4

Data Analytics and
Optimization Applications

2.2.4

Co-Design
2.2.6

PathForward
2.4.1

Hardware Evaluation
2.4.2

Facility Resource
Utilization

2.4.5

Application Integration
at Facilities

2.4.3

Software Deployment
at Facilities

2.4.4

Training and Productivity
2.4.6

Exascale Computing Project
2.0

6

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)

Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of

architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Lois Curfman McInnes, Math Libraries (2.3.3)
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in high-
performance numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software
ecosystems.

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively
contributes to many open-source data science packages including ParaView and Cinema.

Rob Neely, Software Ecosystem and Delivery (2.3.5)
Rob has several leadership roles at LLNL spanning applications, CS research, platforms, and vendor interactions. He is an
Associate Division Leader in the Center for Applied Scientific Computing (CASC), chair of the Weapons Simulation and
Computing Research Council, and the lead for the Sierra Center of Excellence.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Jonathan Carter, Software Technology Deputy Director

Jonathan has been involved in the support and development of HPC applications for chemistry, the procurement of HPC systems, and the evaluation

of novel computing hardware for over 25 years. He currently a senior manager in Computing Sciences at Berkeley Lab.

7
ECP ST Timeline (1)

ST projects
selected: Majority
of proposals, some
with funding
adjustments

Projects ramp up
at labs (Q1),
sub-contracts go to
universities (Q2).

Even more
milestones,
capabilities,
products.
Delivery of gap
analysis.

Planning: ST-wide

reviews, planning.

Communication:

Team-wide regular

meetings, clearly

defined and

documented

processes.

Lab teams fully engaged, U
partners ramp up, basic ECP
ST software processes
emerge. Many quarterly
milestones and capabilities
delivered by individual
projects, independent
product releases.

Q1Q1 Q1Q4Q2 Q2FY16 FY17 FY18 Q1FY19

ST: Call for
proposals: Based
on existing ASCR
portfolio, distributed
lab representation.

Q4

Gap management
complete.

ST Project Review
Prep with SMEs.

AD hits the
ground

running.
9 months

ahead of ST.

Q3

SDK efforts start:
Building communities. Shared
planning, resources, aggregated
software suites.

PPEP: Impact goals, metrics,
progress measurement
milestone. Gap strategy.

Phase 2:
Toward a coordinated, planned, hierarchical
Project of 54 RD&D projects

Phase 1:
A loose collection of 66 R&D projects

Q3 Q3

Capabilities

assessment report.

Integrated ST

Plan.

Complete impact

goals/metrics

definition and

process.

Project Reviews &
Impact
Assessments

First annual
coordinated
release of ST
products.

Publish CAR v1.5

Q4

8
ECP ST Timeline (2)

Q2

Release ST v2.0

Publish CAR v2.5

Q1FY19 FY20 FY21 – 23: Repeat

Complete Facilities
Impact Assessment.

Revise FY20 milestones

Draft FY21 milestones
definitions

Q4

Complete Facilities
Impact Assessment.

Establish FY21
milestone definitions

Q2

Complete ST Project
Structure Adjustments
and Augmentation
Plan

Establish FY20
milestone definitions

Phase 3: Plan, Deliver, Report, Assess, Repeat
Adjustments & Augmentation for CD2
Semi-annual delivery: Milestone Refinement, ST Release, ST CAR, ST Impact Assessment

Release ST v1.5

Publish CAR v2.0

Q3

Release ST v2.5

Publish CAR v3.0

Q3 Q4

Complete Facilities
Impact Assessment.

Revise FY21 milestones

Draft FY22 milestones
definitions

9

2018 ECP ST Highlights

• Completed 84 Release Milestones: product getting to users.

• Developed comprehensive work management systems in Jira: Milestones, KPP-3.

• Established regular 6-month milestone refinement, release, report, assess cycle.

• Created new SDK projects: distributed across ST, seasoned team.

• Addressed gaps/risks: FFTs, OpenACC option, in situ data.

• ID’ed next round of gaps/risks: Future tech directions, project assessment.

• Released first Capability Assessment Report: Comprehensive communication tool.

• Established streamlined communication & reporting system in Confluence.

• Initiated ECP ST adjustments and augmentations in preparation for CD2.

3

10

Goals and Objectives

• A cross-platform, production-ready programming
environment that enables and accelerates the
development of mission-critical software at both the node
and full-system levels

• Enable application developers to productively write highly
parallel applications that can portably target diverse
exascale architectures

•Impact Goals and Metrics

• Impact goal: Deliver scalable parallel programming
models and runtimes to ECP applications, codesign
centers, and other software technology projects

• Impact metrics: Number of ECP application, codesign,
and software technology projects using the programming
models and features developed in this area

• KPPs: Direct impact on application performance,
exascale science capability, and productive and
sustainable software ecosystem KPPs

Scope (e.g., projects or areas)

2.3.1 Programming Models and Runtimes

• Enhancement of the MPI and OpenMP standards to meet the
needs of exascale

• Production-ready implementation of exascale MPI features in
MPICH and Open MPI implementations

• OpenMP standards enhancement and robust OpenMP
implementation in the LLVM compiler framework

• Improved MPI and OpenMP interoperability

• Exascale-ready PGAS programming models and runtimes
(UPC++/GASNet, Global Arrays)

• Performance-portability solutions for complex, heterogeneous
node architectures (Kokkos, RAJA)

• New capabilities in task-based models (Legion, PaRSEC,
DARMA) to support exascale applications

• API and library for accessing complex memory hierarchy

• Runtime library for application-level power management

• Lightweight user-level threads (Qthreads)

11

The Pagoda Project (scope and objectives)

• Developing the UPC++ PGAS programming interface for irregular
applications and libraries and GASNet-EX, a portable, high-
performance one-sided communication layer

• UPC++: A C++ PGAS library for Exascale)

• GASNet-EX: Communications middleware to support multiple
Exascale clients (users: ST, AD and non-ECP)

Milestone accomplishment

• UPC++ 2018.3.0 was released March 22, 2018
(There was also a Jan 2018 Beta release)

• Implements 3 new features
• Non-contiguous transfers
• Remote Atomics (uses network offload when available)
• View-Based Serialization

• Also includes Generalized Completion, which simplifies and
generalizes the interface for data movement operations

UPC++ Impact

• ECP client projects will use UPC++ to meet performance goals

• AMREx. By proxy, five AD collaborators.

• ExaGraph

• Sparse Solvers

• In use by non-ECP partners in academia

• Community outreach: Talks at U. Tokyo, Information Tech. Center
and RIKEN Advanced Institute for Computational Science

UPC++ Improves Sparse Solver Performance

• UPC++ enables an efficient pull

communication strategy and

event-driven scheduling for the

symPACK sparse solver, which

delivers a ✕2.65 speedup

over best state-of-the-art

sparse symmetric solver

New Release of UPC++ Library
ECP WBS 2.3.1.14 – UPC++ & GASNet

PI Scott B. Baden, LBNL

Members LBNL

Deliverables STPM17-7 Milestone Memo: https://confluence.exascaleproject.org/download/attachments/29000066/ECP-Milestone-Memo-STPM17-7.pdf
UPC++ Software and Documentation: http://upcxx.lbl.gov
Development of this software release used ECP’s ALCC allocations at NERSC, ALCF and OLCF.

Edison

https://confluence.exascaleproject.org/download/attachments/29000066/ECP-Milestone-Memo-STPM17-7.pdf
http://upcxx.lbl.gov/

12

Overall Scope and objectives

• Gather application requirements to prepare OpenMP for Exascale

• Identify gaps and areas that OpenMP needs to address or
improvement in OpenMP 5.0 or beyond

• Work with the application teams to develop use-cases to drive
OpenMP extensions.

• Provide feedback to the OpenMP validation and verification team to
test extensions and their implementations.

Milestone accomplishment

• Identified that one of the most important gaps in OpenMP is how to program
the different memories available in the node and how to map to/from complex
data structures between them that require deep copy

• Gathered application use cases from E3SM, QMCPack, XGC, LSMS3,
LAMMPS, GENESIS, etc. Used this information to drive the memory
management API, declare mappers and manual deep copy functionality in
OpenMP 5.0.

• Developed test cases to implement manual deep copy, declare mappers and
the new memory management API in OpenMP 5.0.

Impact

• The HPC community will benefit from the new functionality available in
OpenMP

• We are addressing ECP application needs to program the different
memories that will be available on exascale nodes and to optimize the
mapping of complex data structures to/from memories (deep copy).

• Application developers will benefit from this new functionality that is
scheduled to be available in OpenMP 5.0

Deep Copy Application Requirements

Need to move data to/from different
memories and user-defined structures that
contain pointers or allocatables.

Application Requirements for OpenMP:
Deep copy and memory management APIs

ECP WBS 2.3.1.13 SOLLVE

PI Barbara Chapman, BNL

Members ORNL, ANL, LLNL, GA Tech

Deliverables Milestone report: https://confluence.exascaleproject.org/display/STPM15/Application+Requirements+Milestones

3044, 27%

2095, 19%

166, 2%

137, 1%

5656, 51%

Survey of Application Data Structures
(E3SM - CAM/SE)

of arrays

user defined

of pointers

of allocatables

Other (scalars)

https://confluence.exascaleproject.org/display/STPM15/Application+Requirements+Milestones

13

Goals and Objectives

• Development tools including compilers, tools for
correctness and debugging, performance analysis, and
programming technologies.

• Focus on features for emerging architectures:
heterogeneous computing, deep memory hierarchies, etc.

• Development of capabilities for current architectures
including Summit, Cori, and Theta

• Low-level software like code generation and performance
counters are critical to all applications and other software
projects AND intimately tied to the architecture

Dashboard

• Impact Goal: Improve and deliver ECP ST products and
make broadly available to key stakeholders. Focus on
integration with facility and vendor solutions.

• Impact Metrics: Number of ECP ST products deployed
and supported at facilities, adopted by vendors, and used
by applications and other software products

• Connection to KPPs: Direct impact on Productive
Software Ecosystem KPP

Scope (e.g., projects or areas)

2.3.2 Development Tools

• Performance portability metrics, tools, and strategies

• Expertise and software systems for

• heterogeneous computing (GPUs, FPGAs,
Manycore)

• deep memory hierarchies including nonvolatile
memory.

• LLVM including open-source improvements including
parallel IR, Flang, interoperability

• OpenACC, CUDA, OpenCL

• Performance tools with TAU, PAPI, HPCToolkit

• Infrastructure including autotuning, instrumentation, and
system software for other ST areas.

• Focus on emerging ECP application trends: Kokkos,
Legion, etc.

• Focus on emerging architectures: A21, SoCs, etc

14

STTO12-26 / 13717 / Develop prototype implementation of partial
OpenACC support (CLACC) in open-source LLVM framework
(2.3.2.09)

• Goal: Implement a prototype OpenACC compiler in Clang/LLVM for evaluation
on selection ECP applications.

Milestone to be completed in late September.

Approach / Milestones Impact

Evaluate design alternatives for

OpenACC implementation

Provide requested programming model to ECP users using an

source strategy, and request feedback from LLVM community.

Implement prototype OpenACC

design

Determine practical implementation strategy for deployment.

Test and demonstrate OpenACC on

real applications to understand limits

and priorities

Test and validate integrated implementation on real software and

existing systems.

15

Fulfillment of IBM Power9 Hardware Counter Support (2.3.2.06)

• Goal: Finalize development and implementation of PAPI hardware performance
counter support for IBM Power9 core and uncore architecture. This includes
validation and testing of the implemented core and uncore events against the
event tables released for IBM Power9.

Milestone completed and software released in FY18.

Approach / Milestones Impact

Solicit input from users and performance tool

developers from testing the early IBM Power9

core and uncore support developed in

Provide requested features to ECP users using an open

source strategy, and prioritize feedback from the user

community.

Implement the final version of PAPI

components enabling IBM Power9 core and

uncore support.

Determine practical implementation strategy for

deployment.

Release of PAPI components for IBM Power9

core and uncore support that are fully

integrated into the PAPI library.

Test and validate integrated implementation on real

software and existing systems.

16

Goals and Objectives

Objective: Provide scalable, robust, resilient numerical
algorithms, encapsulated in reusable libraries that facilitate
efficient next-generation scientific simulations on exascale
computers.

Drivers: Broad range of ECP applications rely on DOE
math libraries for the most advanced technologies available
in math and computer science R&D.

Impact Goals and Metrics

• Impact Goal: Mathematical libraries that (i) interoperate
with the ECP software stack; (ii) are incorporated into the
ECP applications; and (iii) provide scalable, resilient
algorithms that facilitate efficient exascale simulations.

• Impact Metrics: Number of ECP projects using math
libraries developed by this L3 area, richness of
interoperability among math libraries and ECP SW stack.

• Connection to KPPs: Contribute toward performance,
portability, and productivity KPPs.

Scope

2.3.3 Math Libraries

• Advanced, coupled multiphysics and multiscale
algorithms

• Discretizations

• Preconditioners and Krylov solvers

• Nonlinear and timestepping solvers

• Coupling technologies

• Toward predictive simulations and analysis

• Optimization, sensitivities, UQ, ensembles

• Performance on new node architectures

• Extreme strong scalability

• Math library interoperability and complementarity through
the xSDK (Extreme-scale Scientific Software
Development Kit)

• Improving package usability, quality, sustainability

• Community coordination and collaboration while
retaining package autonomy

17

Recent Math Libraries Highlights

Accelerated Matrix NormsFactorization-based Sparse Solvers for Exascale

The parallel

algorithm runs

300x faster than

the sequential

algorithm on

16K cores of

NERSC/Cori

• STRUMPACK/SuperLU team collaborating with the
ExaGraph team

• Develop distributed-memory maximum-weight perfect
matching algorithm for stable pivot selection.

• The parallel AWPM code scales to 256 nodes (17K cores)
on the Cori/KNL supercomputer and can run up to 2500x
faster than the sequential algorithm on 256 nodes

• More info:

• https://www.exascaleproject.org/exagraph-with-
strumpack-superlu/

• A. Azad, A. Buluc, X.S. Li, X. Wang, J. Langguth,
arXiv:1801.09809v1, 30 Jan 2018

• SLATE provides
accelerated
implementation of
norms, a capability that
is currently not available
in ScaLAPACK or
vendor libraries.

• Implementation of norms: max, one, infinity, Frobenius

• Covering the standard precisions (S, C, D, Z)

• Covering the GE, TR, SY, HE matrix types

• Covering all routines with testers

• Producing a performance report

• Maps well to modern supercomputers, with multiple
hardware accelerators per node

• More info:

• A. Kurzak, M. Gates, A. Yarkhan, I. Yamazaki, P.
Luszczek, J. Finney, J. Dongarra,
http://www.icl.utk.edu/publications/swan-006,

• https://bitbucket.org/icl/slate/

https://www.exascaleproject.org/exagraph-with-strumpack-superlu/
http://www.icl.utk.edu/publications/swan-006
https://bitbucket.org/icl/slate/

18

Goals and Objectives

Objective: A production-quality storage infrastructure necessary

to checkpoint, manage, share, and facilitate analysis of data in

support of mission critical codes. Data analytics and visualization

software that effectively supports scientific discovery and

understanding of data produced by exascale platforms.

Drivers: ECP applications rely on DOE-supported data and

visualization approaches to checkpoint and analyze their

simulation results.

Dashboard

• Impact goal: Data and visualization libraries and tools
that (i) interoperate with the ECP software stack; (ii) are
incorporated into the ECP applications; and (iii) provide
checkpoint, data reduction and visual analysis that
facilitate simulation science on exascale computers.

• Impact metrics: Number of ECP projects using data and
visualization libraries developed by this L3 area, amount
of data saved and reduced

• KPPs: Contribute toward performance, portability, and
productivity KPPs

Scope (e.g., projects or areas)

2.3.4 Data and Visualization

2.3.4.01 Data and Visualization Software Development Kit

2.3.4.02-04 LANL/LLNL/SNL ATDM Data and Visualization

Projects

2.3.4.05 VeloC: Very Low Overhead Transparent Multilevel

Checkpoint/Restart

2.3.4.06 Ez: Fast, Effective, Parallel Error-bounded Exascale

Lossy Compression for Scientific Data

2.3.4.07 UnifyCR: A Checkpoint/Restart File System for

Distributed Burst Buffers

2.3.4.08 ExaHDF5: Delivering Efficient Parallel I/O on Exacale

Computing Systems

2.3.4.09 ADIOS Framework for Scientific Data on Exascale

Systems

2.3.4.10 DataLib: Data Libraries and Services Enabling

Exascale Science

2.3.4.11 ZFP: Compressed Floating-Point Arrays

2.3.4.12 ALPINE: Algorithms and Infrastructure for In Situ

Visualization and Analysis

2.3.4.13 ECP VTK-m

19

Highlight - EZ
• Performance of two electron integral

simulations is limited by the re-computation
of large number of integrals at each
iteration because of lack of memory space

• -The EZ team developed a new algorithm
for compression of two electron integral
simulation with very high compression ratio
and fidelity

• -Integration in SZ and test in GAMESS

• -16.8X compression ratio, 661MB/s
compression rate, 1116MB/s
decompression rate

• -Performance improvement of GAMESS
(on the tested cases) of 1.25 to 2.5
depending on the simulations and error
bound (these accelerations are highly
dependent on the simulation)

• -Overall best paper award at IEEE Cluster
2018

Ref: Ali Murat Gok, Sheng Di, Yuri Alexeev, and Dingwen Tao,

Vladimir Mironov, Xin Liang, Franck Cappello, PaSTRI: Error-

Bounded Lossy Compression for Two-Electron Integrals in

Quantum Chemistry, IEEE Cluster 2018, Belfast, IEEE press

Figure: acceleration on 1 process, serial execution, compressed

integrals stored in memory.

We also have the parallel performance with the compressed

integrals stored on disks.

20

VTK-m: In situ visualization of WDMApp code
coupling

• ECP Scientists from the WDMApp project need in
situ visualization to monitor and understand the
behavior of coupled fusion codes (GENE and XGC-
1)

• The VTK-m ECP project integrated visualization
components into the system by leveraging the same
ADIOS framework used to couple the fusion codes

• WDMApp scientists were able to monitor and
validate the code coupling using in situ visualization,
which is the first coupling of continuum and PIC
fusion codes

• See: J. Dominski, et al., Physics of Plasmas 2018, 25, DOI:
10.1063/1.5044707

• This technology was run on the Titan supercomputer
at the Oak Ridge Leadership Computing Facility

“In Situ Analysis and Visualization of Fusion Simulations:

Lessons Learned” M. Kim, et al., In Situ Visualization:

Introduction and Applications, July 2018

21

• Three document elements:

1. Executive summary – Public content.

2. Project Description - Public content.

• SDKs, Delivery strategy, project restructuring, new
projects.

• Technical areas overview.

• Deliverables: Products, Standards committees,
contributions to external products.

• Project two-pages: 55 with description, activities, challenges,
next steps.

3. Appendix – ECP/Stakeholder content.

• Impact goals/metrics framework.

• Gaps and Overlaps.

• ASC-ASCR leverage tables.

• LaTeX, separate contributors, easily updated.

• 212 pages (191 public), update twice a year.

ECP Software Technology Capability Assessment Report
(Released July 2018)

Available
https://www.exascaleproject.org

3

https://www.exascaleproject.org/

22

ECP ST Products:
55 Projects contribute to 89 Unique Products

Spack Package Support

Have Spack Package 43

Spack Package in progress 21

Source Build System

Cmake 44

Configure/Make (autotools) 32

Custom 4

Delivery

Direct to users from source 81

Vendor stack 11

ALCF 19

OLCF 20

NERSC 20

LLNL 18

LANL 17

OpenHPC 9

Containers (Docker) 3+

User Support

Documentation 81

Tutorials 50

Support staff training 21

Email/phone contact 70

User-access issue tracking 65

• 48% support Spack.
• 24% Spack in progress.
 Requirement for Q1FY19

participation.

• Most users directly manage
ST software from source.

 Spack packages, SDKs will
improve access and
management.

• ST projects have diverse
delivery experience with:

• vendors,
• leadership facilities,
• binary release,
• Containers

 Can leverage across other
projects.

Stats collected April 2018

23

Programming Models and Runtimes Products (18)

Legion http://legion.stanford.edu

ROSE https://github.com/rose-compiler

Kokkos https://github.com/kokkos

DARMA https://github.com/darma-tasking

Global Arrays http://hpc.pnl.gov/globalarrays/

RAJA https://github.com/LLNL/RAJA

CHAI https://github.com/LLNL/CHAI

Umpire

MPICH http://www.mpich.org

PaRSEC http://icl.utk.edu/parsec/

Open MPI https://www.open-mpi.org/

Intel GEOPM https://geopm.github.io/

LLVM OpenMP compiler https://github.com/SOLLVE

OpenMP V&V Suite https://bitbucket.org/crpl_cisc/sollve_vv/src

BOLT https://github.com/pmodels/argobots

UPC++ http://upcxx.lbl.gov

GASNet-EX http://gasnet.lbl.gov

Qthreads https://github.com/Qthreads

http://legion.stanford.edu/
https://github.com/rose-compiler
https://github.com/kokkos
https://github.com/darma-tasking
http://hpc.pnl.gov/globalarrays/
https://github.com/LLNL/RAJA
https://github.com/LLNL/CHAI
http://www.mpich.org/
http://icl.utk.edu/parsec/
https://www.open-mpi.org/
https://geopm.github.io/
https://github.com/SOLLVE
https://bitbucket.org/crpl_cisc/sollve_vv/src
https://github.com/pmodels/argobots
http://upcxx.lbl.gov/
http://gasnet.lbl.gov/
https://github.com/Qthreads

24

Development Tools (19)

SICM https://confluence.exascaleproject.org/display/STSS07

QUO https://github.com/lanl/libquo

Kitsune https://github.com/lanl/kitsune

SCR https://github.com/llnl/scr

Caliper https://github.com/llnl/caliper

mpiFileUtils https://github.com/hpc/mpifileutils

Gotcha http://github.com/llnl/gotcha

TriBITS https://tribits.org

Exascale Code Geneneration Toolkit

PAPI http://icl.utk.edu/exa-papi/

CHiLL Autotuning Compiler

Search using Random Forests (SuRF)

HPCToolkit http://hpctoolkit.org

The Dyninst Binary Tools Suite http://www.paradyn.org

Tau http://www.cs.uoregon.edu/research/tau

Papyrus https://ft.ornl.gov/research/papyrus

openarc https://ft.ornl.gov/research/openarc

LLVM http://llvm.org/

Program Database Toolkit (PDT) https://www.cs.uoregon.edu/research/pdt/home.php

https://confluence.exascaleproject.org/display/STSS07
https://github.com/lanl/libquo
https://github.com/lanl/kitsune
https://github.com/llnl/scr
https://github.com/llnl/caliper
https://github.com/hpc/mpifileutils
http://github.com/llnl/gotcha
https://tribits.org/
http://icl.utk.edu/exa-papi/
http://hpctoolkit.org/
http://www.paradyn.org/
http://www.cs.uoregon.edu/research/tau
https://ft.ornl.gov/research/papyrus
https://ft.ornl.gov/research/openarc
http://llvm.org/
https://www.cs.uoregon.edu/research/pdt/home.php

25

Mathematical Libraries Products (16)

xSDK https://xsdk.info

hypre http://www.llnl.gov/casc/hypre

FleCSI http://www.flecsi.org

MFEM http://mfem.org/

Kokkoskernels https://github.com/kokkos/kokkos-kernels/

Trilinos https://github.com/trilinos/Trilinos

SUNDIALS https://computation.llnl.gov/projects/sundials

PETSc/TAO http://www.mcs.anl.gov/petsc

libEnsemble https://github.com/Libensemble/libensemble

STRUMPACK http://portal.nersc.gov/project/sparse/strumpack/

SuperLU http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

ForTrilinos https://trilinos.github.io/ForTrilinos/

SLATE http://icl.utk.edu/slate/

MAGMA-sparse https://bitbucket.org/icl/magma

DTK https://github.com/ORNL-CEES/DataTransferKit

Tasmanian http://tasmanian.ornl.gov/

https://xsdk.info/
http://www.llnl.gov/casc/hypre
http://www.flecsi.org/
http://mfem.org/
https://github.com/kokkos/kokkos-kernels/
https://github.com/trilinos/Trilinos
https://computation.llnl.gov/projects/sundials
http://www.mcs.anl.gov/petsc
https://github.com/Libensemble/libensemble
http://portal.nersc.gov/project/sparse/strumpack/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
https://trilinos.github.io/ForTrilinos/
http://icl.utk.edu/slate/
https://bitbucket.org/icl/magma
https://github.com/ORNL-CEES/DataTransferKit
http://tasmanian.ornl.gov/

26

Data & Visualization Products (25)
HXHIM http://github.com/hpc/hxhim.git

Cinema https://datascience.lanl.gov/Cinema.html

MarFS https://github.com/mar-file-system/marfs

GUFI (The Grand Unified File Index) https://github.com/mar-file-system/GUFI

Siboka

ROVER

C2C

TuckerMPI

ParaView https://www.paraview.org/

Catalyst https://www.paraview.org/in-situ/

VTK-m http://m.vtk.org

FAODEL https://github.com/faodel/faodel

IOSS https://github.com/gsjaardema/seacas

VeloC https://xgitlab.cels.anl.gov/ecp-veloc

SZ https://github.com/disheng222/SZ

UnifyCR https://github.com/LLNL/UnifyCR

HDF5 https://www.hdfgroup.org/downloads/

ADIOS https://github.com/ornladios/ADIOS2

Parallel netCDF http://cucis.ece.northwestern.edu/projects/PnetCDF/

Darshan http://www.mcs.anl.gov/research/projects/darshan/

ROMIO http://www.mcs.anl.gov/projects/romio/

Mercury (part of Mochi suite) http://www.mcs.anl.gov/research/projects/mochi/

zfp https://github.com/LLNL/zfp

VisIt https://wci.llnl.gov/simulation/computer-codes/visit

ASCENT https://github.com/Alpine-DAV/ascent

http://github.com/hpc/hxhim.git
https://datascience.lanl.gov/Cinema.html
https://github.com/mar-file-system/marfs
https://github.com/mar-file-system/GUFI
https://www.paraview.org/
https://www.paraview.org/in-situ/
http://m.vtk.org/
https://github.com/faodel/faodel
https://github.com/gsjaardema/seacas
https://xgitlab.cels.anl.gov/ecp-veloc
https://github.com/disheng222/SZ
https://github.com/LLNL/UnifyCR
https://www.hdfgroup.org/downloads/
https://github.com/ornladios/ADIOS2
http://cucis.ece.northwestern.edu/projects/PnetCDF/
http://www.mcs.anl.gov/research/projects/darshan/
http://www.mcs.anl.gov/projects/romio/
http://www.mcs.anl.gov/research/projects/mochi/
https://github.com/LLNL/zfp
https://wci.llnl.gov/simulation/computer-codes/visit
https://github.com/Alpine-DAV/ascent

27

SW Ecosystem & Delivery Products (11)

BEE

FSEFI

Spack https://github.com/spack/spack

Sonar

Secure JupyterHub

Kitten Lightweight Kernel https://github.com/HobbesOSR/kitten

AML https://xgitlab.cels.anl.gov/argo/aml

ArgoContainers https://xgitlab.cels.anl.gov/argo/containers

COOLR https://github.com/coolr-hpc

NRM https://xgitlab.cels.anl.gov/argo/nrm

Flang/LLVM Fortran compiler http://www.flang-compiler.org

https://github.com/spack/spack
https://github.com/HobbesOSR/kitten
https://xgitlab.cels.anl.gov/argo/aml
https://xgitlab.cels.anl.gov/argo/containers
https://github.com/coolr-hpc
https://xgitlab.cels.anl.gov/argo/nrm
http://www.flang-compiler.org/

28

Other Important ECP ST Contributions

3

29

ECP ST Staff Contribute to ISO and de facto standards groups:
Assuring Sustainability through standards

Standards Effort ECP ST

Participants

MPI Forum 15

OpenMP 15

BLAS 6

C++ 4

Fortran 4

OpenACC 3

LLVM 2

PowerAPI 1

VTK ARB 1

• MPI/OpenMP: Several key
leadership positions.

• Heavy involvement in all aspects.

• C++: Getting HPC requirements
considered, contributing working
code.

• Fortran: Flang front end for LLVM.

• De facto: Specific HPC efforts.

• ARB*: Good model for SDKs.
*Architecture Review Board

30

External Product Impact

Product Contribution
MAGMA ECP ST math libraries eorts inform the design, implementation, and optimization of numerical linear algebra routines on

NVIDIA GPUs

Vendor/community

compilers and runtimes

The Validation and Verication Suite (on-going effort) for the SOLLVE project has helped uncover bugs in OpenMP

implementations provided by Cray, LLVM and XL.

SWIG The ECP ST ForTrilinos eorts contributes the capability to generate automatic Fortran bindings from C++ code.

TotalView Debugger ECP ST sta are engaged in co-design of OMPD, the new debugging interface for OpenMP programs, along with RogueWave

engineers. This eort helps RogueWave improve their main debugging product, TotalView, by making it aware and compatible

with recent advances in OpenMP debugging.

MPI Forum ECP ST sta maintain several chapters of the MPI Forum, effort that require a constant involvement with the other authors, as

well as participation to the online discussions related to the chapter and regular attendance of the MPI Forum face-to-face

activities. An ECP ST staff member belongs to several working group related to scalability and resilience where, in addition to

the discussions, implements proof-of-concept features in OpenMPI.

Cray MPICH MPI-IO As part of the ExaHDF5 ECP project, the ALCF worked with Cray MPI-IO developers to merge the upstream ROMIO code into

the downstream proprietary Cray MPICH MPI-IO, leveraging Crays extensive suite of IO performance tests and further tuning

the algorithm. Cray is currently targeting its deployment in an experimental release.

OpenHPC An ECP ST staff member serves on the OpenHPC Technical Steering Committee as a Component Development

representative.

LLVM An ECP ST staff member is co-leading design discussions around the parallel IR and loop-optimization infrastructure.

Some of our best work is to provide input to software we don’t productize or support.

31

ECP ST SDKs

32

SW Development Kit (SDK) Overview

• SDK: A collection of related software products (called packages) where
coordination across package teams will improve usability and practices and
foster community growth among teams that develop similar and complementary
capabilities. SDKs have the following attributes:

– Domain scope: Collection makes functional sense.

– Interaction model: How package interact; compatible, complementary, interoperable.

– Community policies: Value statements; serve as criteria for membership.

– Meta-infrastructure: Encapsulates, invokes build of all packages (Spack), shared test suites.

– Coordinated plans: Inter-package planning. Does not replace autonomous package planning.

– Community outreach: Coordinated, combined tutorials, documentation, best practices

• Overarching goal: Unity in essentials, otherwise diversity.

33

xSDK functionality, Nov 2017

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

xSDK interactions: Apps, packages, Spack

ECP AD Multiphysics Application

Application B

Notation: A B:

A can use B to provide

functionality on behalf of A

MAGMA,

PLASMA

Alquimia
hypre

Trilinos

PETSc

SuperLU More

contributed

libraries

PFLOTRAN

More

domain

components

MFEM

SUNDIALS

Application A

34

ECP ST SDK community policies:
Important team building, quality improvement, membership criteria.

xSDK compatible package: Must satisfy mandatory xSDK
policies:
M1. Support xSDK community GNU Autoconf or CMake options.

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name space.

M10. Provide an accessible repository (not necessarily publicly available).

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64 bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible with the xSDK
install tool and xSDK metapackage.

Version 0.3.0,

Nov 2017

Also specify recommended policies,
which currently are encouraged but not
required:
R1. Have a public repository.

R2. Possible to run test suite under valgrind in order
to test for memory corruption issues.

R3. Adopt and document consistent system for error
conditions/exceptions.

R4. Free all system resources it has acquired as soon
as they are no longer needed.

R5. Provide a mechanism to export ordered list of
library dependencies.

xSDK member package: Must be an xSDK-
compatible package, and it uses or can be
used by another package in the xSDK, and the
connecting interface is regularly tested for
regressions.

https://xsdk.info/policiesPrior to defining and complying to these policies, a user could
not correctly, much less easily, build hypre, PETSc, SuperLU
and Trilinos in a single executable: a basic requirement for
some ECP app multi-scale/multi-physics efforts.

https://xsdk.info/policies

35

OpenHPC
Potential exit strategy
for binary distributions

• Target similar software to
existing OpenHPC stack

• Develop super-scalable
release targeting higher end
systems

Direct2Facility
Platform-specific software
in support of a specified
2021–2023 exascale system

• Software exclusively
supporting a specific platform

• System software, some tools
and runtimes

ECP software projects
Each project to define (potentially ≥2) release vectors

SDKs
Reusable software libraries
embedded in applications;
cohesive/interdependent
libraries released as sets
modeled on xSDK

• Regular coordinated
releases

• Hierarchical collection
built on Spack

• Products may belong to >1
SDK based on dependences

• Establish community policies
for library development

• Apply Continuous Integration
and other robust testing
practices

Software Development Kits Progress:
Leadership in place, Spack packaging making rapid progress

Math SDK

Tools SDK

PM&RT SDK

DataViz SDK

More projects Fewer projects

SDK Leadership Team: Decades of Software Experience

- Jim Willenbring – SDK Coordinator and Release Manager

- Sameer Shende – Programming Models & Runtimes

- Bart Miller – Development Tools

- Lois McInnes – Math Libraries

- Chuck Atkins - Data & Viz

36

SDK “Horizontal” Grouping

• Horizonal (vs Vertical) Coupling
– Common substrate

– Similar function and purpose
• e.x. compiler frameworks, math libraries

– Potential benefit from common Community Policies
• Best practices in software design and development and customer support

– Used together, but not in the long vertical dependency chain sense

– Support for (and design of) common interfaces
• Commonly an aspiration, not yet reality

PETSc Trilinos

SuperLU Version X SuperLU Version Y

SuperLU Version Y

37

SDK Summary

• Extending the SDK approach to all ECP ST domains.

– SDKs create a horizontal coupling of software products, teams.

– Create opportunities for better, faster, cheaper – pick all three.

• First concrete effort: Spack target to build all packages in an SDK.

– Decide on good groupings.

– Not necessarily trivial: Version compatibility issues. Coordination of common dependencies.

• SDKs will help reduce complexity of delivery:

– Hierarchical build targets.

– Distribution of software integration responsibilities.

• Longer term:

– Establish community policies, enhance best practices sharing.

– Provide a mechanism for shared infrastructure, testing, training, etc.

– Enable community expansion beyond ECP.

38

HI and Facilities Interaction and Integration

• ECP ST has an entire technical area dedicated to HI interactions and integration:

– ECP ST technical area 5: SW Ecosystem and Delivery.

– Primary focus is on coordinated software delivery and integration.

• Delivery vs deployment:

– ST delivers.

– HI, Facilities, vendors, OpenHPC deploy.

ST-HI Interplay

ST Projects
(55)

ST L3 SDK
support teams Deployment

and Testing
(at each facility)

Release
Engineer

Continuous
Integration

(subcontract)

HI

Spack /
ProTools

ST

Single POC manager for ST release(s).
Identify/leverage commonality across SDKs,
establish documentation and testing
standards. Work with HI Software
Deployment at Facilities team

Existing Spack and ProTools teams at LLNL,
supplemented by additional help from
deployment team in HI (facilities)

Supplement GitLab CI with features
required by facilities to deploy CI as an
option to ST projects and other users

Modeled after xSDK and ECP-IDEAS, each L3
area defines and deploys one or more SDKs
based on agreed-upon community policies for
this area. Lead will work with ST projects on
architecture, documentation, integration
testing, and ties to other SDKs, AD, and HI

Existing/funded New/fund (ST)

L e g e n d
Owning Focus

Area

Expected Tight Interactions

New/fund (HI)

GitLab
(@exascaleproject.org)

OpenHPC
Longer-term
community
deployment

Test Engineer
Work closely with Release Engineer, Spack
developers, CI team, and OpenHPC on
developing a framework for integrated
testing of ST releases

ECP will support staff at each site/facility:
• Coordinate/install SW releases at their site,

integrate with help desks to triage issues,
provide feedback

• Integrate and Deploy developed CI solution,
identify early users, develop open source
enhancements to GitLab for continuing
support post-subcontract

• Integrate with local ST teams as first-line
help on use of CI, Spack integration,
documentation review

• Support integration of ECP, Facility and
Vendor SW for Facility environment

• Assist with container deployment (TBD)
• Coordinates all aspects with the Release

Manager, ECP team, and Facility SW

Next Steps

41

Oct 1 – 5, 2018 Review, Virtual (BlueJeans) Technical

Area

External Subject Matter Experts

(Advisors)

PMR 1.Sanjay Kale, UIUC

2.Larry Kaplan, Cray

3.Bob Wisniewski, Intel

Dev Tools 1.Laura Carrington, SDSC

2.Felix Wolf, TU-Darmstadt

Math Libs 1.Wolfgang Bangerth, Colorado

State

2.Edmond Chow, Georgia Tech

Data & Viz 1.Gary Grider, LANL

2.Paul Navratil, TACC

SW

Ecosystem

1.Sadaf Alam, CSCS, Switzerland

2.Karl Schulz, TACC

Review Criteria:

Describe the following:

1. How the project is important or essential to achieving a sustainable, production-level computing capability for ECP.

• Focus on the new capabilities that ECP is funding, not the general capabilities represented your project.

• Address what ECP would lack if your project could not deliver.

• Discuss the project’s clients and users, and the importance of your efforts to helping them achieve ECP goals.

2. Project deliverables for 2019 and (assuming continuous funding) deliverables in the ECP timeframe (2021 - 2023).

3. How the project will deliver its capabilities to users.

• Discuss any project history of production software delivery.

• Describe planned delivery paths, in particular: open source repositories with production source installation capabilities,

third parties (vendors, OpenHPC), direct to facilities.

• Describe means of documentation, testing, user support, licensing, etc.

4. Progress toward the project's milestones.

• List project impact goals and impact metrics, and progress toward these goals.

• Review and highlight completed milestones.

• Discuss progress toward integration with applications, other ST projects, vendors, or facilities; discuss progress toward

platform readiness.

• Discuss progress on software performance, scalability, and portability.

5. Relationships with other software (from any source) and other ECP efforts.

• List project dependencies (you depend on others and others depend on you) that are not ECP apps.

• Discuss projects with similar capabilities, and distinguishing features you want to highlight.

• Discuss collaborating projects and any relationships with ECP HI (co-design, PathForward, DSE) efforts.

6. Project risks and issues.

• Discuss technical, programmatic, or personnel risks and issues.

• Describe plans to address and manage these risks.

4

42

Software Practices Polls

• Two polls:

– The first poll (Software Practices Survey) is important for the ECP Independent Project Review. If
you can only take time to do one poll, please complete this one. Responses due COB Wed 9/14.

– The second poll (Software Practices: Lessons Learned) is intended to capture practices that work
and don’t work base on the many collective years ECP ST staff have spent writing scientific
software. Of particular interest to me are practices that take a long time for the benefit or harm to be
realized.

• Note:

– We will not use the information collected in these polls as part of our assessment.

– We need results from the first poll to baseline the way ECP ST software is developed today.

– Any reporting of the survey results will not include project-specific connections.

– Please be as frank as possible.

• Both polls are available from the following Confluence page:
https://confluence.exascaleproject.org/display/1ST/Software+Practices+Polls

4

https://confluence.exascaleproject.org/display/1ST/Software+Practices+Polls

43

Question 1 – 3

33

44

Questions 4 – 5

45

Questions 6 – 8

46

Questions 9 – 10

47

Partial Survey Results

• Results still coming in.

• Next slides are a raw presentation of 48 responses.

48

49

50

ECP ST Software Release Overview

• ECP ST Delivers Products as Source Code:

– Tested regularly on target platforms including pre-Exascale.

– Facilities, Vendors, Users pull from open repositories, coordinated with ECP HI.

• Build from Source

– Spack build tool:

– Hierarchical build of independently-developed products.

• Continuous Integration Testing (under construction).

– ECP ST Products automatically pulled from development repositories.

– Integrated regression testing performed on key DOE platforms.

• First Releases

– September 30: Practice Release, Tests integrity of release process.

– November 8: First ECP ST Release, Collection of Products Ready for Release (est. 45).

51

ECP ST Software Release Goals

• Build All ST Products that are ready.

– Product readiness is part of success criteria.

– Number of releasable products increase over time.

• SDKs will provide product suites.

– Similar products, interoperable.

– Consistent versions of dependencies.

– Math SDK (aka, xSDK) is first SDK.

• We build the whole tree, so any subtree will be
stable.

– spack install xsdk – Build entire math SDK.

– spack install sundials – Guaranteed to build correctly.

52

ECP ST FY19/20 Preparations for CD2.

• New L4 efforts:

– Future Technology Directions Project.

• Tracks external efforts that can inform and influence ECP ST efforts.

• Reduces risk that ECP ST succeeds in its milestones, but creates unnecessary
incompatibilities.

– Quality Assessment Team:

• Review and assessment of ST team readiness for Exascale platforms.

• Assessment of software quality efforts, specifically software practices.

4

53

ECP ST L4 Project Adjustment & Augmentation Goals

• Need larger teams merged from existing projects:

– More uniform size and expectations (presently more than 10x range in size).

– Need integrated project resources (staffing) for managing CD-2 process expectations.

– Create opportunities for SDKs to have structural support.

• Anticipated outcomes:

– Current project teams will retain technical scope integrity and leadership.

– Technical staff will spend more time on technical work.

– Cost of implementing CD-2 formality will be amortized and quality improved.

• Details will emerge over the next 4 – 5 months.

• Goals:

– Use Oct Review output to inform planning.

– Have project adjustments & augmentations defined in Mar - April 2019, including FY20
milestones.

– Deploy structure in FY20.

4

54

Summary (1)

• ECP Software Technology contributes to a broad spectrum of HPC software
products:

– 89 products total.

– 33 broadly used in HPC.

• Require substantial investment and transformation in preparation for exascale architectures

– Additional 23 important to some existing applications,

• Typically represent new capabilities that enable new usage models for realizing the potential that
Exascale platforms promise.

– Remaining products are in early development phases

• Addressing emerging challenges and opportunities that Exascale platforms present.

• SDKs provide a key horizontal coupling to enhance all aspects of ECP software
activities.

55

Summary (2)

• Access to Exascale Systems Info:

– Structurally hard: Information scoping by lab, ECP is multi-lab (and universities).

– Working with HI and Intel for A21: Simulator access (small group), Briefing (large group).

• ST Reviews (Oct 1 – 5) & Release (Nov 8).

• Software Practices:

– Census wrapping up.

– Explore next steps, consult with industry partners.

• Adjustments/augmentations for CD2:

– Balanced project sizes.

– Better support for planning.

	Structure Bookmarks
	Chart

