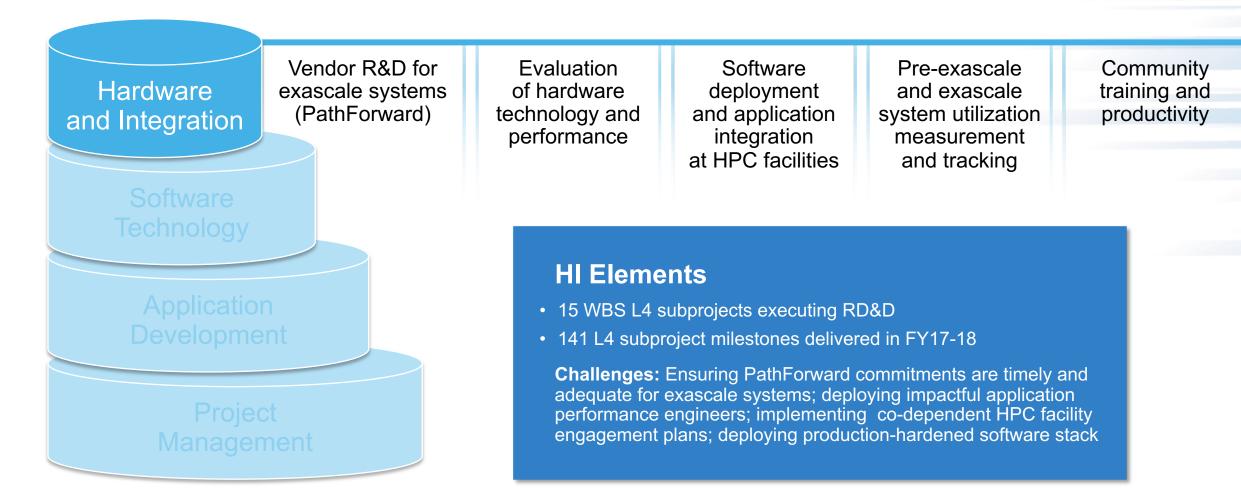


ECP Update

Douglas B. Kothe (ORNL), Director, ECP

DOE Advanced Scientific Computing Advisory Committee (ASCAC) Washington, DC September 17, 2018

exascaleproject.org

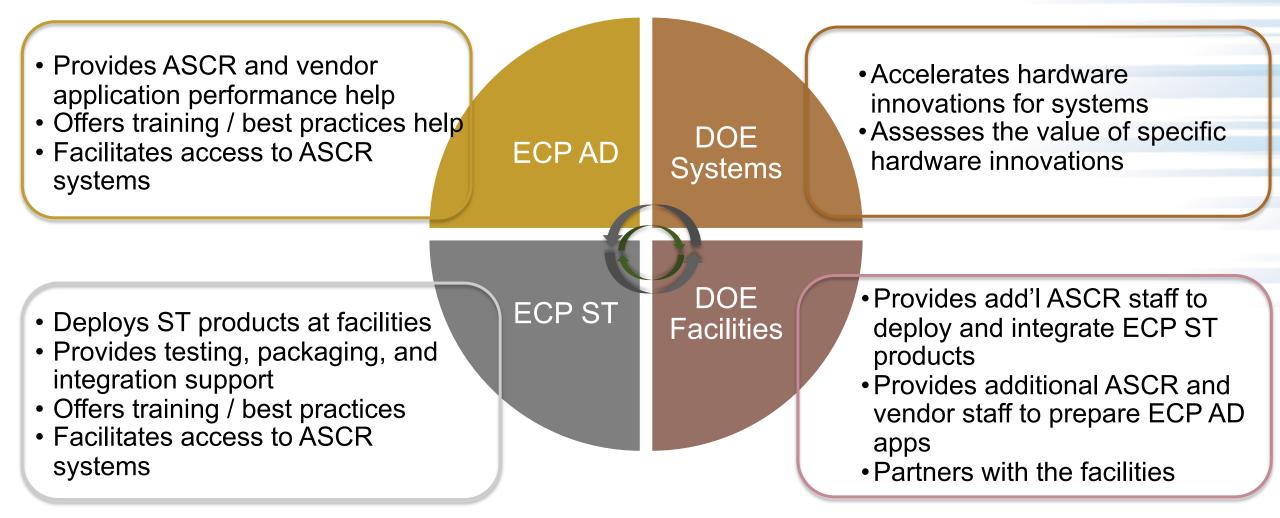

ECP is a large and complex project

		ique and Complex					
	RD&D and softwa Two sponsoring D Numerous particip Decentralized cos External project d	bating institutions at system	Broad and qualitative mission need requirements Outcomes both products and solutions Key performance parameters require innovation Application of scope contingency End of project transition				
Hardware and Integration							
Software Technology	Develop the exascale software stack and deliver using Software Development Kits (SDKs)						
		Prepare key applications for exascale, execute challenge problems, measure performance					
Project Management			gress and ensure execution schedule, and budget				

SCALE PUTING

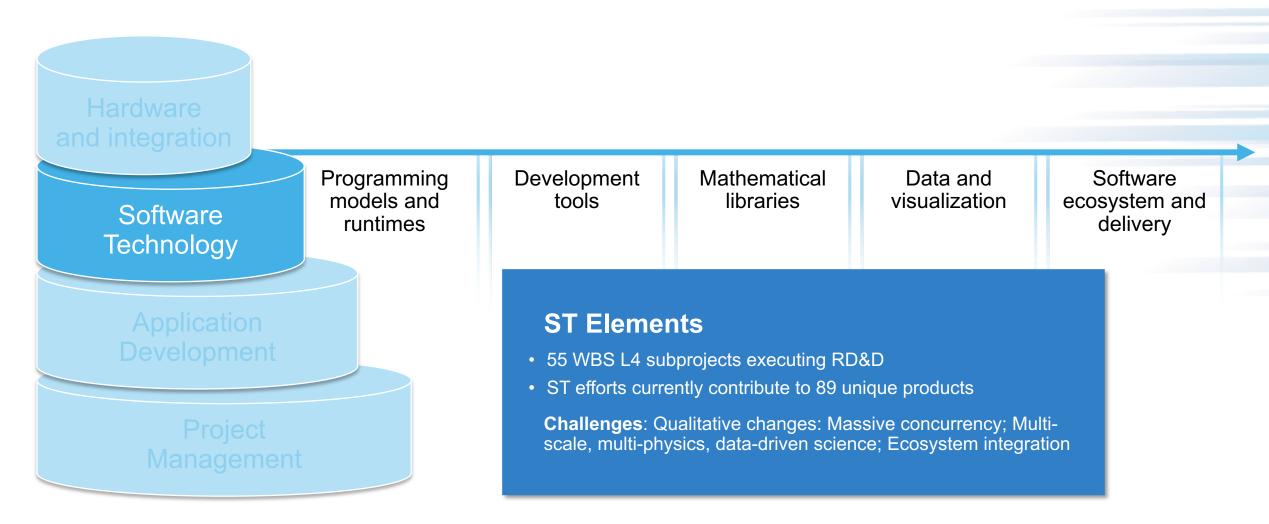
Hardware and Integration (HI)

Develop technology advances for exascale and deploy ECP products



Relevant US Pre-Exascale and Exascale Systems for ECP

	Pre-Exasca	Exascale Systems			
2013	2016	2018	2020	2021-2024	
MIRA	Theta	Summit		Aurora	ANL ntel/Cray TBD
ANL IBM BG/Q	ANL Cray/Intel KNL	ORNL IBM/NVIDIA P9/Volta			
Titan		Sierra	NERSC-9	FRØNT	IER ORNL TBD
ORNL Cray/NVIDIA K20	LBNL Cray/Intel Xeon/KNL	LLNL IBM/NVIDIA P9/Volta	LBNL TBD		
Sequoia			CROSS	ROADS	CAPITAN LLNL TBD
LLNL IBM BG/Q	LANL/SNL Cray/Intel Xeon/KNL		LANL/S TBD		
		l			


HI provides technical capabilities to deploy and integrate ECP software and applications at the facilities and has a major role in partnering with the facilities

Software Technology

Develop the exascale software stack and deliver using Software Development Kits (SDKs)

Software Development Kits (SDKs): A Key ST Design Feature

An important delivery vehicle for software products with a direct line of sight to AD applications

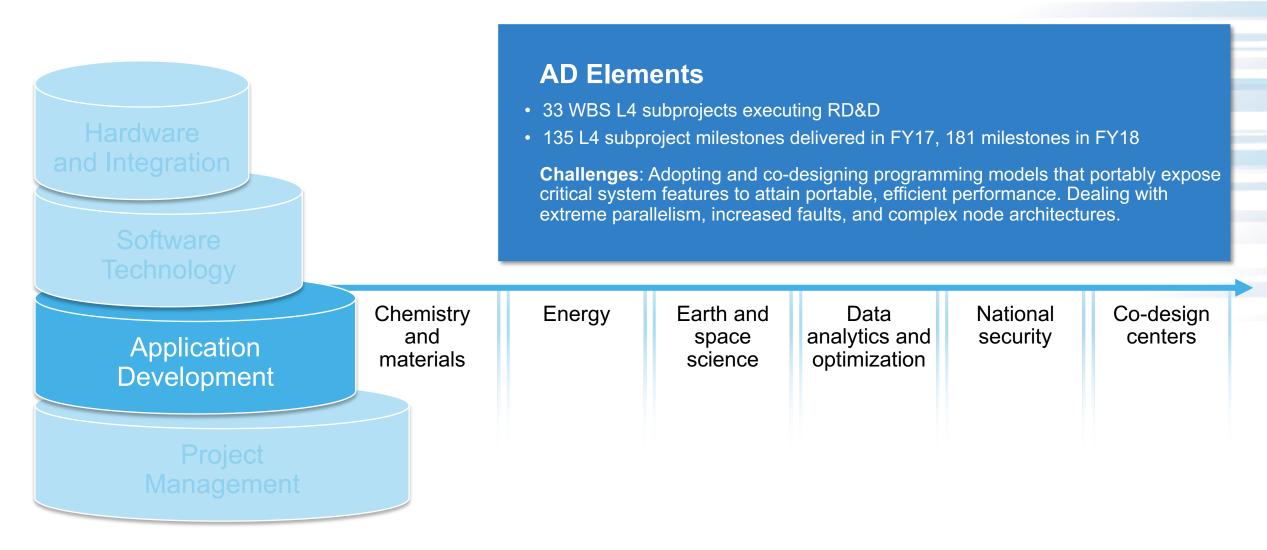
ECP software projects Each project to define (at least 2) release vectors									
More projects	Fewer projects								
 SDKs Reusable software libraries embedded in applications; cohesive/interdependent libraries released as sets modeled on xSDK Regular coordinated releases Hierarchical collection built on Spack Products may belong to >1 	Math SDK Tools SDK PM&RT SDK DataViz SDK Facility SDK	 OpenHPC Potential exit strategy for binary distributions Target similar software to existing OpenHPC stack Develop super-scalable release targeting higher end systems 	 Direct2Facility Platform-specific software in support of a specified 2021–2023 exascale system Software exclusively supporting a specific platform System software, some tools and runtimes 						
 Froducts may belong to >1 SDK based on dependences Establish community policies for library development Apply Continuous Integration and other robust testing practices 	QNº SUM	Assume all releases are delivered as "build from source" via Spack – at least initially Focus on ensuring that software compiles robustly on all platforms of interest to ECP (including testbeds)							

ECP Software Technology (ST) Capability Assessment Report

Document scope

- 1. Executive summary
- 2. ST approach
 - SDKs, delivery strategy, project restructuring, new projects
- 3. ST WBS L3 areas
 - Scope, assumptions, objectives, plan, risks

4. ST deliverables


- Products, standards committees, contributions to external products
- 5. ST WBS L3 project summaries (55)
 - Overview, challenges, strategy, recent progress, next steps
- 6. Appendix ECP/Stakeholder content
 - Impact goals/metrics framework
 - Gap and overlap analysis
 - ASC-ASCR leverage tables

Plans to update every other quarter

Application Development

Prepare key applications for exascale, execute challenge problems, measure performance

ExaAM: Additive Manufacturing of

Qualifiable Metal Parts

Challenge problem target and impact, lead institution, stakeholder

ExaWind: Turbine Wind Plant Efficiency

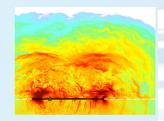
Harden wind plant design and layout against energy loss susceptibility; higher penetration of wind energy

Lead: NREL DOE EERE

adoption of AM by enabling routine fabrication of qualifiable metal parts

Lead: ORNL **DOE NNSA / EERE**

Accelerate the widespread

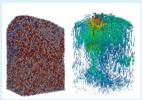


EQSIM: Earthquake Hazard Risk Assessment

EXAALT: Materials for Extreme

Environments

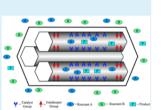
Replace conservative and costly earthquake retrofits with safe purpose-fit retrofits and designs



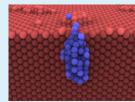
Lead: LBNL DOE NNSA / NE, EERE

MFIX-Exa: Scale-up of Clean **Fossil Fuel Combustion**

Commercial-scale demo of transformational energy technologies - curbing CO₂ emissions at fossil fuel power plants by 2030


Lead: NETL DOE EERE

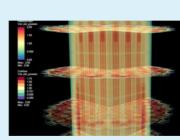
GAMESS: Biofuel Catalyst Design


Design more robust and selective catalysts orders of magnitude more efficient at temperatures hundreds of degrees lower

Lead: Ames DOE BES

Simultaneously address time, length, and accuracy requirements for predictive microstructural evolution of materials

Lead: LANL DOE BES, FES, NE



Challenge problem target and impact, lead institution, stakeholder

ExaSMR: Design and Commercialization of Small Modular Reactors

Virtual test reactor for advanced designs via experimental-quality simulations of reactor behavior

Lead: ORNL DOE NE

Subsurface: Carbon Capture, Fossil Fuel Extraction, Waste Disposal

Reliably guide safe long-term consequential decisions about storage, sequestration, and exploration

Lead: LBNL DOE BES, EERE, FE, NE QMCPACK: Find, Predict, Control Materials & Properties at Quantum Level

Combustion-PELE: High-

Efficiency, Low-Emission

Combustion Engine Design

Design and optimize nextgeneration materials from first principles with predictive accuracy

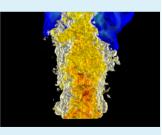
> Lead: ORNL DOE BES

ExaSGD: Reliable and Efficient Planning of the Power Grid

Optimize power grid planning, operation, control and improve reliability and efficiency


Lead: PNNL DOE EDER, CESER, EERE

Urban: Urban Systems Science


Evaluate energy codes and integration, retrofits, transportation, financing; integrate microgrids and renewables

Lead: ANL DOE EERE, BER

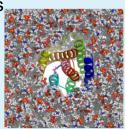
Reduction or elimination of current cut-and-try approaches for combustion system design

Lead: SNL DOE BES, EERE

Challenge problem target and impact, lead institution, stakeholder

E3SM-MMF: Accurate Regional Impact Assessment in Earth Systems

Forecast water resources and severe weather with increased confidence; address food supply changes


Lead: SNL DOE BER

NWChemEx: Catalytic Conversion of Biomass-Derived Alcohols

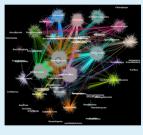
Develop new optimal catalysts while changing the current design processes that remain costly, time consuming, and dominated by trial-and-error

Lead: PNNL DOE BER, BES

ExaBiome: Metagenomics for Analysis of Biogeochemical Cycles

WarpX: Plasma Wakefield

Accelerator Design


Discover knowledge useful for environmental remediation and the manufacture of novel chemicals and medicines

Lead: LBNL DOE BER

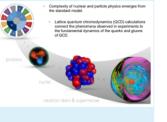
design cost

Lead: LBNL

DOE HEP

ExaSky: Cosmological Probe of the Standard Model of Particle Physics

Unravel key unknowns in the dynamics of the Universe: dark energy, dark matter, and inflation


Lead: ANL DOE HEP

LatticeQCD: Validate Fundamental Laws of Nature

Correct light quark masses; properties of light nuclei from first principles; <1% uncertainty in simple quantities

Lead: FNAL DOE NP, HEP

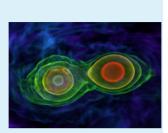
Virtual design of 100-stage 1 TeV collider; dramatically cut accelerator size and

Electron beam Wakefield Particle beam

Challenge problem target and impact, lead institution, stakeholder

WDMApp: High-Fidelity Whole Device Modeling of Magnetically Confined Fusion Plasmas

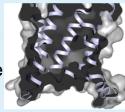
Prepare for ITER experiments and increase ROI of validation data and understanding; prepare for beyond-ITER devices


Lead: PPPL DOE FES

ExaStar: Demystify Origin of Chemical Elements

What is the origin of the elements? Behavior of matter at extreme densities? Sources of gravity waves?

Lead: LBNL DOE NP



ExaFEL: Light Source-Enabled Analysis of Protein and Molecular Structure and Design

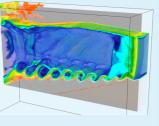
Process data without beam time loss;

determine nanoparticle size & shape changes; engineer functional properties in biology and material science

Lead: SLAC DOE BES

CANDLE: Accelerate and Translate Cancer Research

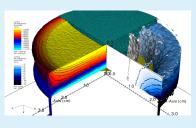
Develop predictive pre-clinical models & accelerate diagnostic and targeted therapy thru predicting mechanisms of RAS/RAF driven cancers


Exascale Multiphysics Applications for National Security Mission ECP application projects in the NNSA ASC ATDM program element

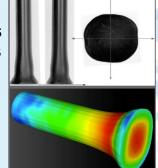
The MARBL Multi-physics Code

Multi-physics simulations of high energy-density physics and focused experiments driven by high-explosive, magnetic or laser based energy sources

- Magneto-radiation-hydrodynamics at the exascale
- Next-generation pulsed power / ICF modeling
- High-order numerical methods


Lead: LLNL

EMPIRE for Electromagnetic Plasma Physics


Computing electronic effects induced by ionizing radiation interacting with materials under various re-entry flight conditions

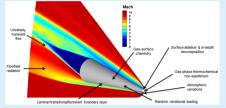
Self-consistent plasma simulation including the radiation output of a hostile builder device, radiation transport, plasma generation and propagation down through the effects on ND system electronics

Ristra: Next-Generation Multi-physics for National-Security Applications

- 3D multi-physics for national-security mission
- Mesoscale insight for extreme-condition materials
- Exascale high energy density physics simulations

A Ristra hydrodynamics code with an advanced grain-structure-aware material model captures the asymmetric deformation in Taylor-Anvil experiments

Lead: LANL


SPARC for Virtual Flight Testing

Virtual flight test of re-entry vehicles from exo-atmospheric bus separation to target for normal and hostile environments.

State-of-the-art hypersonic flight simulation capability on nextgeneration hardware, including thermo-chemical non-equilibrium gas ablation models, and hybrid RANS-LES

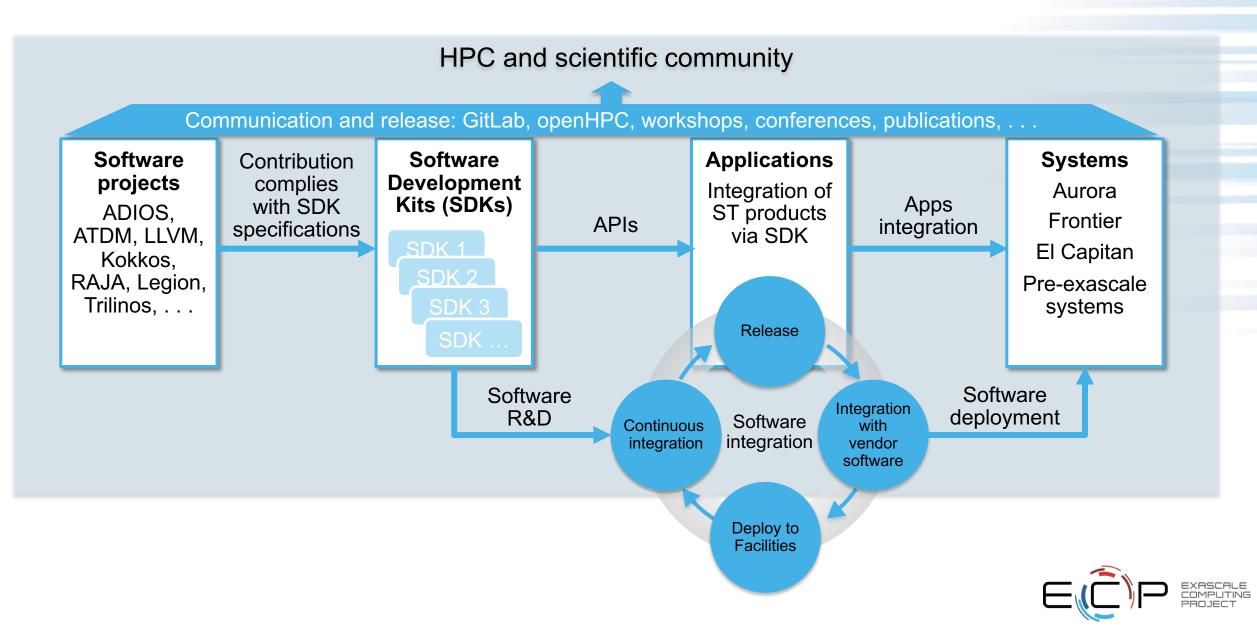
Lead: SNL

turbulence models.

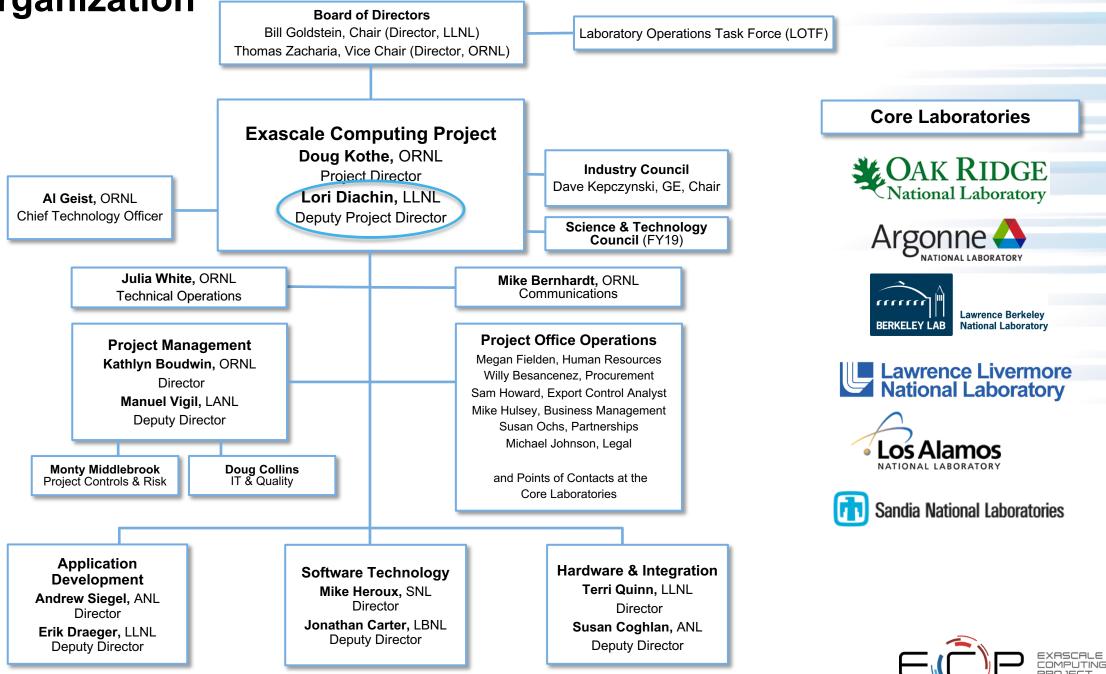
ExaLearn: New ECP Center for ML Co-Design

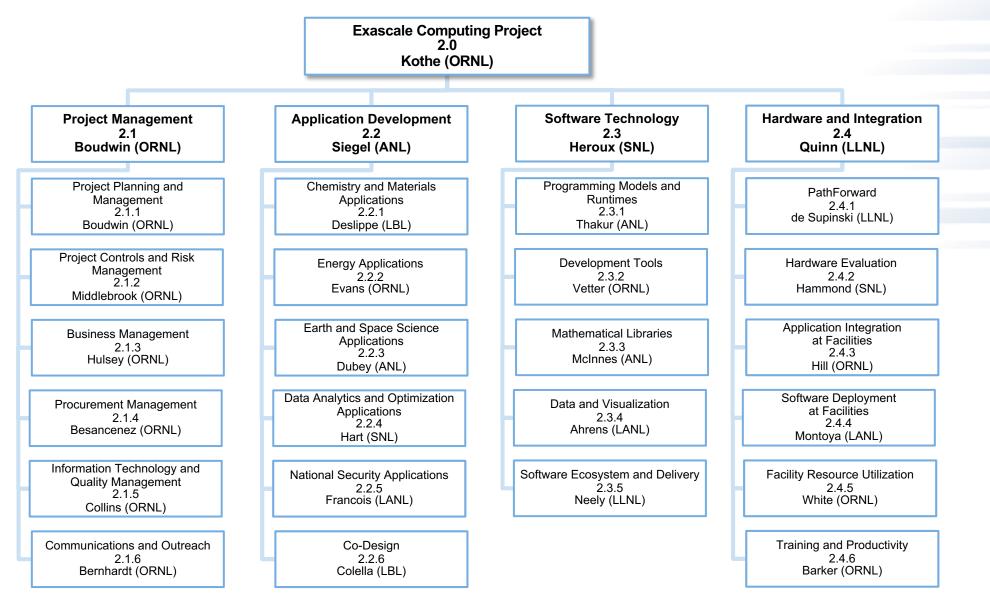
PI Frank Alexander, BNL Members: ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL

- AI, as a form a data analytics focused on model building, has the potential to accelerate scientific discovery or enable prediction in areas currently too complex for direct simulation
- Some AI use cases
 - Classification and regression, including but not limited to image classification and analysis, e.g. scientific data output from DOE experimental facilities or from national security programs.
 - Surrogate models in high-fidelity and multiscale simulations, including uncertainty quantification and error estimation.
 - Structure-to-function relationships, including genome-to-phenome, the prediction of materials performance based on atomistic structures, or the prediction of performance margins based on manufacturing data.
 - Control systems, e.g., for wind plants, nuclear power plants, experimental steering and autonomous vehicles.
 - Inverse problems and optimization. This area would include, for example, inverse imaging and materials design.
- Areas in need of research
 - Data quality and statistics
 - Learning algorithms
 - Physics-Informed AI
 - Verification and Validation
 - Performance and scalability
 - Workflow and deployment


Expected Work Product

A toolset that . .


- Is applicable to multiple problems within the DOE mission
- Has a line-of-sight to exascale computing, e.g. through using exascale platforms directly, or providing essential components to an exascale workflow
- Does not replicate capabilities easily obtainable from existing, widelyavailable packages


ECP's Flow of Product Delivery and Deployment

ECP Work Breakdown Structure

WBS L2 and L3 leadership unchanged over the last year

ECP Progress in past 10 Months: Summary

Technical Accomplishments Technical Accomplishments Revised and refined timeline and FY19 – FY23 plans Numerous milestones delivered and subjected to expert ٠ scrutiny (including external reviews) AD: Apps in full swing, with measurable progress; Co-٠ Design Centers making impact; all apps with better HI Key Milestone milestone delivered (Q2 FY18) – defined challenge problems and performance metrics PathForward assessment ST: SDKs moving with 1st release scheduled; deep dive ST Key Milestone delivered (Q3 FY18) – • assessment performed; WBS L4 impact goals/metrics comprehensive Capability Assessment Report defined; 89 products tracked as they evolve Key Performance Parameters refined, quantified, on HI: Tangible PathForward progress; apps priorities being track, and on project dashboard - see clear path to • convergence by CD-2 review (Q4 FY19) established at Facilities; SDKs CI plan underway **Project Management** Stakeholder Relations Implemented performance measurement plan and Selected ECP leaders participated in CORAL2 RFP • associated project dashboard Co-authored Facilities engagement plan and co-WBS L4 milestone lifecycle (creation, definition, tracking, dependent milestones • review) defined, documented, understood Collaborations with DOE sponsors/stakeholders, other federal agencies (NSF, DoD, NASA), participating Addressed mission need gaps and mitigated selected • institutions, Industry Council, BOD, LOTF, WBS L4 PIs risks with cost contingency Formulated and implemented proactive responses to ٠

 Close and constructive Project Office working relationships established with L2/L3 technical leadership

recommendations from recent reviews