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Oncogenic KRAS is responsible for many human cancers

93% of all pancreatic

42% of all colorectal

33% of all lung cancers

1 million deaths/year world-wide

No effective inhibitors

Pathway transmits signals

RAS is a switch
oncogenic RAS is “on”

RAS localizes to the plasma 
membrane

RAS binds effectors (RAF) 
to activate growth

Simanshu,Cell 170, 2017



Multi-modal experimental 
data, image reconstruction, 

analytics

Adaptive spatial 
resolution

Adaptive time 
stepping

High-fidelity subgrid modeling

Experiments 
on nanodisc

CryoEM
imaging

X-ray/neutron 
scattering

Protein structure 
databases

Adaptive sampling molecular 
dynamics simulation codes

Unsupervised deep 
feature learning

Uncertainty quantification

Mechanistic 
network models

Ras activation 
experiments

DDFT field 
model

Coarse-
grain MD

Classical
MD

Machine learning guided 
dynamic validation

Granular Ras
membrane 
interaction 
simulations

Atomic resolution Ras-
RAF interaction

Ras Activation

Predictive simulation 
and analysis of Ras

Phase Field model of 
lipid membrane

Cancer Moonshot Pilot 2: RAS biology on membranes



Essential strategy: utilize appropriate scale methodology 
for each component

Model membrane 
with RAS at micron 
(continuum) scale

Model protein behavior 
at molecular scale



ni,j – lipid number densities
h – membrane deformation
Rk – protein coordinate
s – protein “states”

Multiscale Model of Lipid Bilayer



To bridge the particle and continuum scales, the relevant degrees of freedom can be 
described through the framework of a free energy functional.

Membrane-membrane interaction

Protein-membrane interaction

Protein-protein interaction

Multiscale Model of Lipid Bilayer



Evolution equations can be obtained from the free energy for both the lipid densities 
(Dynamic Density Functional Theory) and the proteins (Langevin).

DDFT:

Langevin:

• Of course, all parameters must be calculated from the MD simulations.

Multiscale Model of Lipid Bilayer
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o Statistical correlations
o Potentials of mean force

o Bulk parameters
o Boundary conditions
o Significant events detected 

by Machine Learning

o Transport 
coefficients

o Dynamic density 
functional theory

o Langevin dynamics

continuum
scale

particle
scale

Multiscale Model of Lipid Bilayer



Exploit machine learning to guide simulation investigation

• Learn reduced order 
representation of high 
dimensional parameter space

• Define “similarity” as Euclidian 
distance in reduced dimensions

• Identify areas that are 
dissimilar in  continuum 
simulation 

• Initiate molecular dynamics 
simulations to explore  
maximally dissimilar conditions



Steering Multi-Scale Simulations By Adaptively 
Sampling Data Driven Latent Spaces 

• Train latent space representing space of relevant lipid configurations
• Dynamically sample configuration space to understand RAS-

membrane interactions at macro time-scales with micro precision



Incorporate particle degrees of 
freedom into continuum (phase 
field) model

Use AI techniques to identify 
“most interesting” region in 
continuum simulation

Initiate fine-scale simulation using 
continuum environment

Rigorously self-consistent 
interaction energies

Inner leaflet:

POPS

PAPC

POPE

DIPE

DPSM

PAPS

PAP6

CHOL

Outer leaflet
100 nm

10 k-Ras proteins in 100 nm X 100 nm membrane

Demonstrated multi-scale lipid/protein modeling capability
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Continuum phase field model



Continuum phase field model

Inner leaflet:

POPS

PAPC

POPE

DIPE

DPSM

PAPS

PAP6

CHOL

Outer leaflet
100 nm

Demonstrated multi-scale lipid/protein modeling capability

8 
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id
 ty
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s

Instantiate simulation

Generate particle representation

Let’s not show 
waters

Run to steady-state

30
 nm

Feedback



Initial Science Runs on Sierra Supercomputer 

1313

First-of-a-kind 
simulations will explore:
• Dependence of RAS mobility 

and dynamics as a function 
of membrane environment

• Aggregation of RAS in 
context of realistic 
membrane

• Effect of RAS concentration 
on local membrane 
composition



Preliminary Results

Witnessing formation of large-scale fluctuations in lipid structure 
through long-time scale simulations

PAP6 Concentration (log scale) Chol Concentration DIPE Concentration



Preliminary Results 
• 50nm X 50nm high-res study w/ 2 RAS 

proteins (40 μs) 

• Investigate phenomena witnessed 
originally in μm X μm scale simulation 

• Aggregation/repulsion of charged lipids 
(PAP6, PAPS, DIPE, CHOL) following 
“collision” of RAS 

• Unusual stability of formation is 
unexpected – currently under 
investigation

• Results demonstrate importance of time 
and length-scale for simulation



Predictive simulation

Two ways we envision using machine learning techniques 
along with predictive simulation

Machine learning to identify 
bottlenecks and optimize 
running simulations

Machine learning “on the inside”

Machine 
Learning



Two ways we envision using machine learning techniques 
along with predictive simulation

Optimize solutions 
with significant 
reduction in compute 
requirements

Machine learning “on the outside”

1O2

Full-length CRAF

Farnesylated
KRAS

Nanodisc

MEK substrate

PAnti-MEK donor 
bead

Anti-pMEK
acceptor

Integrated workflows develop insight faster

ML-optimized workflow

ML

Predictive
Simulation
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NCI-DOE Pilots: Multi-institution/multi-disciplinary teams


