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Workshop Chair: Nathan Baker, PNNL

https://www.orau.gov/ScientificML2018/ 
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Summary of Charge Letter for 
Scientific Machine Learning Workshop
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Greater machine learning-based prediction & decision-support capabilities are 
needed to address & anticipate DOE mission challenges:
● DOE scientific user facilities drive rapid growth in data from experiments, 

observations, and simulations
● Increasingly powerful science technologies are driving the need for algorithms & 

automation to facilitate the use of advanced technologies for science 
breakthroughs

The charge for the workshop is:

● First consider the status, recent trends, and broad use of machine learning for 
scientific computing

● Examine the opportunities, barriers, & potential for high scientific impact through 
fundamental advances in the underlying research foundations

● ASCR grand challenges & resulting priority research directions should span several 
major machine learning categories & state-of-the-art modeling & algorithms research

● Identify the basic research needs & opportunities that can potentially enable 
machine learning-based approaches to transform the future of science and 
energy research.



Machine Learning: Field of study that gives computers the ability to learn 
without being explicitly programmed.
- Arthur Samuel, 1959

Machine Learning: A set of rules that allows systems to learn directly from 
examples, data and experience.
- Royal Society, 2017

“Learning” is the process of transforming information into expertise or 
knowledge; “Machine learning” is automated learning.
- Paraphrased from Jordan et al., 2015

Working Definitions of Machine Learning
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Examples of Popular Machine Learning Methods
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Deep Learning Convolutional Neural Network, Deep Boltzmann Machine & Belief Networks, Stacked Auto-Encoders

Bayesian Naive Bayes, Averaged One-Dependence Estimators, Bayesian Belief Networks, Gaussian Naive 
Bayes, Multinomial Naive Bayes, Bayesian Network

Ensemble Random Forests, Gradient Boosting Machines, Boosting, Boostrapped Aggregation, AdaBoost, 
Stacked Generalization, Gradient Boosted Regression Trees

Decision Tree Classification and Regression Tree, Iterative Dichotomizer 3, C4.5, C5.0, Chi-squared Automatic 
Interaction Detection, Decision Stump, Conditional Decision Trees, M5

Neural Networks Radial Basis Function Network, Perceptron, Back-Propagation, Hopfield Network

Dimensionality 
Reduction

Principal Component Analysis & Regression, Partial Least Squares Regression, Multidimensional 
Scaling, Projection Pursuit; Partial Least Squares-, Mixture-, Quadratic-, & Linear Discriminants

Regularization Least Absolute Shrinkage & Selection Operator (LASSO), Elastic Net, Least Angle Regression

Instance-Based k-Nearest Neighbor, Learning Vector Quantization, Self-Organizing Map, Locally Weighted Learning

Clustering k-Means, k-Medians, Expectation Maximization, Hierarchical Clustering

Regression Linear-, Ordinary Least Squares-, Stepwise-, and Logistic Regression; Multivariate Adaptive 
Regression Splines, Locally Estimated Scatterplot Smoothing (LOESS)



Why:  Define research challenges and directions for 
scientific machine learning
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• Machine learning use is on the rise throughout science domains
• However, many popular ML methods lack mathematical 

approaches to understand robustness, reliability, etc.
• ASCR Applied Mathematics has a long track record for building 

mathematical foundations to critical computational tools
• Workshop to help ASCR define the grand challenges and 

priority research directions for scientific machine learning



What:  Deliverables and Products from this Workshop
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• A BES Basic Research Needs-inspired process

• Pre-workshop report
– Factual status document describing the Scientific Machine 

Learning (SciML) landscape as it relates to ASCR

• Workshop deliverables
– Articulation and refinement of grand challenges for SciML
– Priority research directions for SciML

• Post-workshop report
– Incorporate updated factual status document
– Incorporate workshop deliverables



What is a “Priority Research Direction”?
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• High-priority area of research for scientific machine learning

• Has following components (ala Heilmeier):
– Clear statement of key challenge
– Context in the current scientific landscape to establish 

timeliness and competition
– Plausible research pathway(s)
– Clear scientific impact

• It is not
– A proposal for a specific project
– Your favorite area of research without

connection to SciML themes



How:  Workshop Components
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• A Basic Research Needs-inspired agenda

• Plenary talks
– Highlight status of machine learning, challenges, open questions

• Panel discussions
– Summarize pre-workshop report
– Provide perspectives across DOE ASCR facilities, ECP, and other 

organizations
• Breakout sessions

– Organized around ~140 submitted Position Papers presented as flash 
talks

– The “work” in workshop: Crucible for new Priority Research Directions
– Need high levels of interaction and input (long days…)
– Brainstorming (Day 1), Refining (Day 2) & 

Presenting (Day 3) Priority Research Directions



Agenda Overview - Tuesday
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• Note:  Observers will be able to watch plenaries, 
panels, and breakout summaries via Zoom 
webinar

• Tuesday
– Welcome
– Scientific Machine Learning: ASCR Facilities 

Perspective
– Three Principles of Data Science: Predictability, 

Stability, and Computability: Bin Yu
– Scientific Machine Learning across Federal Agencies
– Summary of Pre-Workshop Report & Themes
– Physics, Structure, and Uncertainty: Probabilistic 

Learning for Risk Mitigation: Roger Ghanem
– Parallel breakout sessions



Agenda Overview – Wednesday & Thursday
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• Wednesday
– Machine Learning in the Wild: Jacob Shapiro
– Preliminary breakout reports and discussion
– Challenges & Scope of Empirical Modeling: 

Ronald Coifman
– Parallel breakout sessions

• Thursday
– Final breakout reports and discussion
– Summary of priority research directions



Breakout sessions
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• Numerical Analysis for Machine Learning
Mark Ainsworth, James Sethian

• Machine Learning, Multifidelity, & Reduced-order 
Models
Karen Willcox, Abani Patra

• Machine Learning, Optimization, & Complexity
Stefan Wild, Manish Parashar

• Probabilistic Machine Learning
Habib Najm, Aric Hagberg

• Machine Learning Interpretability
Timo Bremer, Yannis Kevrekidis



● Each Breakout Session developed a list of critical 
research areas.

● Day 2: Research areas were evaluated & grouped into 
topics according to 5 Priority Research Directions.

● The Session leads & members joined the relevant 
Priority Research Direction (PRD) group.

● The PRD teams met to formulate the research 
approaches and thrust areas.

● Day 3: Report out and writing of PRDs and Panel reports.

Workshop Approach
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 High-Priority Areas of Research for Scientific Machine LearningScientific Machine Learning: Priority Research Directions (PRDs)

Foundational Themes Capabilities Research

PRD1. Domain-Aware SciML
Leveraging scientific domain knowledge

PRD4. Data-Intensive SciML
Automated scientific inference & data analysis

PRD2. Interpretable SciML
Explainable & understandable results

PRD5. Inner-Loop SciML
Machine learning-embedded models & 
algorithms for better scientific computing tools

PRD3. Robust SciML
Stable, well-posed & efficient formulations

PRD6. Outer-Loop SciML
Automated decision-support, optimization, 
resilience, & control for complex systems & 
processes
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PRD1: Domain-Aware Scientific Machine Learning
Leveraging Scientific Domain Knowledge
Key Points: How can domain 
knowledge be effectively incorporated 
into Scientific ML methods?
● Established domain models based on 

physical mechanism & scientific 
knowledge

● SciML offers significant opportunity to 
complement traditional domain 
models

● Domain knowledge: physical 
principles, symmetries, constraints, 
computational predictions, 
uncertainties, etc

● Potential to improve accuracy, 
interpretability, & defensibility while 
reducing data requirements & 
accelerating training process

This example illustrates the capabilities obtained by 
incorporating domain knowledge into a deep neural network. 
Given scattered and noisy data components of an 
incompressible fluid flow in the wake of a cylinder, we can 
employ a physics-informed neural network that is constrained 
by the Navier-Stokes equation in order to identify unknown 
parameters, reconstruct a velocity field that is guaranteed to be 
incompressible and satisfy any boundary conditions, as well as 
recover the entire pressure field. Figure from: Raissi et al.
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PRD2: Interpretable Scientific Machine Learning
Explainable and Understandable Results
Key Points: How to balance the use of 
increasingly complex ML models with 
the need for users to understand 
conclusions & derive insights?
● Physical understanding has been 

the bedrock of modeling
● User confidence linked to the 

conviction that model accounts for 
domain knowledge (variables, 
parameters, physical laws, etc.)

● Need exploration & visualization 
approaches for “debugging” 
complex machine learning models

● Need metrics to quantify model 
differences

High-level data pipeline overview for dimensionality reduction of 
3D protein structures (A) and interpretation of saliency maps from 
trained CNN model (B). Saliency maps generated from CNN 
models can then be clustered to identify areas along the 3D 
structure that are regions that highly influence the output of the 
CNN model. From these salient regions, specific residues can be 
identified that fall in close proximity to the salient regions. 
Image credit: Rafael Zamora-Resendiz and Silvia Crivelli, LBNL.
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PRD3: Robust Scientific Machine Learning
Stable, Well-Posed, and Efficient Formulations
Key Points: How can 
computationally efficient SciML 
methods be developed and 
implemented to ensure outcomes are 
not unduly sensitive to perturbations 
in training data and model selection?
● SciML methods need to establish the 

properties of robustness & reliability
● Integration of protocols for 

verification & validation are in their 
infancy

● Progress will require research 
proving that developed methods and 
implementations are stable and 
well-posed

In the context of Reynolds averaged incompressible 
turbulence modeling, a neural network has been used in 
an eddy viscosity turbulence closure model. From 
physical arguments, the model needs to satisfy 
rotational invariance, ensuring that the physics of the 
flow is independent of the orientation of the coordinate 
frame of the observer. A special network architecture, a 
tensor basis neural network (TBNN), embeds rotational 
invariance by construction. Without this guarantee, the 
NN model evaluated on identical flows with the axes 
defined in different directions could yield different 
predictions. 
Image credit: SNL.
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PRD4: Data-Intensive Scientific Machine Learning
Automated Scientific Inference & Data Analysis

Key Points: What novel approaches 
can be developed for reliably finding 
signals, patterns or structure within 
high-dimensional, noisy, uncertain 
input data?
● SciML methods require the 

development of improved methods for 
statistical learning in high-dimensional 
SciML systems with noisy and 
complex data

● Need approaches required to identify 
structure in complex high-dimensional 
data

● SciML requires efficient sampling in 
high-dimensional parametric and 
model spaces

ML techniques reveal Fs-peptide folding events from long 
time-scale molecular dynamics simulations. A low 
dimensional embedding of the simulation events reveal 
transitions from fully unfolded states (blue) to fully folded 
states (red). A two dimensional embedding using t-test 
stochastic neighborhood embedding shows the presence of 
near native states (labeled state 1) versus partially unfolded 
(2-7) and fully unfolded states (8-9) in the picture. 
Image Credit: Arvind Ramanathan, ORNL.
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PRD5: Inner-Loop Scientific Machine Learning
Hybrid Machine Learning, Models, & Algorithms
Key Points: What is the role and 
potential advantages of 
ML-embedded approaches in 
computational model and algorithm 
development?
● Combination of scientific computing 

with learned adaptivity for more 
efficient simulations

● ML for in-situ parameter tuning
● ML for sub-grid physics models
● Progress will require the development 

of new methods to quantify tradeoffs 
and optimally manage the interplay 
between traditional and ML models 
and implementations

The arbitrary Lagrangian-Eulerian (ALE) method is used in a 
variety of engineering and scientific applications for enabling 
multi-physics simulations. Unfortunately, the ALE method
can suffer from simulation failures, such as mesh tangling, that 
require users to adjust parameters throughout a simulation just 
to reach completion. A supervised ML framework for predicting 
conditions leading to ALE simulation failures was developed 
and integrated into a production ALE code for modeling high 
energy density physics. 
Image credit: M. Jiang, LLNL.
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PRD6: Outer-Loop Scientific Machine Learning
Automated Decision Support, Optimization, Resilience, & Control
Key Points: What are the 
challenges in managing the 
interplay between automation & 
human decision-making?
● Outer-Loop applications include 

optimization, uncertainty 
quantification, inverse 
problems, data assimilation, & 
control.

● New mathematically & 
scientifically justified methods to 
guide data acquisition and 
ensure data quality and 
adequacy.

● SciML methods for improving 
system resilience or 
responsiveness.

Exascale applications are exponentially raising demands from 
underlying DOE networks such as traffic management, operation scale 
and reliability constraints. Networks are the backbone to complex 
science workflows ensuring data is delivered securely and on-time for 
important compute to happen. In order to intelligently manage multiple 
network paths, various tasks such as pre-computation and prediction 
are needed to be done in near-real-time. ML provides a collection of 
algorithms that can add autonomy and assist in decision making to 
support key facility goals, without increased device costs and 
inefficiency. In particular, ML can be used to predict potential anomalies 
in current traffic patterns and raise alerts before network faults develop. 
Image credit: Prabhat, LBNL.



Scientific Machine Learning has widespread Science & Energy uses

Three Capability PRDs (and combinations) seem to cover most examples
● Data-Intensive SciML
● Inner-Loop SciML
● Outer-Loop SciML

Compelling Big Science use cases include:
● Improved operational capabilities of scientific user facilities
● Better computational models from data-compute convergence
● Automation & adaptivity within scientific method (systems, processes)
● Many more ...

More Scientific Machine Learning Examples
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Core Research Agenda for Scientific Machine Learning

Scientific Machine Learning: Priority Research Directions (PRDs)

Foundational Themes Capabilities Research

PRD1. Domain-Aware SciML
Leveraging scientific domain knowledge

PRD4. Data-Intensive SciML
Automated scientific inference & data analysis

PRD2. Interpretable SciML
Explainable & understandable results

PRD5. Inner-Loop SciML
Machine learning-embedded models & 
algorithms for better scientific computing tools

PRD3. Robust SciML
Stable, well-posed & efficient formulations

PRD6. Outer-Loop SciML
Automated decision-support, optimization, 
resilience, & control for complex systems & 
processes

Machine Learning for Big Science
● Lens of Scientific Computing & Applied Mathematics → SciML
● Capabilities Research: “Taxonomy” & PRDs for major use cases
● Foundational Themes: Basic research is essential
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History: DOE Applied Math Base Program & Research Initiatives 
are Key Foundations for Scientific Machine Learning

DOE Applied Math Base Program ⇒ Foundational Themes in SciML
Fundamental research in robust & stable formulations, Data-intensive analysis, Multi-physics & 
multi-scale models, Scalable linear algebra & solvers, Optimization under uncertainty, UQ, etc

DOE Applied Math Research Initiatives
Scientific Inference & Data Analysis ⇒  Data-Intensive SciML

● 2009 - Mathematics for Analysis of Petascale Data
● 2013 - DOE Data-Centric Science at Scale

Multiscale Models & Algorithms ⇒ Models, Algorithms, & Inner-Loop SciML
● 2005 - Multiscale Mathematics Research and Education
● 2008 - Multiscale Mathematics for Complex Systems (also MMICCs in 2012 & 2017)

Integrated Capabilities for Complex Systems ⇒ Outer-Loop SciML
● 2009 - Mathematics for Complex, Distributed, Interconnected Systems
● 2010 & 2013 - Uncertainty Quantification for Complex Systems; UQ for Extreme-Scale Science
● 2012 & 2017 - Mathematical Multifaceted Integrated Capability Centers

Scientific Machine Learning will leverage basic research investments, 
widespread Science & Energy use cases, & DOE workforce expertise.
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Workshop Charge Letter: Scientific Machine Learning (SciML)
for transforming the Future of Science & Energy research

Future: Smarter 
Ecosystems & Versatile 
Capabilities for Science 
& Energy Research

ASCR Applied 
Math Core 
Research 
Initiatives

Scientific 
Machine 
Learning

Big Science



24

Workshop Charge Letter: Scientific Machine Learning (SciML)
for transforming the Future of Science & Energy research #1

1. Basic 
research is 
essential for 
developing 
future SciML 
capabilities.

Future: Smarter 
Ecosystems & Versatile 
Capabilities for Science 
& Energy Research

ASCR Applied 
Math Core 
Research 
Initiatives

Scientific 
Machine 
Learning

Big Science
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Workshop Charge Letter: Scientific Machine Learning (SciML)
for transforming the Future of Science & Energy research #2

1. Basic 
research is 
essential for 
developing 
future SciML 
capabilities.2. SciML will 

bring 
increasingly 
powerful 
inference, 
prediction & 
automation 
capabilities 
to DOE 
mission 
challenges.

Future: Smarter 
Ecosystems & Versatile 
Capabilities for Science 
& Energy Research

Scientific 
Machine 
Learning

ASCR Applied 
Math Core 
Research 
Initiatives

Big Science
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Workshop Charge Letter: Scientific Machine Learning (SciML)
for transforming the Future of Science & Energy research #3

1. Basic 
research is 
essential for 
developing 
future SciML 
capabilities.2. SciML will 

bring 
increasingly 
powerful 
inference, 
prediction & 
automation 
capabilities 
to DOE 
mission 
challenges.

3. SciML is a critical 
technology for transforming 
the way we will carry out 
advanced scientific 
computing research.

   Scientific 
Machine 
Learning

Future: Smarter 
Ecosystems & Versatile 
Capabilities for Science 
& Energy Research

Big Science
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SUMMARY & OUTLOOK

Machine Learning is a powerful scientific enabling technology
● More than Data. Also for Modeling, Complex Systems, Science
● Basic research in scientific computing & mathematical foundations is 

essential
● Fast moving area → Need roadmap, blueprint, strategy
● Compelling: Re-visit ML, Re-think scientific computing uses

Pump is Primed for DOE leadership
● Roots from previous decade(s) of Applied Math basic research
● Ready: Researchers & expertise, Professional communities, etc

Future of Science & Energy Research
● Advanced technologies: More complex, more heterogeneous
● Greater Automation & Adaptivity for research breakthroughs
● Scientific Machine Learning Priority Research Directions are a basis 

for a cross-cutting research initiative toward this future


