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Project summary 

This project is dedicated to the development of hybrid, hierarchical, and multi-level 
algorithms for the simulation of complex many-particle systems. These systems form key 
components in a variety of energy generation and energy storage devices. Example 
applications include gas dynamics, plasmas, radiation, multiphase flows, and charge 
transport in materials. The challenge in simulating particle systems is one of computational 
complexity, a consequence of the huge number of unknowns in the system and the large 
variations in temporal and spatial scales over which they evolve. We tackle this challenge 
through the use of hybrid methods which leverage reduced models, when they are valid, to 
increase the efficiency of simulations, thereby freeing computational resources to resolve 
important fine scale features. This effort relies on the central role played by kinetic models 
that, unlike fluid descriptions, can capture non-equilibrium behavior, but approximate 
detailed information about particle correlations stochastically via collision operators. The 
first goal of the project is to use the dissipative structure of these operators to connect the 
fluid and kinetic descriptions in a single efficient method for attacking multiscale problems. 
The second goal is to improve the efficiency of molecular dynamics solvers using the solution 
of the kinetic model as a preconditioner. 
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From particles to fluids 
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What are many-particle systems? 

A many-particle system (or many-body system) is a collection of a large number 
of individual objects that interact with each other and/or with the external 
environment. 

“Particles” can be molecules, ions, electrons, neutrons, photons, phonons, cells, 
micro-organisms, human beings, cars, stocks, packets of data, memes, ... 

Classical objects (no quantum mechanics or relativity). 

Multi-scale phenomena: Collective or competing processes at the microscopic 
level induce behavior on macroscopic scales. 
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Motivational example: a “hollow plasma” 

Video courtesy of 
Professor Michael Murillo and Dr. Vikram Dharodi, 

Michigan State University 
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Applications important to DOE 

(a) fission reactors (b) fusion reactors (c) photovoltaic devices 

 

 
 

Fiscal Year 2018 
Stockpile Stewardship 
and Management Plan 
Report to Congress 
 
 

November 2017 

National Nuclear Security Administration 
United States Department of Energy 

Washington, DC 20585 

EMBARGOED INFORMATION 

(d) gasification (e) HEDP and NP (f) stockpile stewardship 
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The challenge of complex systems 

The underlying physical laws necessary for the mathematical theory of a large part 
of physics ... are thus completely known, and the difficulty is only that the exact 
application of these laws leads to equations much too complicated to be soluble. 

–Paul Dirac, Proceedings of the Royal Society of London, 1926 

1 

2 

Even if we understand microscopic dynamics, we don’t (and often won’t) have 
enough computing power. 

Too many unknowns 

Not enough resolution 

The macroscopic features that we care about are driven by microscopic 
dynamics. 
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The kinetic description of particle systems 

It seems to me desirable [to pursue] a rigorous and satisfactory development of the 
method of mean values in mathematical physics, and in particular in the kinetic 
theory of gases.... Boltzmann’s work on the principles of mechanics suggests the 
problem of developing mathematically the limiting processes ... which lead from the 
atomistic view to the laws of motion of continua. 

–David Hilbert, International Congress of Mathematicians, Paris, 1900 

For gases, kinetic equations provide an intermediate model between particle and fluid 
descriptions. 

Particle
(microscopic)

Fluid
(macroscopic)

Kinetic
(mesoscopic) 𝜀 → 0𝑁 → ∞

{Xi(t), Vi(t)}N
i=1 F"(x, v, t) u(x, t)
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The particle description 

A system of N particles is characterized by positions X = {X1, . . . , XN } and 
velocities V = {V1 . . . , VN }. 

The vectors X and V satisfy a sytem of coupled ordinary differential equations. 

˙ ˙X(t) = V(t) V(t) = A(X(t), V(t)) 
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The kinetic description

The kinetic distribution function F is defined such that∫
Dx

∫
Dv

F (x, v, t)dvdx

gives the number of particles is the phase space volume Dv ×Dx.

x
Dx

Dv

v X2(t), V2(t)

X1(t), V1(t)

The kinetic equation for F is

∂tF + v · ∇xF + a[F ] · ∇vF = C[F ]

where a is the particle acceleration to global fields and the collision operator
C is an integral operator that models particle interactions.
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The fluid description 

Fluid variables u = (u1, u2, . . . , un) are quantities of interest defined such that Z 
ui(x, t)dx, i = 1, . . . , n 

Dx 

gives the amount of some quantity of interest (e.g. mass, momentum, energy) 
contained inside Dx at time t. 

Dx

Fluid equations take the form 

∂tu + rx · f (u) = r(u) 

where f describes the flux of u across a boundary and r describes gains and loss due 
to mixing and interactions with the surrounding environment. 

Examples of fluid equations include Euler, Navier-Stokes, diffusion, 
drift-diffusion, and magnetohydrodynamics (MHD). 
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−

From particles to fluids 

Particle → kinetic. The particle description recovers to the kinetic decription 
as the particle number N →∞, assuming inter-particle forces become 

1 

2 

Weaker (acceleration due to global fields) and/or 

Highly localized (collision operator) 

This limit is not valid for solids or liquids. 

Kinetic → fluid. As ε → 0, F = Fε converges to a local thermal equilibrium 

ε→0 
Fε(x, v, t) −−→ M[u(x, t)](v) (1) 

where M[u] is a known function of v that is parameterized by fluid variables u. 

Particle
(microscopic)

Fluid
(macroscopic)

Kinetic
(mesoscopic) 𝜀 → 0𝑁 → ∞

{Xi(t), Vi(t)}N
i=1 F"(x, v, t) u(x, t)
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The physical meaning of ε 

The parameter ε is called the Knudsen number : 

mean free path
ε = 

domain length 

It may vary by several orders of magnitude in a single problem. 

Shock&Radius&
Gain&Radius&

Above: supernova simulation with 10−5 . ε . 101 . 
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A high-level view of the project 
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Project goals 

1 Connect the fluid and kinetic descriptions in a single efficient method for 
attacking multiscale problems. This is (2/3) of the effort. 

2 Improve the efficiency of molecular dynamics solvers using the solution of the 
kinetic model as a preconditioner. This is (1/3) of the effort. 

Effort so far has focused on the first goal. 

Particle
(microscopic)

Fluid
(macroscopic)

Kinetic
(mesoscopic) 𝜀 → 0𝑁 → ∞

{Xi(t), Vi(t)}N
i=1 F"(x, v, t) u(x, t)
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Challenges 

1 
∂tFε + v · rxFε + a[Fε] · rv Fε = C[Fε]

ε 

Particle
(microscopic)

Fluid
(macroscopic)

Kinetic
(mesoscopic) ! → 0$ → ∞

{Xi(t), Vi(t)}N
i=1 F"(x, v, t) u(x, t)

The difference in cost between a kinetic model and a fluid model is the discretization 
of v. 

Discretization in v is expensive, but easy to parallelize when ε � 1. 

Fluid approximations are cheap, but only accurate when ε � 1. 

Kinetic equations involve different types of operators. 
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Toy model with linear algebra 

Start with a matrix equation for a vector y ∈ Rn: 

1 
A ∈ Rn×n q ∈ RnAy = (ye − y) + q, , e = (1, . . . , 1) ∈ Rn ,

ε X1 1 
y = yi = e T y, ε > 0 

n n 
i 

Assume 
1 

2 

A + cI is “easy to invert” for any constant cP 
eT Ae = i,j Ai,j > 0 

Average model for y: 

Ay = q 

Closure: for ε small, y = ye + O(ε). Thus 

nq 
y = + O(ε) 

eT Ae 
⇒ 

nq 
y = e + O(ε) 

eT Ae 
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Creating the hybrid 

The original system is 

Let y = y0 + y1, where 

1 
Ay = (ye − y) + q

ε 

1 
Ay0 = − y0 + q, 

ε 
1 1 

Ay1 = (y1e − y1) + y0
ε ε 

Hybrid idea: Use the reduced model to find y1 
∗ ≈ y1 

1 
Ay0 = − y0 + q, 

ε y ≈ y ∗ = y0 + y1 
∗ ⇒ 

1∗ ny0 ∗ ∗ y = , y = y1 1 e1 ε eT Ae 
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Linear kinetic model 

We want to solve the linear kinetic equation 

1 
∂tF + v · rxF + a · rv F = (SF − F )+q

ε | {z } 
C(F ) 

where the integral operator S is represents a weighted average, with implicit 
time steps. 

Collided/uncollided splitting: F = F0 + F1, where 

1 
∂tF0 + v · rxF0 + a · rv F0 = − F0 + q

ε 
1 1 

∂tF1 + v · rxF1 + a · rv F1 = (SF1 − F1) + SF0 
ε ε 

Idea: Solve for F0 with high resolution in v. Solve for F1 with low resolution (i.e. 
a reduced model). 
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Why is this a good idea? 

Works well for both collisionless (ε � 1) and highly-collisional regimes (ε � 1). 

Amenable to parallelization. 

Flexibility allows for different numerical treatments of F0 and F1, thereby 
improving efficiency. 

Correction tools can address errors due to splitting, nonlinearities, discretization. 

Finer splittings based on degree of “collisionality” (F0, F1, . . . , Fk) are 
straight-forward. 
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Where have we made progress? 

Correction strategies that accounts for both hybrid and temporal 
error 

- M. M. Crockatt, A. J. Christlieb, C. K. Garrett, and C. D. Hauck, An arbitrary-order, fully 
implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction, 
Journal of Computational Physics, (2017) 

- M. M. Crockatt, A. J. Christlieb, C. K. Garrett, and C. D. Hauck, Hybrid methods for radiation 
transport using diagonally implicit Runge-Kutta and space-time discontinuous Galerkin time 
integration, Journal of Computational Physics, (submitted) 

Fast iterative methods for acceleration in phase space 
- C. K. Garrett and C. D. Hauck, A fast solver for implicit integration of the Vlasov–Poisson system 

in the eulerian framework, SIAM Journal on Scientific Computing, 40 (2018), pp. B483–B506 

Dedicated operator discretizations for increased resolution 
- G. Dimarco, C. D. Hauck, and R. R. Loub` ere, A class of low dissipative schemes for solving kinetic 

equations, Journal of Scientific Computing, (to appear) 

Fast evaluation of collision operators 
- I. M. Gamba, J. R. Haack, C. D. Hauck, and J. Hu, A fast spectral method for the Boltzmann 

collision operator with general collision kernels, SIAM Journal on Scientific Computing, 39 
(2017), pp. B658–B674 
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Where have we made progress? 

Approximate collision models 
- J. R. Haack, C. D. Hauck, and M. S. Murillo, A conservative, entropic multispecies BGK model, 

Journal of Statistical Physics, 168 (2017), pp. 826–856 
- , Interfacial mixing in high-energy-density matter with a multiphysics kinetic model, 

Physical Review E, 96 (2017), p. 063310 

Rigorous multi-scale error analysis 
- Z. Chen and C. D. Hauck, Multiscale convergence properties for spectral approximations of a model 

kinetic equation, Mathematics of Computation, (submitted) 

Low-memory implementations based on hybridization in the spatial 
discretizations 

- Z. Sun and C. D. Hauck, A low memory discrete ordinates discontinuous Galerkin method for the 
radiative transport equation, (in preparation) 

- C. D. Hauck, Q. Sheng, and Y. Xing, An asymptotic preserving hybrid finite volume discontinuous 
Galerkin method for transport equations, (in preparation) 

Improved treatment of boundary conditions 
- Z. Chen and C. D. Hauck, Boundary corrections for hybrid methods, (in preparation) 

Extension to nonlinear problems in radiation, electron transport, and 
gas dynamics. 

- Z. Chen, C. K. Garrett, C. D. Hauck, and M. P. Laiu, An implicit hybrid solver for kinetic 
semiconductor equations, (in preparation) 
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Some examples 
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Simulation example: integral deferred correction 

Background: Integral deferred correction is a time integration technique that 
systematically lifts low-order methods to high-order by repetitive solution of an 
error equation. 

Idea: Use integral deferred correction to improve (1) temporal accuracy and (2) 
errors in the hybrid approximation. 

Application: The algorithm is applied to several test problem relevant to 
radiation transport. 

Result: Gains in efficiency allow for more resolution of fine scale features, 
thereby giving better answers is a fraction of the time. 
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The 2D lattice test problem 

0 

1 

2 

3 

4 

5 

6 

7 
0 1 2 3 4 5 6 7 

Region σt σs σa Q 

white 1 1 0 0 
red 1 1 0 1 
gray 10 0 10 0 

Order: 5 

IDC substeps: 3 

IDC corrections: 4 

Spatial cells: 168 

Final time: 3.2 

CFL: 25.6 
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Solutions under refinement 

S2 S4 S8 

-6 

-5 

-4 

-3 

-2 

-1 

0 

S16 S32 S64 S128 

-6 

-5 

-4 

-3 

-2 

-1 

0 
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Hybrid solutions 

S32 : 100%(∼ 1hr.) S16 : 24%(∼ 16min.) S32-4 : 16%(∼ 10min.) S64-4 : 59%(∼ 38min.) 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-2 

-3 

-4 

-5 

-6 

-7 
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Modeling example: approximate collision operators 

Background: In gas dynamics, the (BGK) Bhatnagar–Gross–Krook collision 
operator is used to approximation the very expensive Boltzmann collision 
operator (5D integral). 

Idea: Extend the BGK operator to the multi-species setting, while maintaining 
important conservation and stability properties. 

Application: We apply the method to an interface problem that models 
ablator-fuel mixing in an inertial confinement fusion target. 

Result: The cost reduction enables exploration of scenarios over a wide range of 
energies. We demonstrate that (i) for moderate energy profiles, single fluid 
models are not sufficient and (ii) for high-energies, kinetic effects are important. 
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Simulation of a fuel-ablator interface

H
D

C

Mixing
Layer

1KeV
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Analysis example: multi-scale error estimate 

Background: Kinetic equations can be approximated by 

1 

2 

fluid models with O(ε) error 

direct discretization of v with an O(n−q ) error; q smooothness, n unknowns. 

Idea: Prove ε-dependent estimates for the velocity discretization error when 
0 � ε < 1. 

Application: We consider a prototype linear kinetic equation with periodic 
boundaries. 

Result: Using a specially constructed energy functional, we derive error 
estimates that are (i) much sharper than standard approximation theory results 
and (ii) actually observed in practice. 
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Multi-scale error estimate 

Theorem 

Suppose that g0 ∈ H1(dx). Then there exists an absolute constant λ1 > 0 such that the L2 

error of the Pn approximation satisfies 

kF − F nkL2(dvdx)(t) ≤ ����� 
B(g)e 

− 
λ1t 

�2 +������� 
C(∂xg) 

√ 
te 
− 

λ1t 

�2 + D(g, n, t)�n+1 , 

where D(g, n, t) is positive and bounded for any t > 0 and is decreasing exponentially in t 
for t sufficiently large. Moreover, the L2 error for each coefficient satisfies 

kF` − F n 
` kL2(dx)(t) ≤ 

⎧ ⎨ ⎩ 
������� 
C(∂xg) 

√ 
te 
− 

λ1t 

�2 + E(g, n, 2, t)�2n , ` = 0, 

������� 
C(∂xg) 

√ 
te 
− 

λ1t 

�2 + E(g, n, ̀ , t)�2n+2−` , 1 ≤ ` ≤ n, 

where E(g, n, ̀ , t) is positive and bounded for any t > 0 and is monotonically decreasing with 
respect to t. 
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Technical Outlook 

After some initial ramp up period, development of the hybrid kinetic strategy is 
progressing nicely 

Major things to do: 

Nonlinear problems 

More error estimation 

Adaptivity 

Acceleration of molecular dynamics simulations is lurking in the future. 
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Practical Challenges 

Impact: 

What is the work flow to reach an “end product”? 

What is my role in that work flow? 

Stability: 

What is the best way to create a sustainable effort? 
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Thank You! 
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C. D. Hauck, Q. Sheng, and Y. Xing, An asymptotic preserving hybrid finite volume discontinuous

Galerkin method for transport equations, (in preparation).

Z. Sun and C. D. Hauck, A low memory discrete ordinates discontinuous Galerkin method for the

radiative transport equation, (in preparation).

References 

Z. Chen, C. K. Garrett, C. D. Hauck, and M. P. Laiu, An implicit hybrid solver for kinetic semiconductor 

equations, (in preparation). 

Z. Chen and C. D. Hauck, Boundary corrections for hybrid methods, (in preparation). 

Z. Chen and C. D. Hauck, Multiscale convergence properties for spectral approximations of a model kinetic 

equation, Mathematics of Computation, (submitted). 

M. M. Crockatt, A. J. Christlieb, C. K. Garrett, and C. D. Hauck, An arbitrary-order, fully implicit, 

hybrid kinetic solver for linear radiative transport using integral deferred correction, Journal of 
Computational Physics, (2017). 

M. M. Crockatt, A. J. Christlieb, C. K. Garrett, and C. D. Hauck, Hybrid methods for radiation 

transport using diagonally implicit Runge-Kutta and space-time discontinuous Galerkin time integration, 
Journal of Computational Physics, (submitted). 

G. Dimarco, C. D. Hauck, and R. R. Loub` ere, A class of low dissipative schemes for solving kinetic 

equations, Journal of Scientific Computing, (to appear). 

I. M. Gamba, J. R. Haack, C. D. Hauck, and J. Hu, A fast spectral method for the Boltzmann collision 

operator with general collision kernels, SIAM Journal on Scientific Computing, 39 (2017), 
pp. B658–B674. 

C. K. Garrett and C. D. Hauck, A fast solver for implicit integration of the Vlasov–Poisson system in 

the eulerian framework, SIAM Journal on Scientific Computing, 40 (2018), pp. B483–B506. 

J. R. Haack, C. D. Hauck, and M. S. Murillo, A conservative, entropic multispecies BGK model, Journal 

of Statistical Physics, 168 (2017), pp. 826–856. 

, Interfacial mixing in high-energy-density matter with a multiphysics kinetic model, Physical 

Review E, 96 (2017), p. 063310. 

(Cory Hauck, Oak Ridge) Hybrid Methods 18 April 2018 35 / 35 


	Introduction to many-particle systems
	A high-level view of the project
	Some examples



