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Dennard scaling ended in 2005 
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End of Moore’s Law is approaching 

A slow tapering off --- feature sizes will continue to diminish 
until 1nm in 2033, with monolithic 3D transistors expected 
from 2024 onwards 
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Table MM01 - More Moore - Logic Core Device Technology Roadmap
YEAR OF PRODUCTION 2017 2019 2021 2024 2027 2030 2033

P54M36 P48M28 P42M24 P36M21 P28M14G1 P26M14G2 P24M14G3
Logic industry "Node Range" Labeling (nm) "10" "7" "5" "3" "2.1" "1.5" "1.0"
IDM-Foundry node labeling i10-f7 i7-f5 i5-f3 i3-f2.1 i2.1-f1.5 i1.5-f1.0 i1.0-f0.7

Logic device structure options
finFET
FDSOI

finFET
LGAA

LGAA
VGAA

LGAA
VGAA

VGAA
M3D

VGAA
M3D

VGAA
M3D

Logic device mainstream device finFET finFET LGAA LGAA VGAA VGAA VGAA

Logic device technology naming

Patterning  technology inflection for Mx interconnect 193i 193i, EUV 193i, EUV 193i, EUV 193i, EUV 193i, EUV 193i, EUV
Channel material technology inflection Si SiGe25% SiGe50% Ge, IIIV (TFET) Ge, IIIV (TFET) Ge, IIIV (TFET) Ge, IIIV (TFET)

Process technogy inflection
Conformal 
deposition

Conformal 
Doping,
Contact

Channel, RMG CFET Seq. 3D Seq. 3D Seq. 3D

Stacking generation 2D 2D 2D
3D: W2W or D2W

3D: P-over-N 3D: SRAM-on-
Logic

3D: Logic-on-
Logic, Hetero

3D: Logic-on-
Logic, Hetero

Design-technology scaling factor for standard cell - 1.11 2.00 1.13 0.53 1.00 1.00
Design-technology scaling  factor for SRAM (111) bitcell 1.00 1.00 1.00 1.00 1.25 1.00 1.00
Number of stacked devices in one tier 1 1 3 4 1 1 1
Tier stacking scaling factor for SoC 1.00 1.00 1.00 1.00 1.80 1.80 1.80
Vdd (V) 0.75 0.70 0.65 0.60 0.50 0.45 0.40
Physical gate length for HP Logic (nm) 20.00 18.00 14.00 12.00 10.00 10.00 10.00
SoC footprint scaling  node-to-node - 50% digital, 35% SRAM, 15% analog+IO - 64.9% 51.3% 64.3% 64.2% 50.9% 50.7%

Gate

FD S OI

TBOX

Gate

FD S OI

TBOX

Source: IEEE IRDS 2017 Edition 
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Levels of Disruption in Post-Exascale 
and Post-Moore eras 
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OUTLOOK

to scale computer performance. How-
ever, engineering software for the von 
Neumann architecture is itself a dif-
ficult endeavor. Adding the need for 
explicit programming of parallelism 
is largely untenable to the software 
industry as a whole. Thus, the solution 
has been successful for HPC, a realm 
in which software rewriting is consid-
ered an acceptable investment, and the 
result has been computer performance 
increases only for select applications.

Reaching the power wall has impli-
cations for more than the PC industry. 
The PC–microprocessor ecosystem has 
driven down the cost of mainstream 
processors to an attractively low price 
fostered by the continual increase in 
logic IC volume. Consequently, these 
microprocessors and other ecosys-
tem elements have migrated upward, 
affecting much more complex systems 
such as high-performance computers .

PROPOSED WAYS FORWARD
Attendees at the RCI’s four past sum-
mits reached consensus on the idea 

that any solutions to extending com-
puting performance and efficiency 
would have to radically depart from 
the straightforward interpretation of 
Moore’s law. As a 2015 IEEE Spectrum 
article put it,5

Today’s technology makes a 
1-exaflops supercomputer capable 
of performing 1 million trillion 
floating-point operations per 
second almost inevitable. But 
pushing supercomputing beyond 
that point to 10 exaflops or more 
will require major changes in 
both computing technologies 
and computer architectures.

To address that requirement, the RCI 
meetings covered a range of solutions 
to the impending end of current com-
puting paradigms, which can be char-
acterized in terms of disruption to the 
computing stack, as Figure 2 shows.

Non−von Neumann computing
The most radical approaches rethink 

computing from the ground up, and 
will require new algorithms, lan-
guages, and so on. Chief among these 
is quantum computing, which uses 
properties of quantum mechanics 
to solve problems in optimization, 
search, and whole number theory. 
Although a quantum computer can 
be used as a universal computing plat-
form, it will be no better than a con-
ventional computer outside a limited 
set of problems. However, the quan-
tum computer’s advantage is so large 
for some of those problems that it has 
the potential to shake the foundation 
of conventional scientific, engineer-
ing, business, and security practices. 
For example, a working quantum com-
puter could factor the product of two 
large primes in a nanosecond,6 which 
undermines asymmetric-key encryp-
tion. This encryption standard, which 
is central to every facet of  e-commerce 
and national security, is based on the 
notion that such factoring is computa-
tionally intractable.

Another non−von Neumann ap-
proach is neuromorphic computing, 
which leverages what is known about 
the human brain’s operation to create 
new computing technologies. Neuro-
morphic computers do not attempt to 
replicate the brain, but rather draw 
from the neuroscientific aspects that 
enable humans to solve problems with 
great efficiency, such as recognizing 
and classifying patterns in text, au-
dio, or images. Neuromorphic com-
puters can be simulated on modern 
computers, but the true energy effi-
ciencies come from specialized hard-
ware built specifically for the task.

Neuromorphic algorithms differ 
greatly from traditional algorithms 
and overlap the important discipline 
of machine learning. The indus-
try can now simulate neuromorphic 

Algorithm

Language

API

Architecture

Instruction-set
architecture

Microarchitecture

Function unit

Logic

Device More “Moore”

1

No disruption Total disruption

2 3 4

Hidden
changes

Architectural
changes

Non–
von Neumann

computing

FIGURE 2. Four future computing approaches and the extent to which they disrupt the 
traditional computing stack (left). At the far right (level 4) are non−von Neumann archi-
tectures, which completely disrupt all stack levels, from device to algorithm. At the least 
disruptive end (level 1) are more “Moore” approaches, such as new transistor technology 
and 3D circuits, which affect only the device and logic levels. Hidden changes are those of 
which the programmer is unaware.

Source: “Rebooting Computing: The Road Ahead”, T.M.Conte, E.P.DeBenedictis, 
P.A.Gargini, E.Track, IEEE Computer, 2017.   

At the far right (level 4) are 
non−von Neumann 
architectures, which 
completely disrupt all stack 
levels, from device to 
algorithm. 
At the least disruptive end 
(level 1) are more “Moore” 
approaches, such as new 
transistor technology and 
3D circuits, which affect 
only the device and logic 
levels. 
Hidden changes are those 
of which the programmer is 
unaware. 
Our subcommittee is 
focusing on level 3 & 4 
approaches. 
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Research investments needed to prepare for disruptions, 
but there have been recent challenges in funding research 

 CS research programs related to Future Computing 
(estimates based on target funding $’s in solicitations,  
source: ASCAC presentation on X-Stack program, Sep’16) 
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Our Charge 
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As you know, 
physical limitations 
are forcing an end 

to “Moore’s Law” … 
we must prepare for 

the significant 
changes ahead 

without wavering 
from our 

commitment to 
deliver exascale 

capability.   
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Our Charge (contd.) 
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By this letter, I am 
charging the ASCAC to 
form a subcommittee to 
review opportunities 
and challenges for 

future high 
performance 

computing capabilities.  
Specifically, we are 

looking for input from the 
community to determine 
areas of research and 

emerging technologies 
that need to be given 

priority. 
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Our Charge (contd.) 

10 

To inform ASCR 
planning, I would 

appreciate receiving 
the committee’s 

preliminary 
comments by the 

Summer 2017 
meeting, and a final 
report by December 

20, 2017.   
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Interpreting the Charge: Timeframe 

•  The charge did not specify a timeframe for the 
subcommittee to focus on ... 

•  ... however, it is clear that the charge refers to the 
post-exascale (2020’s) and post-Moore (2030’s 
and beyond) timeframes 

•  The subcommittee concluded that it was 
appropriate to focus on different timeframes for 
different technologies, when identifying potential 
areas of research needed to support the Science 
mission. 
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Caveat from subcommittee 

 “While the subcommittee appreciated the 
timeliness of the charge, we acknowledge that 
a single study cannot provide a comprehensive 
answer to identifying research opportunities 
and challenges for future HPC capabilities in 
the post-exascale and post-Moore timeframes, 
which span multiple decades, and trust that 
there will be follow-on studies to elaborate 
further on these challenges and opportunities 
as details of emerging HPC technologies 
become clearer in the coming years.” 
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1. Background & Interpretation of 
Charge 

2. Application lessons learned from past 
HPC Technology Transitions 

3. Future HPC Technologies 
4. Findings 
5. Recommendations  
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Vector à Massively Parallel Processing (MPP)  

•  New computing paradigm with no incremental 
transition path 

•  Successful transitions enabled by creating new 
application frameworks with support for domain 
decomposition, halo exchanges & global reductions 
leveraging concepts from prior Applied Math and CS 
research 

•  Attrition of vectorization features as focus of on-node 
performance moved to cache locality 

•  Challenges in maintaining production vector version 
while developing new MPP version; development team 
had to be split across both versions 
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Terascale à Petascale 

•  The path to Petascale required attention to intra-
node parallelism with OpenMP threading, use of 
accelerators, and exposing vectorizable code to 
compilers 

•  For many applications, this transition was 
incremental due to reuse of MPP frameworks for 
inter-node parallelism 

•  Initial ports of MPP codes were straightforward, 
but substantial data structure and execution 
strategy modifications were required to optimize 
on-node parallelism and locality, leveraging 
concepts from prior Applied Math and CS research 
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Petascale à Exascale 

•  New transition: significant growth in on-node 
parallelism, locality and heterogeneity, and increasing 
penalty for any sequential regions of code 

•  Performance portability becomes a significant 
challenge; many applications cannot deliver uniformly 
high performance across different platforms and 
problem formulations that they are designed to support 

•  Need for new algorithms, new control layers, new 
system software support to better handle simultaneous 
heterogeneous execution, and support task-enabled 
parallelism, asynchrony, and resilience 

•  Smaller body of prior research available in support of 
this transition than in past transitions 

16 16 
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Lessons learned 

•  VectoràMPP: Investing in new application frameworks 
was critical for success in this transition 

•  TerascaleàPetascale: Leveraging incremental 
approaches to application migration can be extremely 
valuable, whenever possible to do so 

•  PetascaleàExascale: Investing in new control layers 
and system software support will be helpful for 
addressing the disruption of large on-node 
heterogeneous parallelism 

•  All above transitions were aided by prior research in 
Applied Math and Computer Science 

•  Continued opportunities to adopt best practices in 
software design to reduce application transition costs 

17 17 
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1. Background & Interpretation of 
Charge 

2. Application lessons learned from past 
HPC Technology Transitions 

3. Future HPC Technologies 
4. Findings 
5. Recommendations  
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Community investigation of future technologies 
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•  Several recent DOE workshops and reports have 
focused on future HPC technologies 

  

. . . 
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Future HPC technologies considered by 
our subcommittee 

•  Post-Exascale (2020’s) 
•  Reconfigurable logic 
•  Memory-centric processing 
•  Silicon photonics 

•  Post-Moore (2030’s) 
•  Neuromorphic computing 
•  Quantum computing 
•  Analog computing 

•  Common theme: extreme heterogeneity with 
continued use of digital computing as foundation 

 20 20 
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Reconfigurable Logic 
Approach:  

•  For best performance, FPGA kernels are written in Hardware Description Languages 
(HDLs), which requires significant hardware expertise and development effort 

•  High Level Synthesis (HLS) of C, C++, or OpenCL continues to improve, but, unlike 
the use of HDL, HLS performance gain is often comparable to that of GPUs 

Current & Future Promise:  
•  Improved energy efficiency & memory bandwidth utilization relative to CPUs/GPUs 

Motivating Applications: 
•  Bioinformatics, signal processing, image processing, network packet processing 
•  Early adoption in data analysis and in-transit processing areas: use of FPGAs to 

compress, clean, filter data streams generated by scientific instruments 
Timeframe: 

•  FPGA accelerators are already available now (even as cloud services!), and closer 
integration of CPU with reconfigurable logic is expected in 2-5 years 

Research challenges: 
•  Lack of design tools that simplify application development remains a major obstacle, 

as does compile cycles (synthesis, map, place, route) that can take hours to days 
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FPGAs now available as Amazon EC2 F1 
instances 

22 

Source: https://aws.amazon.com/ec2/instance-types/f1/  

How it Works

DEVELOP

Develop custom

Amazon FPGA Images

(AFI) using the Hardware

Development Kit (HDK)

and full set of design

tools and simulators. 

DEPLOY

Deploy your AFI directly

on F1 instances and

take advantage of all the

scalability, agility, and

security benefits of EC2. 

OFFER

Offer AFIs you design on

the AWS Marketplace

for other customers. 

PURCHASE

Purchase AFIs built and

listed on AWS

Marketplace to quickly

implement common

hardware accelerations. 
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Range of Approaches for Memory-Centric 
Processing 
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Memory-Centric Processing 
Approach:  

•  Memory-Centric Processing places computation closer to memory than conventional 
cores.  These approaches are being explored at the in situ, sense amps, memory 
bank, on-memory, and near-memory levels. 

Current & Future Promise:  
•  Reduce memory bandwidth bottlenecks by performing lightweight specialized 

operations close to memory.  Additional benefits include reduced latency, reduced 
energy of transport, faster atomic operations, and higher levels of concurrency. 

Motivating applications:  
•  Applications with memory–centric streaming operations, e.g., encryption/decryption, 

search, big data, big graphs, deep learning 

Timeframe: 
•  Above approaches demonstrated at the research level.  Near-Memory Processing 

appears to be the most viable for the next level, due to its synergy with 3D stacking. 
Research challenges: 

•  How to maintain some level of coherence/consistency across data copies, how to 
support remote computations and a global address space, how to recognize 
completion of asynchronous operations, how to handle cases where data from 
separate memories need to be combined. 

24 24 



ASCAC	
  

Silicon Photonics 
•  Silicon Photonics has emerged as platform for large 

scale integration of complex electronic-photonic ICs 
•  Enabling system scale CMOS-photonics 
•  AIM Photonics - Integrated Photonics Manufacturing 

Institute – state-of-art US facility (Albany) with 
300mm tools for fabrication, 3D stacking with CMOS 

•  Research challenges:  
•  Bridging photonics with computing systems  
•  Physical layer/control/programmability 
•  New computation models and architectures 

25 

300mm SiP wafer 
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Example future direction for Photonics: 
Optical Neural Networks 

26 

Deep learning with coherent nanophotonic circuits
Yichen Shen1*†, Nicholas C. Harris1*†, Scott Skirlo1, Mihika Prabhu1, Tom Baehr-Jones2,
Michael Hochberg2, Xin Sun3, Shijie Zhao4, Hugo Larochelle5, Dirk Englund1 and Marin Soljačić1

Artificial neural networks are computational network models inspired by signal processing in the brain. These models have
dramatically improved performance for many machine-learning tasks, including speech and image recognition. However,
today’s computing hardware is inefficient at implementing neural networks, in large part because much of it was designed
for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned
to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new
architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and
power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the
essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable
Mach–Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

Computers that can learn, combine and analyse vast amounts
of information quickly, efficiently and without the need for
explicit instructions are emerging as a powerful tool for hand-

ling large data sets. ‘Deep learning’ algorithms have received an
explosion of interest in both academia and industry for their
utility in image recognition, language translation, decision-making
problems and more1–4. Traditional central processing units
(CPUs) are suboptimal for implementing these algorithms5, and a
growing effort in academia and industry has been directed
towards the development of new hardware architectures tailored
to applications in artificial neural networks (ANNs) and deep learn-
ing6. Graphical processing units (GPUs), application-specific inte-
grated circuits (ASICs) and field-programmable gate arrays
(FPGAs)2,5,7–11, including IBM TrueNorth5 and Google TPU11,
have improved both energy efficiency and speed enhancement for
learning tasks. In parallel, hybrid optical–electronic systems that
implement spike processing12–14 and reservoir computing15–18 have
been demonstrated.

Fully optical neural networks (ONNs) offer a promising alterna-
tive approach to microelectronic and hybrid optical–electronic
implementations. ANNs are a promising fully optical computing
paradigm for several reasons. (1) They rely heavily on fixed
matrix multiplications. Linear transformations (and certain non-
linear transformations) can be performed at the speed of light and
detected at rates exceeding 100 GHz (ref. 19) in photonic networks
and, in some cases, with minimal power consumption20,21. For
example, it is well known that a common lens performs a Fourier
transform without any power consumption and that certain
matrix operations can also be performed optically without consum-
ing power. (2) They have weak requirements on nonlinearities.
Indeed, many inherent optical nonlinearities can be directly used
to implement nonlinear operations in ONNs. (3) Once a neural
network is trained, the architecture can be passive, and computation
on the optical signals will be performed without additional energy
input. These features could enable ONNs that are substantially
more energy-efficient and faster than their electronic counterparts.
However, implementing such transformations with bulk optical
components (such as fibres and lenses) has been a major barrier

so far because of the need for phase stability and large neuron
counts22. Integrated photonics addresses this problem by providing
a scalable solution to large, phase-stable optical transformations23.

Here, we begin with a theoretical proposal for a fully optical
architecture for implementing general deep neural network algor-
ithms using nanophotonic circuits that process coherent light.
The speed and power efficiency of our proposed architecture is
largely enabled by coherent, fully optical matrix multiplication
(a cornerstone of neural network algorithms). Under the assump-
tion of practical, centimetre-scale silicon photonic die sizes and
low waveguide losses, we estimate that such an ONN would
enable forward propagation that is at least two orders of magnitude
faster than state-of-the-art electronic or hybrid optical–electronic
systems, and with a power consumption that is nearly proportional
(instead of quadratic, as in electronics) to the number of neurons
(for more details see the discussion about scaling in the Methods).
Next, we experimentally demonstrate the essential component of
our scheme by embedding our proposed optical interference unit
(OIU) and diagonal matrix multiplication unit within a subset of
the programmable nanophotonic processor (PNP), a photonic inte-
grated circuit developed for applications in quantum information pro-
cessing23. To test the practical performance of our theoretical
proposal, we benchmarked the PNP on a vowel recognition
problem, which achieved an accuracy comparable to a conventional
64-bit computer using a fully connected neural network algorithm.

ONN device architecture
An ANN1 consists of a set of input artificial neurons (represented
as circles in Fig. 1a) connected to at least one hidden layer and
the output layer. In each layer (depicted in Fig. 1b), information
propagates by a linear combination (for example, matrix multi-
plication) followed by the application of a nonlinear activation
function. ANNs can be trained by feeding training data into the
input layer and then computing the output by forward propa-
gation; matrix entries (weights) are subsequently optimized using
back propagation24.

The ONN architecture is depicted in Fig. 1b,c. As shown in
Fig. 1c, the task (an image, a vowel or a sentence to be recognized)

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 2Elenion, 171 Madison Avenue, Suite
1100, New York, New York 10016, USA. 3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
4Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 5Université de Sherbrooke, Administration, 2500
Boulevard de l’Université, Sherbrooke, Quebec J1K 2R1, Canada. †These authors contributed equally to this work. *e-mail: ycshen@mit.edu; n_h@mit.edu
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is first preprocessed to a high-dimensional vector on a computer
with a standard algorithm (this step is computationally inexpensive
compared with inference). The preprocessed signals are then
encoded in the amplitude of optical pulses propagating in the
photonic integrated circuit, which implements a many-layer
ONN. Each layer of the ONN is composed of an OIU that
implements optical matrix multiplication and an optical nonlinear-
ity unit (ONU) that implements the nonlinear activation. In prin-
ciple, the ONN can implement an ANN of arbitrary depth and
dimensions fully in the optical domain.

To realize an OIU that can implement any real-valued matrix, we
first note that a general, real-valued matrix (M) may be decomposed
asM=UΣV† through singular value decomposition (SVD)25, where
U is an m ×m unitary matrix, Σ is an m × n rectangular diagonal
matrix with non-negative real numbers on the diagonal and V† is
the complex conjugate of the n × n unitary matrix V. It has been
shown theoretically that any unitary transformations U,V† can be
implemented with optical beamsplitters and phase shifters26,27.
Finally, Σ can be implemented using optical attenuators—optical
amplification materials such as semiconductors or dyes could also
be used28. Matrix multiplication with unitary matrices implemented
in the manner above consumes, in principle, no power. The fact that
a major proportion of ANN calculations involve matrix products
enables the extreme energy efficiency of the ONN architecture
presented here.

The ONU can be implemented using common optical non-
linearities such as saturable absorption29–31 and bistability32–36,
which have all been demonstrated previously in photonic circuits.
For an input intensity Iin, the optical output intensity is given by
a nonlinear function Iout = f(Iin)37. In this Article, we will consider
an f that models the mathematical function associated with a
realistic saturable absorber (such as a dye, semiconductor or
graphene saturable absorber or saturable amplifier) that could, in
future implementations, be directly integrated into waveguides
after each OIU stage of the circuit. For example, graphene layers
integrated on nanophotonic waveguides have already been

demonstrated as saturable absorbers38. Saturable absorption is mod-
elled as29 (Supplementary Section 2)

στsI0 =
1
2
ln (Tm/T0)
1 − Tm

(1)

where σ is the absorption cross-section, τs is the radiative lifetime of
the absorber material, T0 is the initial transmittance (a constant that
only depends on the design of the saturable absorbers), I0 is the inci-
dent intensity and Tm is the transmittance of the absorber. Given an
input intensity I0, one can solve for Tm(I0) from equation (1) and
the output intensity can be calculated as Iout = I0·Tm(I0). A plot of
the saturable absorber’s response function Iout(Iin) is shown in
Supplementary Section 2.

A schematic diagram of the proposed fully optical neural
network is shown in Fig. 1d.

Experiment
We evaluated the practicality of our proposal by experimentally
implementing a two-layer neural network trained for vowel recog-
nition. To prepare the training and testing data sets, we used 360
data points, each consisting of four log area ratio coefficients39 of
one phoneme. The log area ratio coefficients, or feature vectors, rep-
resent the power contained in different logarithmically spaced fre-
quency bands and are derived by computing the Fourier
transform of the voice signal multiplied by a Hamming window
function. The 360 data points were generated by 90 different
people speaking four different vowel phonemes40. We used half of
these data points for training and the remaining half to test the per-
formance of the trained ONN. We trained the matrix parameters
used in the ONN with the standard back-propagation algorithm
using a stochastic gradient descent method41 on a conventional
computer. Further details on the data set and back-propagation pro-
cedure are included in Supplementary Section 3.

The OIU was implemented using a PNP23—a silicon photonic
integrated circuit fabricated in the OPSIS foundry42. This was
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Figure 1 | General architecture of the ONN. a, General artificial neural network architecture composed of an input layer, a number of hidden layers and an
output layer. b, Decomposition of the general neural network into individual layers. c, Optical interference and nonlinearity units that compose each layer of
the artificial neural network. d, Proposal for an all-optical, fully integrated neural network.
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Neuromorphic Computing 
Approach:  

•  ​Emulate ​the ​ ​behavior​ ​of​ ​a ​ ​subset​ ​of​ ​the ​ ​brain, e.g., via algorithms that simulate spiking ​ ​neurons 
and can be used as​ ​modeling ​ ​tools​ ​by​ ​neuroscientists 

•  Use artificial ​ ​neural ​ ​networks to achieve brain-like ​ ​functionality,​ ​such ​ ​as​ ​object​ ​or​ ​speech ​ ​
recognition e.g., via deep neural networks. 

Current & future promise:  
•  Initial ​ ​excitement​ ​in ​ ​the ​ ​1950s​ ​with ​ ​the ​ ​Perceptron, followed by Multi-Layer​ ​Perceptrons​ ​​in ​ ​the ​ ​

1980s/1990s. However, these were outperformed ​ ​by​ ​running algorithms​ ​such ​ ​as​ ​Support​ ​Vector​ ​
Machines (SVMs) on stock hardware from those periods.​  

•  Current hardware (notably ​GPUs) ​has made it possible for Deep Neural Networks to achieve 
human-level ​ ​performance ​ ​for​ ​non-trivial ​ ​tasks​ ​such ​ ​as​ ​object recognition & ​speech ​ ​recognition. 

Motivating applications:  
•  Modeling ​ ​tools​ ​for​ ​neuroscientists, deep learning for science, numerous commercial applications 

Timeframe: 
•  Current implementations include Google’s ​TPUs and IBM’s True North hardware, as well as 

efficient implementations of DNNs in GPUs and FPGAs 
•  Many​ ​companies​ ​are ​ ​expected ​ ​to ​ ​propose ​ ​and develop ASICs with efficient​ ​support for 

neuromorphic computing for use in data ​ ​centers and embedded platforms (e.g., self-driving cars). 

Research challenges: 
•      Modeling the human brain, expand use of​ ​neuromorphic computing ​ in new applications ​ 
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Neuromorphic Computing is already 
receiving a lot of attention in DOE activities 

28 

Figure source: “Report of a Roundtable Convened to Consider Neuromorphic 
Computing Basic Research Needs”, October 2015, Gaithersburg, MD 

Neuromorphic+Computing:+From+Materials+to+Systems+Architecture+
!

8+

+von+Neumann+Architecture+ + ++++++++++Neuromorphic+Architecture+
+

+++++++++++ +
+
Figure+1.!Comparison+of+high`level+ conventional+ and+neuromorphic+ computer+architectures.! The! so<
called!“von!Neumann!bottleneck”!is!the!data!path!between!the!CPU!and!the!memory!unit.!In!contrast,!a!neural!
network!based!architecture!combines!synapses!and!neurons!into!a!fine!grain!distributed!structure!that!scales!
both!memory!(synapse)!and!compute!(soma)!elements!as!the!systems!increase!in!scale!and!capability,!thus!
avoiding!the!bottleneck!between!computing!and!memory.!!

Device!Level!
!
A!major!difference!is!also!present!at!the!device!level!(see!Figure!2).!Classical!von!Neumann!
computing! is! based! on! transistors,! resistors,! capacitors,! inductors! and! communication!
connections! as! the! basic! devices.! While! these! conventional! devices! have! some! unique!
characteristics!(e.g.,!speed,!size,!operation!range),!they!are!limited!in!other!crucial!aspects!
(e.g.,! energy! consumption,! rigid! design! and! functionality,! inability! to! tolerate! faults,! and!
limited!connectivity).!In!contrast,!the!brain!is!based!on!large!collections!of!neurons,!each!of!
which! has! a! body! (soma),! synapses,! axon,! and! dendrites! that! are! adaptable! and! fault!
tolerant.! Also,! the! connectivity! between! the! various! elements! in! the! brain! is!much!more!
complex!than!in!a!conventional!computational!circuit!(see!Figure!2).!
!! ! !
a)+ + + + + + b)+
!

!!!!!!!!! ! ! !
!!
Figure+2.!Interconnectivity+in+a)+conventional+and+b)+neuronal+circuits.!
!
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Quantum Computing is also receiving a lot of 
attention in DOE activities 

29 

39

Quantum Computing Applications for SC Grand Challenges 

Simulation of quantum many body 
systems for materials discovery,
chemical processes, and nuclear 

matter equation of state 

Simulations of 
quantum field theory 

and quantum 
dynamics

Machine learning for 
large data sets and 
inverse molecular 

design 

Transformative Impact Through Partnership Programs among ASCR, BER, BES, HEP, NP (QATs and QCATs)

Optimization for prediction of 
biological systems such as 

protein folding  

Quantum Computing Focus Areas

QIS Task Force identified SC-wide grand challenges that will potentially be transformed by 
quantum computing applications.   

Quantum Testbeds

Co-Design

ASCAC Presentation 9/26/2017

Figure source: 
presentation on 
“Advanced Scientific 
Computing 
Research”, Barbara 
Helland, ASCAC 
meeting, Sep 2017. 
Also included 
updates on 
“Quantum Algorithm 
Teams (QATs)” and 
“Quantum Testbed 
Pathfinder” 
programs. 
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Quantum Computing 
Approach:  

•  Exploit quantum-mechanical nature of specific physical phenomena to provide advantages relative to classical 
computing. Whereas N digital bits encode one N-bit state, N entangled quantum bits (qubits) can encode 2^N 
possible N-bit states states upon which operations can be simultaneously applied.  

Current & future promise:  
•  Theoretical quantum algorithms have been discovered for multiple scientific problems of interest to DOE. These 

range from problems in chemistry and physics, to data analysis and machine learning, and to fundamental 
mathematical operations. However, without the existence of suitable quantum computers, they cannot yet be 
exploited to accelerate time to scientific discovery.   

•  Prototypes of small quantum systems, be they specialized annealing devices, or even general purpose 
computers, are beginning to appear (D-Wave, IBM, etc.). 

Motivating applications:  
•  Quantum computing was originally conceived of as a way to use quantum mechanical phenomenon to solve 

problems in modeling other quantum mechanical properties of materials. The range of potential applications for 
which quantum computing offers advantages relative to classical computing has since expanded, including 
factoring composite integers (Shor), search (Grover), and optimization (quantum annealing).  

Timeframe: 
•  Quantum computing today is still itself an object of research, and not yet a tool that is ready to be applied for 

broader scientific discovery. Since the advent of Shor’s algorithm, there has been substantial investment in 
quantum computing worldwide, first by governments, and more recently, commercial interests. 

Research challenges: 
•  Development of quantum computing at larger scales where they will offer true computational advantage relative to 

classical machines. 
•  Development of programming approaches to make use of quantum computing more broadly accessible. 
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Integrating Quantum Computing with Digital 
host/control processors 

Thermal hierarchy for host and control processors connected to a quantum substrate 
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Approach:  
•  Mapping dynamical systems to analogous systems, where the latter is typically 

electronic, optical or electro-chemical systems. 
•  Exploit dynamical systems that have similar physics relationships to the system being 

simulated/modeled. 
Current & future promise:  

•  Improved computational efficiency vs. traditional digital simulation/search.  In some 
cases, orders of magnitude lower power than digital approaches. 

Motivating applications: 
•  Physical system simulation, solving differential equations, near-optimal search 

(annealing). 
Timeframe: 

•  Analog computing has a long history, but the success of digital computing has pushed 
it to the sidelines.  New investments coupled with device/dynamical-process modeling 
has strong potential in a 10 year timeframe. 

Research challenges: 
•  Increased bit precision of computation as a function of SNR, algorithm design for 

limited precision, software foundations for hybrid digital-analog computing 
 

Analog Computing 
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Common themes: extreme heterogeneity, 
specialization, hybrid digital-analog systems 

33 

Extreme Heterogeneity  Workshop

– POC: Lucy Nowell(Lucy.Nowell@science.doe.gov)
– Goal: Identify Priority Research Directions for 

Computer Science needed to make future 
supercomputers usable, useful and secure for science 
applications in the 2025-2035 timeframe

– Primary focus on the software stack and programming 
models/environments

– 120 expected participants: DOE Labs, academia, & 
industry

– Observers from  DOE and other federal agencies
– Planning: Factual Status Document (FSD) is under 

development, with outreach planned.
• White papers to be solicited to contribute to the 

FSD, identify potential participants, and help 
refine the agenda

• Report due early May 2018

46ASCAC Presentation 9/26/2017
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Tentatively planned for Jan. 23-25, 2018, in D.C. area.

Heterogeneous Memories 

Heterogeneous Interconnects 

Figure source: presentation 
on “Advanced Scientific 
Computing Research”, 
Barbara Helland, ASCAC 
meeting, Sep 2017. 
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Outline 

1. Background & Interpretation of 
Charge 

2. Application lessons learned from past 
HPC Technology Transitions 

3. Future HPC Technologies 
4. Findings 
5. Recommendations  
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Findings 

35 

Finding 1: Need for clarity in future HPC roadmap à Science 
will need to prepare for a period of uncertainly in future HPC 
technologies and computing paradigms 
 
•  Significant attention on post-Moore computing from multiple 

agencies, but lack of clarity as to what the future HPC 
roadmap should be for Science 

•  Science will need to prepare for a period of uncertainty in 
future HPC technologies and computing paradigms, which is 
likely to be more disruptive than the VectoràMPP transition 

•  Due to this uncertainty, there is a need to adopt agile 
strategy and planning processes so as to better adapt to 
future HPC technology transitions 
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Findings (contd) 

36 

Finding 2: Extreme heterogeneity with new computing 
paradigms will be a common theme in future HPC technologies 

•  There is a great diversity in the technologies that are 
expected in the post-exascale and post-Moore eras, 
appropriately termed “extreme heterogeneity” in an 
upcoming ASCR workshop and related discussions 

•  Value in focusing on extreme heterogeneity with digital 
computing foundations as a common theme in future HPC 
technologies 

•  Within this theme, there are compelling research challenges 
in moving point solutions forward  (e.g., neuromorphic 
computing, quantum computing) so that they can be 
integrated in future platforms with extreme heterogeneity 
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Findings (contd) 

37 

Finding 3: Need to prepare applications and system software 
for extreme heterogeneity 

•  We are rapidly approaching a period of significant redesign 
and reimplementation of applications that is expected to 
surpass the VectoràMPP transition  

•  Scientific teams will need to prepare for a phase when they 
are both using their old codes to obtain science results while 
also developing new application frameworks based on the 
new applied math and computer science research. 
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Findings (contd) 

38 

Finding 4: Need for early testbeds for future HPC technologies 

•  There is a need for building and supporting early testbeds 
for future HPC technologies that are broadly accessible to 
the DOE community, so as to enable exploration of these 
technologies through new implementations of science 
applications (proxy and full) 

•  There are multiple instances of individual research groups at 
DOE laboratories creating early testbeds, but administration 
of testbeds by research groups is necessarily ad hoc and 
lacks the support for broad accessibility that is provided by 
DOE computing facilities 
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Findings (contd) 

39 

Finding 5: Open hardware promises to be a major trend in 
future platforms 

•  With extreme heterogeneity, there is a growing trend 
towards building hardware with open interfaces so as to 
integrate components from different hardware providers 

•  There is also a growing interest in building open source 
hardware components through recent movements such as 
the RISC-V foundation 

•  For the purpose of this report, the term “open hardware” 
encompasses both open interfaces for proprietary 
components as well as open source hardware 
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Findings (contd) 

40 

Finding 6: Synergies between HPC and mainstream computing 

•  There are notable synergies between future HPC and 
mainstream computing requirements, e.g., there is already a 
growing commercial use of reconfigurable logic in 
mainstream platforms 

•  In addition, synergies will be leveraged in the area of data-
intensive applications and data analytics. e.g., use of 
neuromorphic computing and accelerators for deep learning 

•  As observed in a past ASCAC study, there are also notable 
synergies between the data-intensive computing and high-
performance computing capabilities needed for science 
applications 
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Outline 

1. Background & Interpretation of 
Charge 

2. Application lessons learned from past 
HPC Technology Transitions 

3. Future HPC Technologies 
4. Findings 
5. Recommendations  
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Recommendations 

42 

Recommendation 1: The DOE Office of Science should play a 
leadership role in developing a post-exascale and post-Moore 
strategy/roadmap/plan, at both the national and international 
levels, for HPC as a continued enabler for advancing Science. 

•  Focus on the needs of science applications (some may be 
synergistic with vendor priorities, and some may not) 

•  Raise public awareness of upcoming post-Moore challenges 
(as we did for exascale) 

•  Engagement with existing technology roadmap efforts (e.g., 
IRDS) can play a key role in defining DOE’s HPC roadmap 

•  International competitiveness dictates that DOE Office of 
Science continue its focus on ensuring USA’s continued 
worldwide leadership in high performance computing.  
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Recommendations (contd) 

43 

Recommendation 2: DOE should invest in preparing for 
readiness of science applications for new computing 
paradigms in the post-exascale and post-Moore eras 
 
•  In partnership with other science programs (as in SciDAC), to ensure 

that sufficient investment is made with adequate lead time to prepare 
science applications for the post-exascale and post-Moore eras 

•  With clear methodology for making migration vs. rewrite decisions for 
different applications in different timeframes, as new technologies 
become ready for production use 

•  While balancing the criticality of both delivering exascale capability and 
exploring new computing paradigms for the future. 

•  Including investment in applied math and algorithms research (e.g., 
exploring new models of computer arithmetic) that is tightly coupled with 
application development for new computation and data models 
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Recommendations (contd) 

44 

Recommendation 3: DOE should invest in research to help 
foster an open hardware ecosystem as part of the future HPC 
technology roadmap 

•  Future hardware will require more innovation and agility in hardware 
design than in past decades, and an open platform approach will help 
foster this innovation while also mitigating risks associated with selecting 
a single vendor for hardware acquisition. 

•  Trend towards extreme heterogeneity in post-exascale and post-Moore 
computing reinforces the importance of integrating hardware 
components developed by different hardware providers. 

•  Research investment is necessary new approaches are needed to 
ensure that leadership-class HPC hardware can be built for future 
science applications by tightly integrating the best technologies from 
different hardware providers (proprietary or open source). 
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Recommendations (contd) 

45 

Recommendation 4: DOE should invest in research to advance 
system software technologies for post-exascale and post-
Moore computing 
 
•  Past DOE investments have helped ensure a successful history of using 

advances in system software to reduce time and cost for developing and 
deploying production applications on leadership HPC systems 

•  Current system software stack is built on technology foundations that 
are more than two decades old, and are ill-prepared for new computing 
paradigms anticipated in post-exascale and post-Moore computing 

•  Combination of open hardware research and system software research 
will enable software/hardware co-design to occur with the agility needed 
for post-exascale and post-Moore computing 

•  System software has a long history of reducing the impact of hardware 
disruptions on application software, and this role will be even more 
important in the future 
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Recommendations (contd) 

46 

Recommendation 5: DOE computing facilities should prepare 
users for post-Moore computing by providing and supporting 
early access to testbeds and small-scale systems 
 
•  Includes acquiring testbeds and small-scale systems that 

are exemplars of future HPC systems, and investing in 
personnel who are qualified to provide support and training 

•  Will require building relationships with new hardware 
providers who are exploring new post-Moore technologies 

•  Will need to extend beyond system support, and also 
include training, workshops, and fostering of user groups for 
different systems. 

•  Without distracting from exascale commitments! 
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Recommendations (contd) 

47 

Recommendation 6: DOE labs should recruit and grow 
workforce members who can innovate in all aspects of 
mapping applications onto emerging post-exascale and post-
Moore hardware 
 
•  Recruiting and retention challenges in computing-related 

areas have been documented in past studies 
•  New opportunities to recruit talent who are passionate about 

working with cutting-edge technologies 
•  Prioritization of future HPC in all avenues related to 

recruiting, growth and retention of top talent, including 
CSGF fellowships, postdoctoral appointments, LDRD-
funded projects, awards, and other forms of recognition 

•  Engage with interested and qualified faculty in academia 
through sabbaticals and other channels 
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Leadership beyond exascale 

48 

•  While DOE’s commitment to deliver exascale capabilities is 
of paramount importance, we believe that it is essential for 
DOE ASCR to fund research and development that looks 
beyond the Exascale Computing Project (ECP) time horizon 

•  ECP focus has dampened recent efforts to explore new 
paradigms for post-exascale and post-Moore computing, 
and this dampening is in danger of intensifying due to 
reductions in the ECP delivery timeline 

•  Balancing the criticality of delivering production applications 
with research that explores new computing paradigms has 
been a successful strategy for past technology transitions 
(e.g., Vector à MPP); continuing such a strategy for post-
exascale and post-Moore computing will ensure our nation’s 
continued leadership in future HPC 

48 



ASCAC	
  

•  Wide range of technologies for future high performance 
computing capabilities in different timeframes. 

•  Extreme heterogeneity with digital computing foundations 
will be a common theme in future HPC 

•  There has been a loss in momentum in funding and 
sustaining a research pipeline in the applied math and 
computer science areas for future HPC, which should be 
corrected as soon as possible 

•  Applications will need to be agile in evaluating and adopting 
technologies that are most promising for their domain, as 
well as in making  “migrate vs. rewrite” decisions 

•  Office of Science can play a leadership role in developing a 
post-exascale and post-Moore roadmap for Science on 
HPC, without distracting from exascale commitments 

 

Summary 
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