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Eﬁ“ER“"REEFY géfii::;f Largest funder of physical

science research in the U.S.
'L.;'Q;‘_’ LR

NERSC: the Mission HPC Facility for DOE
Office of Science Research

Particle Physics, Astrophysics Nuclear Physics Fusion Energy, Plasma Physics
6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs
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NERSC has a long history of working with
experimental and observational science projects

Palomar Transient Planck Satellite Alice Atlas
Factory Cosmic Microwave Large Hadron Collider Large Hadron Collider
Supernova Background

Radiation

Davat{av A_'-S LCLS Joint Genome Institute
Neutrinos Light Source Light Source Bioinformatics
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e ENERGY Science
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What’s different?

* Proliferation of data from DOE user facilities

* Scientific workflows have become more

complex

— Streaming data to HPC facilities
— Real-time/Interactive access

— Rich ‘Data’ stack

* Important scientific problems are requiring both
simulation and data analytics

— Advanced Machine Learning and Statistics methods +
tools required

U.S. DEPARTMENT OF Oﬁlce Df

ENERGY Science

BERKELEY LA
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DOE Exascale Requirements Reviews [ iai%

« Broad input from DOE
experimental facilities

 Focused on the exascale
‘ecosystem’, beyond compute

o ,‘ ﬁ t“ EE%E?EE%ENTS
« Machine Learning called out
as an important cross-cut

theme

NoF - Office of

U.5. DEPARTME! ol
© ENERGY o

about:blank 9/28/2017



Page 8 of 56

HEP BER BES NP FES
Astronomy | Cosmology | Particle Climate Genomics | Light Materials Heavy Plasma
Physics Sources lon Physics
Colliders

Classification

Regression

Clustering

Reduction

Dimensionality

Surrogate
Models

X X X X X

Design of
Experiments

Feature
Learning

Anomaly
Detection
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NERSC Platforms

Edison: Cray XC-30

7.6 PB Local 80 GB/s - > 3.6 PB
:w /7/’— St 5 x SFA12KE

5PB

e

16x FDR 18

DDN9900 &
NexSAN
_‘_ — ~F= AL NetApp 5460
il s OL \) 50 PB stored, 240

PB capacity
Ph1: 1630 nodes, 2.3GHz Intel "Haswell” Cores, 203TB RAM b A
Ph2: >9300 nodes, >60cores, 16GB HBM, 96GB DDR per node 32xFDR 1B
Data-Intensive Systems

PDSF, JGI,KBASE,HEP Ethernet &

14x QDR IB Fabric
Science Friendly Security 1x 100 Gb

2x10Gb

Production Monitoring
Vis & Analytics Data Transfer Nodes Power Efficiency Software Defined
Adv. Arch. Testbeds Science Gateways WAN Networking
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Capabilities Technologies
GridFTP JU Dyter m‘

Data Transfer + Access

globus online

Workflows

P

FlreWo‘kE

Data Management

HE=
o
mnelCDF

BSciDB .mongo )B

Data Analytics

Fﬁm Spofﬁ
@ julia

Ten'sf:low
* theano

ye Caffe

Data Visualization

"' ParaView
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# users

U.S. DEPARTMENT OF

/\

What are Data capability applications?
What is the software strategy?
How do we utilize HPC hardware?

? ?

1TB
1K

caores
Office of

ENERGY Science
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Data Analytics Methods

Machine Learning Graph

Analytics

Image/Signal
Processing

Linear
Algebra

Statistics

U.S. DEPARTMENT OF Office of
e ENERGY Science
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EFacebookto Open New :

Artificial Intelligence Labin

The Great AL Awakening
How Googhe used artificial intalligance to transform Google o ) . A :
r:u"l::'o:‘:; mmw:?thxm 2 MIiEeElE The iBrain Is Here—and It's Already Inside Your Phone

THE IBRAIN IS HERE—AND IT°S
ALREADY INSIDE YOUR PHONE

Inside Baidu's Billion Dollar Push To Become An Al

Global Leader

Intel is paying more than $400 million to buy deep-
learning startup Nervana Systems

The chip giant is betting that machine learning is going to be a big deal in the data cente

IBM and MIT to pursue joint research in artificial
intelligence, establish new MIT-IBM Watson Al Lab

IBM plans to make a 10-year, $240 million investment in new lab with MIT to advance
Al hardware, software, and algorithms.
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Breakthrough Results

:apMind
1 Match
§ March 200
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Can Deep Learning work for Science?

/ Similarities \ f Differences \

Unique attributes of Scientific
Data

Tasks

*  Pattern Classification
* Regression

*  Clustering

* Feature Learning

\l AN

kBl Office of

U.S. DEPARTMENT
© ENERGY oo

e  Multi-channel / Multi-variate

* Double precision floating
point

* Noise and Artefacts

«  Statistics are likely different
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Climate Science Tasks m

Classification Shicct Detsction Instance
+ Localization ) Segmentation

Classification

U.S. DEPARTMENT OF Ofﬁce Df “\ n
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Supervised Classification Accuracy

Logistic K-Nearest Support Random ConvNet
Regression Neighbor Vector Forest
Machine

Test Test Test Test Test
Tropical Cyclone 95.85 97.85 95.85 99.4 99.1
Atmospheric Rivers 82.65 81.7 83.0 88.4 90.0
Weather Fronts 89.8 76.45 90.2 87.5 89.4

U.S. DEPARTMENT OF Input PDOling POO}ing Class score
° ENERGY Convolution Convolution Fully connect

BERKELEY LAB
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Architecture m

Encoder Decoder

vy

L, L.,
512(Dx8x24x36 .

2B(2)xBx 1925288
l/ 6:4(2) 5853845576

1602)x8xT68x1152 Box Location/Siz

© Cliss Probabilities ™, .
5 -, % Objeciness
“ " Probabilit

es
4xdx12x18 4xdx1 2618 2x4x12x18

Classification + Bounding Box Regression

eu.s. DE"“"EEF Office of Contributors: Evan Racah, Chris Pal, Chris Beckham, Tegan Maharaj
ENER Y Science BERKELEY LAB
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Reconstruction Results

original reconstruction

U.S. DEPARTMENT OF Office of 5 ‘\‘ -
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Classification + Regression Results m

100

200

300

400

500

Ground Truth 600

Prediction
700

0 200 400 600 800 1000

U.S. DEPARTMENT OF Offlce Df

ENERGY Bolinds Contributors: Thorsten Kurth, Jian Yang, loannis Mitliagkas, Chris Pal, Nadathur ﬂﬂ
Satish, Narayanan Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.
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Deep Learning at 15PF (SC’17)

Compute group 1 Compute group G

WS —-.. W
w o a
85 ok
W W -2 50
e U o U
m-35-m m-i-m
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o 800- dornns il St 1 Q. . Id I
2 700 EIS & = - ' :
§ 600 O 1000 |- B i
aQ a : . : :
@ 500 L ) i ) i
400 500 . . ............. ' -
300 | f : :
200 0 | i | |
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# nodes (66 cores/node) # nodes (66 cores/node)
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Determining the Fundamental Constants
of Cosmology

Science challenge
Comparison of simulation results

with observations to correct for
observational systematics

Analysis Results

« DB-Scan: applied to 1T HACC
simulation dataset; clustering l
computed in 20 minutes on 100K (R I A R BT
Edison cores. g |

Galactos: O(N?), 3-pt correlation
code processed 2B Outer Rim
galaxies in 15 minutes on 650,000 bS]
Cori cores. 9.8PF performance. s b ‘Hm ]
(SC’17) B °

log(k/h Mpe-t)

1 Plk) My )

U.S. DEPARTMENT OF Office of Y i . . i
e ENERGY Sei Contributors: Debbie Bard, Brian Friesen, Mostofa Patwary, Nadathur Satish,
cience
Pradeep Dubey
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* Regress cosmological constants directly from simulation data

o
=1

Fully connected
1024 I
©

Fully coiected
Fully connected

256
5 -
o

* Reasonable accuracy for 2 constants; currently extending framework to run on Cori

U.S. DEPARTMENT OF

ENERGY Biiisn Contributors: Simak Ravanbaksh, Junier Oliva, Sebastian Froenteau, Layne Price,
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Generative Adversarial Networks

generated distribution

true data distribution

1 = 3300 1 = 23300 1 = 43300
[P (b) -4~ Validation
unit gaussian Prodet data + Gan A
: R v
generative g ; ! 1}
O model i . £ :
21| (neural net) v [l0e8] +° =
€ 0
3 } !
image space image space ; l
»
blog.openai.com/generative-models ! u.'.m 300t 5008 2e04 1203 208 ATy 604 1008 2008 1004
I +1)P/2x W+ 1)F 2= I+ 1)R/2r
G A A

103

-

100+ 1)P/2r

Power spectrum:
fourier modes

— Validation
GAN

0%

1 [

GANSs generated maps exhibit the same gaussian and
non-gaussian structures as full simulations.

us oemarmuentor | Office of  CONtributors: Mustafa Mustafa, Debbie Bard, Wahid Bhimji, Rami Al-Rfou, Zarija [
eENERGY Science Lukic

i tile
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Celeste: A Generative Model of
Astronomical Images

Astronomy challenge

» Inferring stars and galaxies from all
available telescope data

Analysis Results

« Developed Graphical Model and
variational inference techniques

celestial ] = X7
Demonstrated on 8B parameters, 188M stars Te h:,,Q‘* =
and galaxies vor xS *5 pronie
. . [ N
* Processed all SDSS data in 15 minutes o b
0@ @9 |
« First Julia application to exceed 1PF S 4
performance | P
1.3 M threads on 650,000 KNL cores o | _
pixel /" point spread
.f' | / function
® 0.
."_,r # T ® L,
®
; B
i N
U.S. DEPARTMENT OF Office of . ceerer M
eENERGY Science Contributors: Jon McAuliffe, Ryan Adams, Jeff Regier, Andy Miller, Keno Fischer, m;gﬂ
Kiran Pamnany, Rollin Thomas —
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Celeste Galaxy Model

An irregular galaxy.

NGC 4753, an elliptical  NGC 60, a spiral galaxy
galaxy with interesting with unusually distorted
dust filaments. arms.

JRR 33 -useARTeRNT OF | Offico of Contributors: Jeff Regier, Jon McAuliffe

& ENERGY science
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Variational Auto-Encoder

g . f

1
\ B / \
8 dense
dense linear
linear

69 x 69

KL(z || N(O. 1))

E_qllogp(x|2) ]

loss

U.S. DEPARTMENT OF Office of : :,:'} v
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Celeste Galaxy Model Results

* The Celeste galaxy model outperformed
bivariate Gaussian densities for 99.3% of
galaxy images.

* Qualitative results from t-SNE indicate
that the neural network learns a
compact representation of galaxy shapes
and orientation.

g, U.5. DEPARTMENT OF Oﬁ'lce Of

r" PFENERGY science
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Decoding Speech

a) b) /ba/ /dal Igal .
Dorsal C)

Anterior Posterior : ' | 2=
| | I
Ventral E [— | —— [
Central Sulcus p— j—— —

. S50 _0 -
Sylvian Fissure Time (ms) -380 Time (ms) 80 -0 ﬂn{-]e(rrs)

U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science Contributors: Jesse Livezey, Kris Bouchard, E. Chang

DERKELEY LAD
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DNNs achieve best decoding performance
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+ Classify spoken syllable from
spatiotemporal patterns of
human neural recordings

+ Fully Connected, Feed-
forward Network

+ All hyper-parameters
optimized with Spearmint

* L, regularization and dropout

U.S. DEPARTMENT OF Offlce Of

ENERGY Science

about:blank

60

Accuracy/chance

Chance |-
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Syllable Classification
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Deep )
Network
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Accuracy increase per
training sample

Subject 3
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Linear Deep
Network  Network
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DNNSs recover meaningful latent structure
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a)

1r Labial I Dorsal Tongue Coronal Tongue

Bilabial Labio-dental Sibilant

Target Syllable
w0
o

# clusters
10 30 S0

ST 98P0 258 9FF PR a0
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Office of
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[p] [b] [m] [t] [d] [n] (k] [g]
[ ibis |  coonat |  Domat |

I Front I Central I
VOWELS

Back

Hierarchical clustering of confusion
matrix reveals organization of
speech control signals.

B
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FC Layer FC Layer FC Layer FC Layer ¢ = Memory Cell
L7 v v Allows pausing and resuming

Start + K-mer] [Start + K—mer] [Start + K-mer

Start + K-mer
Probabilities Probabilities Probabilities Probabilities
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LHC Experiment

* Colliding protons with high
energy

* Particles produced in collision
(“event”) hit detector

* Physicist need to decide which
events are interesting and which
can be described by physics we
know

* Large amount of data recorded
— 1PB/s reduced to 100GB/s
— 10PB of raw data/year

Eﬁ"“E’*TﬁE{{ Office of Contributors: Wahid Bhimii, Thorsten Kurth, Steve Farrell, Evan Racah
Science
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LHC Classification Approach
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Bin energy from sub-detector (‘calorimeter’)
and unroll cylinder to form 64x64 or 224x224
image

Train CNN on labelled data from full detector
simulations to directly classify signal
(‘Supersymmetry’) from background

* Benchmark from existing analysis on high-level
physics variables
* Increased signal efficiency at same background
rejection without using high-level physics
variables
Y . °=
! o r& £
s F
Wy =
oranais B ATBEE s e T
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LHC Particle Tracking
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* Reconstruct thousands of particle tracks from
tens of thousands of spacepoint “hits”
e Traditional algorithms have limitations
— Hand-engineered, quadratic (or worse)

. - . i o .
scaling, linear dynamics kS S P ba
e HEP.TrkX project is exploring ML solutions L Ael I el fo
- - - AL vt “eie Ry rsa
* Using recurrent architectures for track dynamics o s e,
—Kalman-filter-like state estimation ST T [
—Smarter combinatorial tree-search Ot Pt
. . . e « A »
e Using CNNs to classify hits Yia, SCEERS .Y
- - - t!‘r:g,ra LI TP
e Using CNN + LSTM to “caption” a detector image Al I
Input track image Stub features Segment features Higher level
features

Stub filters

E E ﬁ Convolutions and pooling —

EMEDRAY Oficeol  contributors: Caltech, FNAL, LBL collaborators. ASCR/HEP Pilot project.
ENERGY Science
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CaloGAN
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Real / Fake

=HET - BAERI=
EHIHEI-HH‘

SIS -
Jlkl'l‘ﬂ.ﬁ

« Ad-hoc design to fit Physics data: ‘lll

— inspired by that of the

« Goal: accelerating particle physics simulation

« Fast & accurate generation of energy
deposits in a calorimeter detector

= ATLAS experiment at
.I - the LHC

« sparsity AL
« high dynamic range """'3 9——‘6
« highly location-dependent X
features ¢
45
U.5. DEPARTMENT OF Oﬁ'ce Uf ; , 2 g ’ . : =
eENERGY e Contributors: Michela Paganini, Luke de Oliveira, Benjamin Nachman —
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CaloGAN

; « Conditional generation based on physical
attributes

~« Parameter interpolation and extrapolation

SN K T
GIAN AR o g ok o oy

-  yol o - - -
Average energy deposition per calorimeter layer in the GEANT4 * E 'H' ‘H el AWl oy N

training dataset (top) and in the GAN generated dataset (bottom)

Emargy (Mev)

Energy (MeV)

ACenD

40
el B nCel @

Requested (GeV) 1.0 23.1 452 673 89.4 1116 1337 1558 1779 200.0
Generated (GeV) 14 231 468 693 916 1136 1352 1593 1844 2112

» Realistic average and individual

Ten positron showers generated by varying shower energy in equal intervals

Images while holding all other latent codes fixed. The three rows are the shower
representations in the three calorimeter layers. The energies of showers in the
. D|Verse sam pl es green box were within the range of the training dataset, while the ones in the red

box are in the extrapolation regime.

OEﬁHEmREEFY gﬁjce of Contributors: Michela Paganini, Luke de Oliveira, Benjamin Nachman coren)
cience

RERIELEYLAS
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HEP BER BES NP FES
Astronomy | Cosmology | Particle Climate Genomics | Light Materials Particle Plasma
Physics Sources Colliders | Physics

Classification

Regression

Clustering

Reduction

Dimensionality

Surrogate
Models

X X X X X

Design of
Experiments

Feature
Learning

Anomaly
Detection
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HEP BER BES NP FES
Astronomy | Cosmology | Particle | Climate | Genomics | Light Materials Particle Plasma
Physics Sources Colliders | Physics

Dimensionality
Reduction
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Short-Term Challenges NERSC

 Complex Data
— 2D/3D/4D, #channels, dense/sparse, graph structure

* Hyper-Parameter Optimization
— Tuning #layers, #filters, learning rates, schedule is a black art

* Performance and Scaling

— Current networks take days to train on O(10) GB datasets, we
have O(100) TB datasets on hand

* Scarcity of Labeled Data
— Communities need to self-organize and run labeling campaigns

Office of

R, U.S. DEPARTMENT OF
& ENERGY science i
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Long-Term Challenges m

* Lack of Theory

— Limits of supervised, unsupervised, semi-supervised learning

* Formal protocol for applying Deep Learning

— Applied Math has developed methodology over 30 years, no
analog in DL

* Interpretability: ‘Introspect It’ vs. ‘Build It’
— Black Box classifier; need to visualize representations
— Incorporate domain science principles (physical consistency, etc)

* Uncertainty Quantification

Office of

U.S. DEPARTMENT OF
@ EN ERGY Science -50-
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2018-2020

* Broad deployment of tools at HPC centers and Cloud

* Domain science communities will start self-organizing
and conducting labeling campaigns

* Researchers will exploit low-hanging fruit

— Classification, Regression, Clustering problems will be (nearly)
completely solved

LAldy Office of

U.S. DEPARTMENT
@ ENERGY oo
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2020+

 Entire data archives are segmented and classified
— Anomaly detection; Correlation; Causal Analysis

* Long-term challenges are formulated and addressed
— Generalization limits, UQ
— Interpretability, incorporating domain science principles

* What is the ‘value add’ of the scientist?

Al Office of

? U.S. DEPARTMENT
& ENERGY science

about:blank 9/28/2017



Page 54 of 56

2020+ Workflow

+ Interactive Exploration
« Semantic Labels

« Mechanisms
+ Hypothesis

« Patterns
* Clusters
« Anomalies

U.S. DEPARTMENT OF Ofﬁce Df =
e ENERGY Science = MDEH:J‘
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Conclusions

* Machine Learning is an emerging requirement in the
DOE community

— NERSC has invested in staff, hardware and software

— Big Data Center is enabling capability applications
* Deep Learning has enabled breakthroughs in industry;
direct analogs in DOE applications

— Current success stories from BER, HEP, NP; broader class of
applications poised to benefit

* Low-hanging fruit can be exploited in the next 2-3 years,
but long-term challenges exist

* Exciting times!

Office of

U.S. DEPARTMENT OF
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Questions?
prabhat@Ibl.gov
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