FastBit: an indexing technology for data-intensive science

John Wu

Lawrence Berkeley National Laboratory

FastBit: an efficient indexing technology for accelerating dataintensive science

DOI: 10.1088/1742-6596/16/1/077

- Compressed bitmap index: Ekow
 Otoo and Arie Shoshani
- Grid Collector: Jerome Lauret, Wei-Ming Zhang, Alexander Sim, Junmin Gu, Arie Shoshani, Arthur Poskanzer, and Victor Perevoztchikov
- DEX: Kurt Stockinger, John Shalf, Wes Bethel, Wendy Koegler, Jacqueline Chen and Arie Shoshani

Big Science Data Example: Around 2000

Collaboration	# members /institutions	Date of first data	# events/year	total data volume/year- TB
STAR	350/35	2000	10^{7} -10 ⁸	300
PHENIX	350/35	2000	10^{9}	600
BABAR	300/30	1999	10 ⁹	80
CLAS	200/40	1997	10 ¹⁰	300
ATLAS	1200/140	2004	10 ⁹	2000

STAR: Solenoidal Tracker At RHIC RHIC: Relativistic Heavy Ion Collider

Key science goal: find evidence of quarkgluon plasma

- Observation: the evidence might be in a few thousand collision events
- Needle in the haystack type of problem

ASCAC 2017 FastBit

WAH Compressed Index Is Optimal

- In the worst case, query response time is a linear function of the number of hits, H
- WAH Compressed indexes are optimal for onedimensional range queries, search time O(H)

Multi-Dimensional Query Performance

- Queries 5 out of 12 most popular variables from STAR (2.2 million records)
- Average attribute cardinality (distinct values): 222,000
- FastBit uses WAH compression
- DBMS uses BBC compression
- FastBit >10X faster than DBMS
- FastBit indexes are
 30% of raw data sizes

[Wu, Otoo and Shoshani 2002]

FastBit in STAR

- □ Searching for anti-³He
- Lee Barnby, Birmingham, UK
- Previous studies identified collision events that possibly contain anti-³He, need further analysis
- Searching for strangelet
- □ Aihong Tang, BNL
- Previous studies identified events that behave close to strangelets, need further
- Without Grid Collector, one has to Yet level many files from mass storage systems and scan them for the wanted events – may take weeks or months, no one wants to actually do it

Analysis Framework

Grid Collector Servers

Remote Storage Systems

FastBit in Combustion

Searching for a more fuel efficient combustion engine (Homogeneous-Charge Compression Ignition engine)

- ♦Simulation mesh: 1000 x 1000 x 1000
- Challenge: finding and tracking ignition kernels

Use of FastBit for Molecular Docking

Method

Specification of the descriptor as triangle geometry

- ♦ Types of interaction centers
- \diamond Triangle side lengths
- ♦ Interaction directions
- \diamond 80 bulk dimensions

Receptors

- Receptor descriptors are generated similarly
- Using complementary information where necessary
- Use of pharmacophore constraints on receptor triangles
 - \diamond Reduces number of queries
 - Improved query selectivity because the pharmacophore tends to be inside the protein cavity

Use of FastBit for Molecular Docking

Method

- □ Indexing system
 - \diamond Properties of the problem:
 - Billions of descriptors (~ 1,000 for each ligand)
 - ♦ High dimensional query
- Properties of bitmap indexes
 - \diamond Well suited for those kind of queries
 - \diamond Can be run stand alone
 - ♦ Further compression possible
 - ♦ FastBit uses compression

Results

- TrixX-BMI is an efficient tool for virtual screening with average runtime in sub-second range
- screen libraries of ligands <u>12 times faster</u> than FlexX without pharmacophore constraints
- With pharmacophore constraints, speedup 140 250

attribute(i)

[0] [n]									
desc1 desc2 desc3 desc4 desc5	0 0 0 0 1	1 0 1 0	0 0 0 0	0 1 0 0	0 0 0 1 0				

Bitmap index

Long History of DOE Support

- Problem: given a large data collection, quickly find records satisfying user-specified conditions
 - Example: in billions of high-energy collision events, find a few thousand based on energy level, number of particles and so on
- Solutions

.....

- Algorithmic research: developed new indexing techniques, achieved 10-100 fold speedup compared with existing methods
- Efficient software: available open source, received a R&D 100 Award

Enabled science

- Laser Wakefield Particle Accelerator: FastBit acts as an efficient back-end for identifying and tracking particles (lower left figure)
- Combustion: FastBit identifies ignition kernels based on user specified conditions and tracks evolution of the regions
- Testimonial "FastBit is at least 10x, in many situations 100x, faster than current commercial database technologies" – Senior Software Engineer, Yahoo!

THANKS!

Program managers who have funded LBNL Scientific Data Management group:

Jim Pool, Dan Hitchcock, Fred Johnson, Lucy Nowell, Lali Chatterjee, Yukiko Sekine, Walt Polanski, Ceren Susut-Bennett, Steven Lee, Laura Biven

John's email <u>John.Wu@NERSC.gov</u> FastBit software <u>http://sdm.lbl.gov/fastbit/</u> Scientific Data Management group <u>http://sdm.lbl.gov/</u>

