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Nuclear Waste

Two general forms of nuclear waste in the US:

• Spent Nuclear Fuel (SNF) from commercial power plants

• Responsibility of DOE Office of Nuclear Energy (NE)

• Legacy waste from fabrication of nuclear weapons

• Responsibility of DOE Office of Environmental Management (EM)

Current US law:

All nuclear waste will be disposed of in Yucca Mountain, NV.

Current US situation:

YM defunded, everything is in limbo.
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• Most exists in underground tanks in Hanford, WA and Savannah River, SC.

• Current form is liquid, sludge, and precipitated solids.

• Most will be mixed with borosilicate glass and cast into SS containers:

• has been ongoing at SR for 20 y

• has not started at Hanford because of design issues with vit plant

• Some radionuclides cannot be processed through glass melter and must be 

stabilized in ceramic or metal hosts.

• Final waste forms should be stable for very long periods of time, >105 y.

• Containers are metallic: steel underground tanks, SS dry storage casks, CRA 

canisters for final disposal. 

Defense Waste (EM)
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WastePD
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Center for Performance and Design of Nuclear Waste Forms and Containers

Goals:

• Develop fundamental understanding of degradation mechanisms 
of waste forms and containers 

• Develop new materials with improved properties 



Common Method: Atomic-Scale Modeling

Tasks:

• Structural stability and energetics

• Surface processes (e.g. oxidation, desorption)

• Kinetic processes (e.g. deformation, diffusion)

“Alloy”: Random 
mixture of different 

atom types

“Phase separation”: 
Energy is lower when 

atoms separate

Alloy is stable if its energy is lower than the sum of the 
energies of the separated phases
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Common Method: Atomic-Scale Modeling

Tasks:

• Structural stability and energetics

• Surface processes (e.g. oxidation, desorption)

• Kinetic processes (e.g. deformation, diffusion)



7

Common Method: Atomic-Scale Modeling

Tasks:

• Structural stability and energetics

• Surface processes (e.g. oxidation, desorption)

• Externally-controlled processes (deformation, field evaporation)
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Molecular Dynamics

• One way to simulate that: “Molecular Dynamics” 

• “Potential”: Come up with a function (or method) that describes 
energy of system as function of atomic positions

• Simulation: Evolve position of atoms (e.g. Newton’s law)

• Analysis: Visualize / evaluate what happened
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Our Wish List to SciDAC (8/22/16)

• High computational demands in many calculations
• Efficient compilation and use of DFT and MD codes
• GPU support for VASP, LAMMPS (running at OSC, speedup 4-5 times) and other codes? E.g., VASP 

website has list of tasks that are not yet parallelized for efficient GPU execution.
• Other architectures, or alternative execution/platform 

(e.g. KOKKOS, CUDA)?

• Empirical potential fitting 
• RAMPAGE package (atomistics.osu.edu)
• Improve fitting reliability and speed, assess quality

• Visualization and analysis of complex atomistic simulation results
• Amorphous and complex systems
• Dynamic processes (infrequent events)
• Data analysis – find specific atomic arrangements or infrequent events

• Uncertainty quantification
• Reproducibility of results 

• E.g. between DFT codes, different levels of atomistic simulations
• Empirical potential development
• Fast, efficient and reliable MC (e.g. simulated annealing) and KMC
• Error propagation in multiscale modeling

• E.g. DFT numbers as parameters in rate-theory modeling or KMC
• Reduced-model generation

• Which reactions really need to be included in a rate model to solve a given problem?
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• WastePD was interested in 

expanding Molecular Dynamics (MD) 

capabilities

1. Lack of usable multi-

component potentials

2. Analysis of huge data sets 

where only a small subset of 

the data is relevant

SciDAC Collaborations

SDAV: Indexing and 
Visualization of data using 
FastBit and VisIt

QUEST: Uncertainty 
quantification of EAM 
potentials generated with 
RAMPAGE

SUPER: Parallelization and 
performance enhancement 
of RAMPAGE

SDAV: Real-time analysis of 
metallic glass structures 
using ADIOS integration

Efficient analysis and 
visualization of multi-
component MD data

Generation of new 
empirical potentials to 
expand MD capabilities

• SciDAC pilot projects directly address these issues

• QUEST and SUPER focused on generation and evaluation of new potentials

• SDAV focused on acquisition and analysis of relevant data from large 

systems

• SciDAC had the capabilities to directly enhance WastePD’s ability to simulate and 
analyze data for multi-component alloys
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SciDAC Collaborations – The Experience

• Fantastic opportunity – we have significantly improved tools and 

exciting new capabilities; would do it again! 

• Three postdocs know their way around basic MPI now

• Understand first basics of improving code efficiency (execution and 

memory use)

• Basic understanding of computational UQ

• New visualization and analysis capabilities

• Due to short duration, focused on “low-hanging fruit”, which should be 

a valuable initial approach for majority of materials modeling groups

• Appreciate dedication, patience, “customer-focus”, responsiveness, 

and collaborative spirit of SciDAC researchers

• Without dedicated man power on our end, the experience was 

exhausting

• Multiple weekly videoconferences and continuous e-mail discussions, 

joint coding and data generation work

• Was a good idea to work with several SciDACs on one topic (potentials)

• 3 postdocs involved on WastePD end, one taking ~70% of effort
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• Mixing different metals together (“alloying”) makes stronger, more corrosion 
resistant materials

• Hot candidate for corrosion resistant: “High-entropy alloys” (~5 different elements)
• To model them, we need interaction potential functions between all species
• Many researchers spend lots of time to get potentials for one element right, but 

very few inter-species potentials
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Example Collaboration Topic: 
Multi-Component Potentials

r (Å)

VAA (eV)

r (Å)

VBB (eV)

A-A interaction
B-B interaction

Our approach: Reuse A-A and B-B interactions from literature, fit A-B interactions

?
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Multi-Component Potentials

• Binary EAM potential requires 9 total functions (right)

• Six are “known” from the elemental potentials

• The remaining 3 functions (ΦAB, ρAB, ρBA) must be  fit

• Differing methods of fitting trade expense for accuracy

Johnson Alloy Model: 
Weighted average of elemental 
pair terms by their electron 
densities

“Holistic” Fitting: Consider many 
compounds and fit to as many as 
possible (includes elements)

Decreasing Computation

Increasing Accuracy

Term Source

FA Pure A Potential

FB Pure B Potential

ρAA
Pure A Potential

ρAB
Fitting

ρBB
Pure B Potential

ρBA
Fitting

ΦAA Pure A Potential

ΦAB Fitting

ΦBB Pure B Potential
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Potential Development with RAMPAGE

RAMPAGE: Rapid Alloy Method for the Production of Accurate, General EAM Potentials

1. Utilize available elemental potentials from 
literature

• Avoid re-fitting from scratch

2. Calculate strategic “high-value” structures 
and compounds with DFT using VASP

3. Generate compatible binary potentials
4. Assemble binaries into higher-order multi-

component potentials. No additional 
computation

→Faster than holistic, no phase data required
→More accurate and adaptable than JAM

RAMPAG

EGoals:

Existence (or creation) of suitable multi-component potentials is the largest barrier to 
widespread deployment of MD simulations for multi-component problems

Overview:

Use LAMMPS as a calculator to optimize new potentials with specific target data. 
Thus, any property accessible to MD becomes a possible parameter for new multi-

component potential optimization.
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• Topic areas: 
– forward uncertainty propagation
– reduced stochastic representations
– inverse problems
– experimental design & model validation
– fault tolerance

• Application:
– Evaluation of specific fitting parameters on simulated properties

• Institute Director: Habib N. Najm (hnnajm@sandia.gov; SNL) 

QUEST: Quantification of Uncertainty in Extreme Scale Computations 
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QUEST Collaboration: Evaluation of Empirical Potential Parameters and Properties 

H. Najm, C. Safta, M. Eldred, G. Geraci, SNL 

Impact Objectives 

 Coupled Dakota, UQTk, and LAMMPS, with Cu-Ni 
and Cu-Zr material models from WastePD

 Identified specific parametric correlations not 
previously explored

 Identified new dependences between parameters 
and simulated properties

 Parallel Transitional MCMC employed for speed and 
robust inference

 Inferred uncertain parameters; Bayesian setting

Accomplishments

• Facilitates new best-practices for 
potential development

• Identifies optimal potentials and 
important parameters

• Enables design of multicomponent alloys
• Leap towards multi-component 

alloy design with more parameters 

1.) Select Elements
2.) Optimize Potentials
3.) Create Models
4.) Characterize Results
5.) Refine Selections

• Estimate uncertain parameters in 
empirical potential fitting

• Identify errors relative to DFT fitting data
• Compare and select among potentials
• Explore potential frameworks for 

multilevel multifidelity UQ in Kinetic 
Monte Carlo



More detail on Accomplishments

• Constructed framework for direct parameter control
• Two systems: Cu-Ni and Cu-Zr

• Parameter control illuminates model construction 
failures, refines optimization techniques

• Key parameters: (r, D, α) each have physical meaning 
and controls a particular property

• r, bond length – lattice parameter
• D, bond energy – mixing enthalpy
• α, curvature of energy well – bulk modulus

• QUEST determined that D is a primary controller of 
Cu-Ni bulk modulus, α is actually secondary!

• Identified model instabilities: quantifies bounding range 
for automation of parameter selection



More detail on Accomplishments

• In addition to key parameters: (r, D, α), tuning parameters 
(Sa, Sb) are used for flexibility

• Numerical effect of Sa, Sb not previously characterized
• WastePD had questioned the possibility of Sa and Sb

introducing multiple viable solutions/minima
• QUEST identified bi-modal behavior in Sa and Sb

• Illustrates complications in multi-parameter setups
• Understanding and characterizing non-physical 

tuning parameters is paramount to long-term 
potential development goals

• Multi-component alloys have Si parameter 
for each element!

• Initial results (prev. slide) indicate Sa, Sb

only minimally impact properties in 
Cu-Ni, is this true in other systems?



• Topic areas: 

– Performance engineering including modeling and auto-tuning

– Code resilience

– Parallelization and optimization

– Energy efficiency (scalability)

• Application:
– Streamline, parallelize, optimize and scale RAMPAGE code

• Institute Director: Lenny Oliker (loliker@lbl.gov; LBNL) 

SUPER: Institute for Sustained Performance, Energy and Resilience
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“Performance Analysis and Optimization of the RAMPAGE Alloy Potential Generation Software” 
SUPER: Hongzhang Shan, Leonid Oliker, Sam Williams (LBNL); Philip C. Roth, Sarat Sreepathi, Shirley Moore (ORNL)

WastePD: Wolfgang Windl, David Riegner, Nikolas Antolin (OSU)

Impact Objectives 

 Improved RAMPAGE performance and scalability

 Collected baseline performance results for Cu-Ni test 
problem on OLCF Eos system

 Modified RAMPAGE’s parallelism approach to support 
simultaneously running on more hardware

 Demonstrated reduction in Cu-Ni run time from 1hr 
47min to ~15min on 8 nodes of OLCF Eos

 Discovered performance trade-off for CG minimization 
parameters between LAMMPS versions.

 Motivates ongoing work with multiple processes 
for each LAMMPS run

 Introduced use of source code repository

 Reduced number/complexity of required code packages

Accomplishments

 Improve performance, scalability and flexibility of 
RAMPAGE, automated EAM potential generator 

 Improve portability and target DOE computing 
center platforms

 Improve RAMPAGE software engineering

 Implement both portability and distribution

 Enhance quality of the resulting potentials

 Increased complexity and/or number of 
trials

 Decreased software maintenance and 
development effort; improved reproducibility

Elapsed time for 
evaluating 4000 trials



• Topic areas: 
– Data Management: capture data used in science codes. Efficiently move, index, 

and compresses data, enable query of scientific datasets

– Data Analysis – application-driven techniques for performing in situ data 
analysis, filtering, and reduction to optimize I/O and prepare post-processing

– Data Visualization –visualization techniques that support identifying and 
understanding features in multi-scale datasets

• Application:
– Streamline workflow for complicated multi-component data sets. This requires 

improvements in (i) data generation and (ii) data analysis

• Institute Director: ??

SDAV: Scalable Data Management, Analysis and Visualization 
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• SDAV Project I: 

– On-the-fly data analysis

– (ADIOS,  www.olcf.ornl.gov/center-projects/adios/)
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MD code
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Enabling analysis and validation using an in situ processing framework for the Center for Performance 

and Design of WastePD

PIs: Scott Klasky, Wolfgang Windl

Impact Objectives 

 Integration of ADIOS with the LAMMPS framework. 

 Ability to save tens of thousands of time steps from 
LAMMPS runs. Significant speed-up compared with 
previous implementation that saved only tens of time 
steps in the original setup.

 Integration of ADIOS with Voro++ via LAMMPS

 Ability to compute Voronoi volumes on tens of 
thousands of time steps. Major speed up compared 
with tens or hundreds of time steps in the original 
setup. 

Accomplishments

• Reduced I/O costs, allowing higher 
structural and time resolution to be 
achieved in simulation data outputs

• Better Voro++ integration in LAMMPS 
facilitated the creation of new data types 
via a custom output type that did not 
previously exist

• Integrate ADIOS with LAMMPS simulation 
code and Voro++

• Minimizes I/O overheads and facilitate 
on-the-fly data in simulations of multi-
component metallic glass structures

• Implemented ADIOS features as custom code 
inside LAMMPS framework

Neighbor data for a metallic glass analyzed using 
ADIOS integrated Voro++. Local neighbor 

environments in metallic glasses vary wildly.

Crystalline Alloy

Metallic Glass



Detecting Locally Correlated Events in Metallic Glass Simulation

SciDAC Institute-WastePD EFRC 

John Wu (LBNL) and Wolfgang Windl (OSU)

Impact Objectives 

 Connected the simulation code and analysis 
code with ADIOS, to provide in situ data 
collection and facilitate efficient analysis of 
large systems over long simulation times

 The figure shows the number of atoms with 
the same neighbors evolving as a function of 
simulation time. Such analysis was not 
previously feasible.

 As time progress (from front to back), the 
system transitions from liquid to glass. Liquid 
atoms retain fewer neighbors, and the system 
shows a notable shift toward neighbor 
stability. Further analysis of neighbor 
environments may enable deliberate glass 
design.

Accomplishments

Successfully detected and visualized locally 
correlated events in the evolution of metallic 
glass structures, crucial to the understanding 
of metallic glass synthesis and design

Develop and deploy algorithms for detecting 
changes to the local atomic environment in 
multi-component metallic glass materials



• Simulations of characterization techniques are currently in 
development that could benefit greatly from real-time analysis
– APT simulations involve large systems and time-evolving structures.
– System studied in the pilot project was simplified  than WastePD’s long-

term goals

• Major challenges in computational alloy design are time- and length-
scales which drive up space requirements
– Modern modeling techniques demand coupling of multiple codes, but 

for large data sets I/O makes coupling very (often prohibitively) slow
– I/O cost scales with problem size and larger problems are more 

scientifically relevant
– Ability to analyze simulation data near real-time without having to 

wait until full simulation is done allows the potential to observe 
patterns as they evolve and reduce data storage requirements

• WastePD is currently developing new modeling methods and 
addressing I/O requirements and bottlenecks would benefit 
tremendously from continued collaborative support

WastePD-ADIOS Integration
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• SDAV Project II: 

– Data visualization & analysis (VisIt,  visit.llnl.gov)
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Detecting and Understanding Hopping Atoms in Metallic Glass Simulations 

SciDAC SDAV Institute-Waste PD EFRC 

Allen Sanderson Univ. of Utah

Impact Objective 

 Deployed an interface that allows WastePD data to 
utilize accelerated bitmap indexing (FastBit) with the 
VisIt toolkit.

 Deployed tools to analyze atom neighborhood data.

Accomplishments

One of the challenges being undertaken 
by the WastePD team is the accurate 
predictive design of metallic glass 
performance over time, requiring 
understanding of metallic glass structure 
and stability over long timescales

Far Left – image from VisIt’s Cumulative Query tool showing 
histograms of atom neighborhoods and differences that is 
used for a range based queries (find all atoms who’s 
neighborhood size did not change).

Near Left – Results of the query showing the number of atoms 
that remained in the neighborhood (the neighborhood size 
may remain the same but be composed of different atoms).

Deploy interactive query-based techniques 
that incorporate accelerated bitmap 
indexing to allow WastePD scientists to 
explore and understand infrequent events
such as clustering or migration in large 
metallic glass simulation cells



“Detecting and Understanding Hopping Atoms in Metallic Glass Simulations ” 

SciDAC SDAV Institute-Waste PD EFRC 

Allen Sanderson Univ. of Utah

 Deployed new parallelized algorithms in VisIt for 

 handling large-scale indexed data.

 performing range based queries.

 constructing particle paths. 

Accomplishments

Far Left – A sub-selection selecting atoms who’s 
neighborhood size remained the same but all of the 
neighboring atoms changed between time steps.

Near Left – the paths of four atom selected above (the 
large jumps are due to periodic boundaries).

First time step of a metallic glass simulation w/16K atoms 

Objective 

Deploy interactive query-based techniques 
that incorporate accelerated bitmap 
indexing to allow WastePD scientists to 
explore and underdand infrequent events
such as clustering or migration in large 
computational cells in metallic glass 
simulations.
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