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Why Is Machine Learning important?
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ML Application to Physics

Fast and Accurate Modeling of Molecular Atomization Energies with Machine

Learning

Matthias Rupp,’*? Alexandre Tkatchenko,? ? Klaus-Robert Miiller,! 2

and O. Anatole von Lilienfeld?® 2: *

! Machine Learning Group, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Germany
?Institute of Pure and Applied Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
3 Fritz-Haber-Institut der Maz-Planck-Gesellschaft, 14195 Berlin, Germany
4 Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
(Dated: September 14, 2011)

We introduce a machine learning model to predict atomization energies of a diverse set of organic
molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular

molecular atomization potential energy curves.

Solving the Schrédinger equation (SE), HV = EV, for
assemblies of atoms is a fundamental problem in quantum
mechanics. Alas, solutions that are exact up to numerical
precision are intractable for all but the smallest systems
with very few atoms. Hlerarchles of approx1mat10ns have
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Schrédinger equation is mapped onto a non-linear statistical regression problem of reduced complex-
ity. Regression models are trained on and compared to atomization energies computed with hybrid
density-functional theory. Cross-validation over more than seven thousand small organic molecules

yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of
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ML Application to Biology

commentary

An active role for machine

learning in drt

Robert F Murphy

Because of the complexity of biological systen
for future drug development. In particular, mai
imaging assays and active-learning methods t
dimensionality problem in drug development.

igh-throughput and high-content models, is w
I—l screening have been widely adopted machine lea

by pharmaceutical and biotechnology ~ important rc
companies as well as by many academic and develop!
labs over the past 20 years, with the goal Here I focus
of rapidly identifying potential drugs that learning can
affect specific molecular targets'=. These use of machi
technologies dramatically enhance the information
rate and amount of information that can assays and
be collected about the effects of chemical learning to ¢
compounds, and publicly funded efforts
such as the Molecular Libraries Screening Seeing mol
Centers of the US National Institutes of High-throug
Health have permitted the creation of content scre
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Machine learning applications in
genetics and genomics

Maxwell W. Libbrecht' and William Stafford Noble'2

Abstract | The field of machine learning, which aims to develop computer algorithms
that improve with experience, holds promise to enable computers to assist humansin
the analysis of large, complex data sets. Here, we provide an overview of machine
learning applications for the analysis of genome sequencing data sets, including the
annotation of sequence elements and epigenetic, proteomic or metabolomic data. We
present considerations and recurrent challenges in the application of supervised,
semi-supervised and unsupervised machine learning methods, as well as of generative
and discriminative modelling approaches. We provide general guidelines to assist in
the selection of these machine learning methods and their practical application for the
analysis of genetic and genomic data sets.

The fielgéf machine learning is concerned with the regulatory elements followed by sequencing (FAIRE-
4 1o H

B L D P T B S T A T L ol X | PRty |y i



Machine Learning Concepts
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What is Machine Learning (ML)

* One of Machine Learning definitions

* “How can we build computer systems that
automatically improve with experience, and what are
the fundamental laws that govern all learning
processes?” Tom Mitchell, 2006

o Statistics: What conclusions can be inferred from data

* ML incorporates additionally

« What architectures and algorithms can be used to effectively
handle data

« How multiple learning subtasks can be orchestrated in a
larger system, and questions of computational tractability
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Machine Learning Components

Machine
Learning
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Brief History of Machine Learning

Recognition Browser Chess based MT 0.1.0

1960 1970 1980 1990 2000 2010
15T Chess WWWwW Softmargin Image
Learning Prog. invented ML SVM

2014 2015 2016

2010 2011 2012 2013

NN outperform
human on ImageNet

NN won ImageNet

IBM Watson

with large margin AlphaGo
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Supervised Learning Pipeline
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Unsupervised Learning Pipeline
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Types of Learning
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Types of Learning

 Generative Learning
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Types of Learning

 Discriminative Learning
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Types of Learning

« Active Learning

o « How to select training data?
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Types of Learning

* Multi-task Learning

o
o
o ©
o © o O
o 0 o
o) o 0 o]
o) Q o
o) o o
o %o © o oo
o o %o
o om o
o o o
a o
A A i}
ad A
A A A
7 YEARS OF
$*7%% U.S. DEPARTMENT OF DISCOVERY
{3) ENERGY BROOKHFVEN
NATIONAL LABORATORY 16 A CENTURY OF SERVICE




Types of Learning

 Transfer Learning
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Types of Learning

 Kernel Learning
. ° e« Metric Learning
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Types of Learning

 Kernel Learning
. ° e« Metric Learning
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Types of Learning

 Kernel Learning

>+ Metric Learning
« Dimensionality Reduction
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Types of Learning

* Feature Learning
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* Lee, et al. “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations”, ICML ‘09
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Machine Learning Algorithms

» Bayesian Algorithms

* Instance-based Algorithms
* Reqgularization Algorithms
* Decision Trees

» Association Rule Mining

* Ensemble Learning
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Machine Learning with
Big Scientific Data
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Machine Learning Components

Machine
Learning
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Big Data

Veracity
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Machine Learning Components

Machine
Learning
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MapReduce: Not Complete Solution in 2010

Task: Find cluster patterns in Doppler Radar Spectra

Data: 1hr=130MB, 1yr =1TB, 2004~2008 = 5TB

MapReduce (K-Means)
« Map: Find closest centroids
» Reduce: Update centroids

MapReduce (Spectral Clustering)
* Distributed Affinity Matrix Computation : O(n?)
 Distributed Lanczos Methods to compute EVD

Scalability Analysis
« 12 cores (1 node) Spectral clustering took 1 week for one month data

* 616 cores (77 nodes) Spectral Clustering took less than 2 hours for three
months ( 300GB)
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Machine Learning Components

Machine
Learning
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Power-iteration-based Method
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F. Lin, W. Cohen, “Power Iteration Clustering”, (ICML 2010)
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Streaming Approximations

High Dimensional Stream e Feature
i Selection

Clustering
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Detection 00e
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Potential Research Areas
In Machine Learning
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Potential Research Areas

« Unsupervised / Active Learning
» Large portion of scientific data does not have labelled data
» “Unsupervised learning had a catalytic effect in reviving interest in deep
learning, but has since been overshadowed by the successes of purely

supervised learning. ... we expect unsupervised learning to become far
more important in the longer term.” Yann LeCun, Nature 2015
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Potential Research Areas

* |In-situ and streaming analysis
« Unigue much higher velocity than industry
 Large scale simulations / cutting edge instrumentations
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Potential Research Areas

* New architectures
» Googles’ TPU (Tensor Processing Unit)
 IBM TrueNorth (Neuromorphic Computing)
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\ « https://futuristech.info/posts/google-claims-its-tensor-processing-unit-tpu-is-7-years-into-the-future-ahead-of-moore-s-law

*  http://www.research.ibm.com/articles/brain-chip.shtml




Potential Research Areas

* Programming models, compiler technologies, workflows to
leverage HPC more effectively

« Lua, Scala, Julia are popular new programming languages for
machine learning
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Potential Research Areas

* New mathematical solutions/solvers/libraries for
HPC
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Potential Research Areas

* Foundational theory for deep learning

Deep Learning without Poor Local Minima

Kenji Kawaguchi
Massachusetts Institute of Technology
kawaguch@mit.edu

Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
With no unrealistic assumption, we first prove the following statements for the
squared loss function of deep linear neural networks with any depth and any
widths: 1) the function is non-convex and non-concave, 2) every local minimum is
a global minimum, 3) every critical point that is not a global minimum is a saddle
point, and 4) there exist “bad” saddle points (where the Hessian has no negative
eigenvalue) for the deeper networks (with more than three layers), whereas there
is no bad saddle point for the shallow networks (with three layers). Moreover, for
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Potential Research Areas

« Automation of simulation or experiments
 Self-driving car
 Why not autonomous experimentation?
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Potential Research Areas

* Fusing theory, simulation, experiments, and ML
* Interplay of simulation, observation and ML

A %, @ Observation costo
(@) Sensor SN Exascale
O © Network Simulation

Scientific
Discovery
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Potential Research Areas

* Interactive analysis in PB scale data
« Enabling high dimensional feature space and high volume visualization
» Pin-point where to pay attention
» Good summarization and dynamic zoom-in and out
» Help us to understand and design better machine learning algorithms
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Potential Research Areas

« Text Mining

 Scientific literature was effectively utilized in various science
domains

7 YEARS OF
DISCOVERY

U.S. DEPARTMENT OF
BROOKHFIAEN
@ENERGY NATIONAL LABORATORY 42 A CENTURY OF SERVICE

)




Questions?

Machine
Learning
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Backup

7 YEARS OF

U.S. DEPARTMENT OF DISCOVE RY
ENERGY BROOKHFVEN
NATIONAL LABORATORY 44 A CENTURY OF SERVICE

NN



100000

10000
R
%) 1000
C'EJ 100 —--Seriesl
== —--Series2
10
1
1 10 100 1000 10000100000

Size (Edges), 10k unit

7 YEARS OF
DISCOVERY

U.S. DEPARTMENT OF
BROOKHFAEN
AN ENERGY NATIONAnL LABORATORY 45 A CENTURY OF SERVICE




Big Data and ML

* MapReduce

* Needed distributed processing paradigm for big

volume of WWW data
* Focused on minimizing disk 10
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Big Data and ML

« Spark
« Maximally utilize distributed memory (RDD)
 Allow lazy evaluation for better optimization
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Unsuperwsed Learning Pipeline
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Machine Learning Component

Algorithm
Machine

HW: CPU. Learning

GPGPU, FPGA,

coc Infrastructure Data

SW: XXX,

Hadoop, spark,

allreduce, ...
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Potential Research Areas

« Unsupervised / Active Learning
 Large portion of scientific data does not have labelled data

« “Unsupervised learning had a catalytic effect in reviving interest in
deep learning, but has since been overshadowed by the successes
of purely supervised learning. ... we expect unsupervised learning to
tz)gigme far more important in the longer term.” Yann LeCun, Nature

In-situ and streaming analysis

« Unique much higher velocity than industry
« Large scale simulations / cutting edge instrumentations

Programing models to leverage HPC more effectively
« Lua, Scala, Julia are popular new programming languages for
machine learning
New architectures
* Googles’ TPU (Tensor Processing Unit)
* IBM TrueNorth (Neuromorphic Computing)
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Potential Research Areas

 New mathematical solutions/solvers/libraries @
HPC

* Foundational theory for deep learning

» Automation of simulation or experiments
 Self-driving car
* Why not autonomous experimentation?

* Fusing theory, experiments, and ML
* Interplay of simulation, observation and ML
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Potential Research Areas

* Interactive analysis in PB scale data
* Interpretable compression
 Pin-point where to pay attention
« Good summarization and dynamic zoom-in & out

* Text Mining

 Scientific literature was effectively utilized in various
science domain

* Error Analysis
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