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Share of Top500 Entries Per Country

Historical Share Current Share
(averaged over liftetime of list) (November 2016 list)
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Producers of HPC Equipment
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Vendors / Performance Share

2007 Now

HPE, 66, 10%

\ sGl, 40, 6%
A\ Others,
| 136, 20%

Cray Inc.; 3%
SGI; 4%

Dell; 6%

Lenovo, 64, 109

}

NUDT, 39, 6%

Fujitsu, 38, 6% —.
Dell, 16, 2%

IBM; 44%

CrayInc.,

(0
RS Inspur, PR

9, 1% Huawei, 9, 1%
Bull, Atos, 24, 4%

IBM, 63, 9% | sugon, 25, 4%

Sum of Pflop/s, % of whole list by vendor
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:,_,} ‘,,A, NSA-DOE Technical Meeting on High Performance Computing

December 1, 2017

Top Level Conclusions

1. National security requires the best computing available, and loss of
leadership in HPC will severely compromise our national security.

2. HPC leadership has important economic benefits because of HPC'’s role
as an enabling technology

3. Leadership positions, once lost, are expensive to regain

Meeting participants expressed significant concern that — absent
aqqgressive action by the U.S. — the U.S. will lose leadership and
not control its own future in HPC

< ltis critical to lead the exploration and development of innovative computing
architectures that will unleash the creativity of the HPC community

» Workforce development is a major concern in HPC and a priority for
supporting NSCI Objectives #4 and #5

» NSCI leadership develop more efficient contracting regulations to improve
the public-private partnership in HPC science and technology development.
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China Update
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ceceer) '“‘ Aggressive Growth of China Chip Fabs

< Current 28nm domestic capability in Shenzhen, Nanjing
and other regions

<+ Broke ground on 14nm fab for 2018 near Shanghai

= Annual spending on fab equipment in China above $10B by 2018

= Feb 2017: China is expected to be the top spending region for fab
equipment spending by 2019, overtaking South Korea and Taiwan.

< Foxconn offered 3T Yen ($30B) bid for Toshiba fabs

= Amazon & Google + SK Hynix & Western Digital consortium bidding
* Apple bidding to own 20% stake in Fujitsu fab
= TSMC withdrew its bid

= Selection by June

——— _LAWRENCE BERKELEY NATIONAL LABORATORY s
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Fab Construction in China

Source Semiconductor Equipment and Materials International (SEMI)

Company
Alpha & Omega

Fujian Jin Hua
GigaDevice
GlobalFoundries
Hua Li Micro
Powerchip
Samsung

SMIC

Tacoma
Semiconductor

Tsinghua Unigroup

TSMC
UMC

Yangize River
Memory/XMC

Location

Chongqing
Fujian
Hefei
Chengdu
Shanghai
Hefei
Xian
Beijing
Shanghai
Shenzhen
Nanjing
Chengdu
Nanjing
Nanjing
Xiamen

Wuhan

DRAM

DRAM/Flash
Foundry

Foundry

Foundry

3D NAND (Phase 2)
Foundry

Foundry

Foundry

CMOS Image Sensor
Foundry

DRAM

Foundry

Foundry

3D NAND

Begin
Construction
tbd
2016
tbd
2017
2016
2015

2016
2016
2016

2016
2015
2016

Begin

Production

tbd

2018
tbd
2018/2018
2018
2017
tbd
2018

2018
2018

tbd

tbd
tbd

2018
2016
tbd
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coccond] : Fab Construction in China

Source Semiconductor Equipment and Materials International (SEMI)

USS Million China Fab Investment by Parties
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Fab Construction in China

Source Semiconductor Equipment and Materials International (SEMI)

USS$ Millon China Fab Spending by Product Type
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coccond] : Fab Construction in China

Source Semiconductor Equipment and Materials International (SEMI)

Fab Equipment Spending by Region

Front End Facilities new & used (including Discretes & LED)

Fab Equipment Spending in 2017 Fab Equipment Spending in 2018
US$ Billion  Americas, USS Billion  Americas,
5.3 5.7

Taiwan,

‘ .
10.7 3rd place! / Taiwan, 9.5

SE Asig

2nd place!

SE Asia, 2.4
YEurope &

Korea, 12.1 Mideast,
3.4

Korea, 12.8 Europe &

Mideast,
4.0
Japan, 5.2

(World Fab Forecast report, Feb 2017, SEMI)

Source: World Fab Forecast report, SEMI August 2016
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rerce Y China 2017 Prototype System Bake-off

< China plans to have three prototypes for candidate exascale systems
delivered in 2017 [Xinhua: Jan 19, 2017]

< Scale-up winner(s) to exascale in 2020 (my guesses below)
< Other: Longsoon (unlikely), Silicon Cube (no), Thatic AMD (Tianjin/Sugon?)

Wuxi/Sunway NSC/Phytium NUDT/Tianhe2a?
<+ Heterogeneous <+ Homogeneous < Attached Accelerator

manycore/accel Manycore < ARMvS8 PCle attached
<+ 4*8x8 CPEs (light) < 64-core ARMvS self- accelerator (ISC16)

+ 4 MPE (heavy) hosted % <strategy may change>

ore ore
E— Network-on-Chi
ore
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refresher course

N : Sunway Node Architecture

DFMC (40 nm)

Architecture 4 CPE clusters (256 CPEs)
_________________ 4 MPEs, 4 MCs

:\ NoC Mesh
Conéputing Row | On-chip memory 32 KB in each CPEXx256=8 MB
Ore Communicatibr
Bus

Frequency 1 GHz

|

|

|

|

|

| |

| |

' :

I Memory bandwidth 102.4 GB/s DDR3
: l Chip area ~ 400 mm?@40 nm
| |

| |

|

|

|

|

Computing ability 1000 GFLOPS DP
Power ~ 200 W

Transfer Agent (TA)

!

Column

Control
Network Communication Bus

| B A
That is 64k per CPE LDM@28nm
(not 64k for the entire CPE mesh)
Fang Zheng (Wuxi) 212 instructions Alpha-like ISA
Jan 2015 240mm”*2 chip area @ 28nm (cacti)

J. Comp. & Sci. Tech
LAWRENCE BERKELEY NATIONAL LABORATORY =i
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Xiaomi . Xiaomi
/\r( L2cache |
Xiaomi Xiaomi
N O e Acmat Amaa = AT l.'
DCU
i B B
Routing Cell _J
DCU
Xiaomi I | Xiaomi ‘
‘ L2cache
' Xiaomi ! Xiaomi

Mesh topology on chip network
32MB L2 cache

8 Cache & Memory Chips (CMC)

128MB L3 cache
16 DDR3-1600 channels

Two 16-lane PCIE3.0 i/f

ECC and parity protection on all
caches, tags and TLBs

Phytium Mars Architecture

& e 2 Y
PCle SICMCIS siICcMCla
(] o0 (=]
i l T I 0 i
)3 Colo  4=—=4  Celt & O
5 5 2 8
@ | DDR3
DDR3
C||4 4 4 Cells 3 e
g g
ji DDR3

8 cuclZ &
o
Physical Performance |
« ~180Minstances |+ Peak: 512GFLOPS
2 0GHz@28nm + Mem BW: 204GB/s
o 120W « 1/OBW: 32GB/s
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cecers) ' Phytium Mars Architecture

Architecture Features £ %

64 Xiaomi cores, ARMv8

compatible _DDR3_ DDR3
Hardware-maintained global 5 i
cache coherency — —
Panel-based data affinity tLis Ee=n
architecture b panelé o E
Mesh topology on chip netwerk 7% J —_—

Mars Interface
W, floc[E gl =

Physical Performance

« ~180Minstances |+ Peak: 512GFLOPS
tiononall | * 2 0GHz@28nm * Mem BW: 204GB/s
« 120W « |/OBW: 32GB/s
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Comparing Phytium to Sunway

m Phytium/Mars | _Sunway | _Ratio _

ARMv8 CPE (DSP-like)

Cores/numanode cores 64 64 1.0
Core FLOP Rate GFLOPs 8 11.72 0.7
L1S/Core KB 32 64 0.5
Clock Rate GHz 2GHz - -

Power/numanode W 120 93 1.3
Performance/numanode GFLOPs 512 750 0.7
Memory Bandwidth/numanode GB/s 204 34 6.0
Sockets for 125 PF system - 234,375 40,960 5.7
Cores for 125PF system Millions 15 20 0.8
Power for 125 PF system MW 28 15 1.9

< Phytium advantages
» 6x higher memory bandwidth per NUMA node
= Conventional CPU programming model

<+ Sunway advantages

= 2x Energy efficiency of Phytium system

= 5x higher performance density (5x fewer sockets for a system)
e _LAWRENCE BERKELEY NATIONAL LABORATORY mtiin
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reeer?) f Sugon Silicon Cube:
Meteorological Supercomputer

] [ 3
L =

SO

Processor

Silicon Cube

. . Silicon Node

’ Conipité Super Node

Node
Accelerator

<+ Processor < Overall System

= |ntel Xeon E5-2680 12core = Peak 1 PFLOPS

» DDR4 2133MHz memory = #95 non Top500 at 75% efficiency
< Interconnect » Total Memory Capacity 80TB

= FDR InfiniBand (56Gb) = 208 square meters of 1,000 liquid

cooled servers

» Total power is 641.38kW
meessssssssssss—— L AWRENCE BERKELEY NATIONAL LABORATORY st
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What’s in a Name?

Sunwa

Shen Wei
“God” “Powerful”

1 JaX
KA Z ot

Taihu Lake apostrophe Guang
A famous lake near Shanghai “Taihu’s” “Light”

——— _LAWRENCE BERKELEY NATIONAL LABORATORY s
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S System Comparisons

System TaihuLight | Tianhe-2 Titan Sequoia Cori
Peak Performance (PFlops) 1254 54.9 27.1 20.1 27.9
Total Memory (TB) 1310 1024 710 1572 879
Linpack Performance (PFlops) 93.0(74%) | 33.9(62%) | 17.6(65%) | 17.2(85.3) | 14.0(50%)
Rank of Top500 1 2 3 4 o
Performance/Power (Mflops/W) 6051.3 1901.5 2142.8 2176.6 3266.8
Rank of Green500 C a4 D 135 100 90 26
GTEPS 23755.7 2061.48 HitH 23751 HitH
Rank of Graph500 C2 D 8 i 3 i
HPCG (Pflops) 0.3712 0.5801 0.3223 0.3304 0.3554
Rank of HPCG C4 D 2 7 6 5

——— LAWRENCE BERKELEY NATIONAL LABORATORY s
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Continued Progress Since GB Runs

(Wuxi team are committed to codesign)

100%{ o, % % _ « i
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model
Yang, Chao
e Institute of Software, CAS

cube-sphere grid or
other grid

explicit, implicit, or
semi-implicit method

- =
o
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ay.
/S
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Xue, Wei

computer science

Tsinghua Universit\\?\\ o

N computational mathematics
o &

cloud resolving
= Wang, Lanning
Beijing Normal Universit
‘  climate modeling

Application
Algorithm

Fu, Haohuan

Sunway, GPU, MIC, FPGA

Tsinghua University
geo-computing

7
7

" \\\\ ///
++' ortran \/1P ) UD A -
Java, ...

The “Best” Computational Solution

Haohuan Fu
Wuxi

2016-2017
improvement
through
sync-free
data-locality
preserving
algorithm
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<=} Programming Model MPI+X

|

|
= MPI3 | i
= Based on OSU MVAPICH mmEw i
i |
| |

= One MPI process per MPE core (4 per socket)

<+ OpenACC 2.0
= OpenACC2.0 cross-compiler based on LLNL ROSE translator
= Fortran, C/C++ Support
» Nearly identical accelerator offload style as for GPU systems

= Copy in to “fast memory” is CPE local stores instead of GPU
GDDRS5 memory.

= Extensions (swap,pack,tilemask) for hardware collective mem ops
< Athreads: A low-level spatial threading

» |Low-level target of the ROSE OpenACC translator

= Supports some hardware collective operations such as transposes
and common domain decomposition operations (beyond Pthreads)

L________

. LAWKENCGE BEKRELEY NAIIUNAL LAKORAIOKRY 22
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Comparison of OpenACC = Haohuan Fu
Offload Models e

= Use dara copy to handle data moving between Mem and LDM

!$acc data copyin(A) copyout(B)
!8acc parallel loop
doi=1,128
m = func(i)
do j=1,128
B(j, i) = A(j, m)
enddo
enddo
!$acc end parallel loop
!$acc end data

OpenACC2.0

!8acc parallel loop
doi=1,128
m = func(i)
!$acc data copyin(A(*, m)) copyout(B(*, i))
doj=1,128
B(j, i) = A(j, m)
enddo
!$acc end data
enddo
!$acc end parallel loop

Sunway OpenACC

Data Moving
is executed by
host thread

Host

Device | - N CPEs
| Device Memory

....................... g Data mov/ement
................................................ is initiated by
each CPE thread u
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Software Porting Strategy

The Gap between Software and Hardware

From Haohuan Fu
Wuxi

100P

* millions lines of legacy code
* poor scalability

* written for multi-core, rather than many-core

100T
China’s models China’s supercomputers
* pure CPU code * heterogeneous systems with many-core chips
* scaling to hundreds or thousands of cores * millions of cores

=

i -
':.' BRBHEITERTEDI
- National Supercomputing Center in Wuxi
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Software Porting Strategy

.

_ BREE R EDL

National Supercomputing Center in Wuxi

Our Research Goals

From Haohuan Fu
Wuxi

* highly scalable framework that can efficiently utilize many-core processors
* automated tools to deal with the legacy code

100P

* millions lines of legacy code
* poor scalability
* writtenf r° -, rather than many-core

100T
China’s models China’s supercomputers
* pure CPU code * heterogeneous systems with many-core chips
* scaling to hundreds or thousands of cores * millions of cores




eeer] Is this and image of “failure”

or of “success”?

WSS can anyone guess
p what this is?

<+ Apple Ethos: Refine until it is
near perfect.

% Google Ethos: Try early and

try often!
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% Conclusions on China

<+ Hardware Strategy

» 3 Prototype Systems in 2017 (Sunway, Phytium, ?Tianhe2a?)
= ARMv8 systems more conventional than Sunway (less energy efficient)

< Software Strategy

MPI+x where x=0OpenACC directives
= Sunway OpenACC programming similar to GPU systems (not exotic)
» Plans to increase automation to port from old to new
= Continue advances in algorithm design increase gains over GB wins

<+ Overall: Moving at a fast pace

» Investing in a portfolio of risk (ranging from conventional to exofic)
= There is little incentive to play it safe (no alternatives)
= And are not held back by an installed base (open ended design space)

= Not about out-selling US in HPC! Its about creating domestic supply
chain to support domestic industry (cars, aerospace, basic science...)
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Japan Update
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Post-K Strategic Delay

Old ov T P P R P

- . @ Q2 @ 4 o Q@2 Q@ 4 1 @ Q3 4 o1 Q2 Q3 Q4 Qf Q2 Q3 Q4 1 @ Q3 4 1 Q2 Q3 o4
Timeline . —
BasiBasiighesign  Ddsign an@ﬁﬁimanstibmpleme%ﬁ@gﬁg’}%m‘mam@zﬁé&%ﬂma aton,  1operation
New ol o4 |20t 206 ot a0t [aot9 200 o021 | 2022
Timeline Qf @2 03 Q4 Qf @2 03 Q4 Q1 Q2 Q3 Q4 Q1 G2 Q3 Q4 Q1 @2 QI Q4 Q1 Q2 Q3 Q4 QF Q2 Q3 Q4 OF Q2 Q3 O 01 @2 a3 o4
NGRS
_na o i D s et

<+ Flasgship 2020: 0.91B USD project (Riken + Fujitsu)
< Originally planned for 2020 - moving to 2021 or 2022

» Energy efficiency benefits of new process technology offer better TCO
<+ Fujitsu: scalable-core/node ARMv8 + SVE512 Vectors

= Wider vectors: K=128, FX100 256, Post-K 512

= 6D Mesh Interconnect, Sector Cache, Fast Sync between cores

= Nearly same microarchitecture as SPARC64-based K-computer
» Gains advantage of larger market for ARM software ecosystem

29



f\ » Tsubame 3.0 @ TiTech/SGI/HP/NVIDIA

Converged BigData/Al/HPC Supercomputer

10 PCle & OPAHFI

) x1 x16 PCle
— SSO H —— PLX 4= OPAHFI
= = | DIMM +~— Gm{ \5\“0‘
=== DIMM "

— — E DIMM +——s GPU 0 = GPU 1

AN | D X

DIMM s
GPU 2 = GPU 3

—_—
— DIMM et
=

CPU 1
DIMM e x16 Pcu-I /(6:(2!0

PLX W=D OPA HFI

x16 PCle
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.
o
«
———y
o -
r—
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[
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Lo e & OPAHFI

|

12.5PF DP
47.2PF HP
Omnipath@ 4x100Gb/s
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Figure: Fujitsu
ARTIFICIAL INTELLIGENCE

A program that can sense, reasons, act and adapt

MACHINE LEARNING

Algorithms whose performance improve
when exposed to more data over time

DEEP LEARNING

Multi layered neural networks
learn from vast amounts of data

People/Businesses/Society

N

-’

. .
) Human Centric Al Zinrai
ofmmz mpy ) mEr—
Image guagy Inference & planning
Voice recognition ’ o — . ’ Prediction &
Emotion{gtate I & dechery i Interactivity &
recognition

Pattern discovery

o
v
l Learning Deep Learning Machine learning Re
o, Advanced v _ e .
research euroscience ocial receptivity

inforcement learning

recommendation

Simulation

MV DGX-1 & Fujitsu

Google TPU
MS Olymgs
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Tsubame 3.0

POH e—2M! x OPAHFI
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> p vertically Integrated Data Centers

Spinning their Own Designs

FACEBOOK BIG BASIN

8x Tesla P100 GPU Server - Hybrid Mesh Cube Topology

lntrOdUCtIOn Midplane board

Baseboard

——— _LAWRENCE BERKELEY NATIONAL LABORATORY i



Google Tensor Processing Unit (TPU)

 Deployed in datacenters since 2015

* 10-30x Faster than NVIDIA G80 or Intel Haswell
for ML workload (64k arithmeti cycle)
« Could be faster T |
- 8bit integer arithm ¢ _’ | |
Partial Sums

!

’

}
FIEYE

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input is read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Die Benchmarked Servers
Model y Measured | TOPS/s On-Chip |,.. : Measured
4 MH-= % L AM Siz
mm* | nm |MHz|TDP ldle | Busy | 8b_|FP GB/s Memory Dies DRAM Size rbp Tdle | Busy
Haswell | -0 {9 b3ooliaswlaiwliasw] 2.6 [1.3] 51 | s1miB | 2 256 GiB 504W [159WHS5W
E5-2699 v3
NVIDIA K80 N D D . 256 GiB (host) .
2 25W = 12 )
(2 dies/card) | 361 |28 [ 360 [150W| 25W] 98w 28|160 | §MiB | 8 A=k g 1838W [357W[091W
256 Gi -
TPU NA*[28 [700 [75W |28W|40Ww | 92 | - | 34 | 28 MiB | 4 "i(’;’(';?é’l":" 861W [290wW[384W
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Hitachi 20k spin “Ising Chip”

Similar to D-Wave quantum annealer, but room temp.

J 78

Energy H (performance index)

Optimal solution

Spin state (2" combinations)

>

n: Number of spins

1k-spin sub-array
780%380 pum?

W ¢

4 mm

New technique

Existing technique

Ising computing

Approach ;
Semiconductor (CMOS) Superconductor
Qjpariiiiiy Room temperature 20 mK
temperature
Power. 0.05 W 15,000 W (mcludlng
consumption cooling)
20,000 (65 nm)
Scalability Can be scaled up by 512
(number of spins) using higher level of
scaling
Computation Milliseconds Milliseqonds (fast in
time principle)

— _LAWRENCE BERKELEY NATIONAL LABORATORY sy
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A Brief EU Update
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) ff Recent Developments in the EU

(and soon to be former members thereof)

<+ Jan 18 2017: “Cray commits to deliver 10,000+core ARM

system”
» “lsambard” @ UK Bristol £4.7M to be installed March-December 2017
» |ncludes GPUs, x86 CPUs, and FPGAs (in addition to ARM)

» Simon McIntosh-Smith: “Scientists have a growing choice of potential
computer architectures to choose from, including new 64-bit ARM CPUSs,
graphics processors, and many-core CPUs from Intel. Choosing the best
architecture for an application can be a difficult task, so the new Isambard
GWH4 Tier 2 HPC service aims to provide access to a wide range of the
most promising emerging architectures, all using the same software stack.”

< Change in EU Horizon 2020 strategy in Feb 2017
1. Refocus on domestic technologies
2. Preparatory call for proposals expected imminently
3. Open to non-traditional architectures (e.g. EU BRAIN project)
4. Current Focus on ARM (ISA license, but indigeonous microarchitecture)
5. Chiplet and SoC integration strategies are both being pursued

LAWRENCE BERKELEY NATIONAL LABORATORY mmsssssgfn
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,/% Conclusions

o

China to have 3 prototype systems by 2017 (exascale candidates)

= Try early, try often, learning cycle

= Broad range of architectures.

= Not constrained by an installed base. (both an asset and a curse!)
China’s Sunway system has emboldened other countries to
pursue an “all indigenous” processor approach

= Enabled by embedded ecosystem (don’t have to own “all” of the design)

» Started with China and Japan, but now EU has joined in to the strategy
Japan refocusing Flagship 2020

= New roadmap for ARMv8 based Post-K (2021-2022)
» |nnovations happening at smaller scale for ML acceleration (TiTech)

ML is taking off in Asia and US

» Plus: Driving a lot of innovation and investment in HPC-relevant
technologies (contributions vertically integrated Inc. Google/FaceBook)

= Minus: Focus is on low precision arithmetic (8 bits floats?!?!)
» Broader trend towards Al (a superset of ML and neural networks)

D)

>

L)

0’0

0’0

LAWRENCE BERKELEY NATIONAL LABORATORY i
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2022?

01/21/2016 at 10:32 AM by Brad Linder

IP Transit $0.20/Mbps

14nm chips in this fashion.

17,000 BGP sessions with over 5,700 Networks plus 149 Internet Exchange Points,

Unofficial Intel timeline: 7nm chips in 2020, 5nm in

Intel is pouring $7 billion into 7nm
chip production plant in Arizona

By Paul Lilly 2 days ago

Looking beyond Cannonlake.

Intel used to release chips on a Tick-Tock schedule, which basically meant thaf 00 o
use a new manufacturing process. Since 2006 Intel moved from 65nm chips to

Samsung Galaxy S9 to use new 7nm chips in 2018 -
report

O shares

Read Comments

Report: TSMC lays the groundwork for a 5-nm and 3-nm
foundry

by Wayne Manion — 9:28 AM on December 12, 2016

The chip-making world may be gearing up for 10-nm chip manufacturing processes, but according
to a report by the Nikkei Asian Review, contract silicon manufacturing house Taiwan Semiconductor
Manufacturing Company (TSMC) is getting ready to build a fab for what it calls "5-nm" and "3-nm"
process nodes. The company reportedly expects the plant to cost approximately $500 billion New
Taiwan dollars, an amount equivalent to $15.8 billion U.S. dollars. According to the reports, TSMC
has already asked the Taiwanese government for assistance in finding a location of sufficient size for
the new factory.
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A Short Diversion on Node Inflation

* Depends on the foundry

* Technology “node™ might reflect other advances
(lower leakage or FINFET transistors)

* Not consistent across foundries.

Foundry IDM Min half

Node Node pitch

/ nm 10 nm 22 nm b
5nNm / nm 16 nm A
3 Nnm 5nm 12 nm g

Bottom Line: No longer a very meaningful metric



/\ ‘,g A Short Diversion About ARM

Licenses

<+ 1980s-1990s: Custom Vector/MPP Market
» NRE costs not shared by a broader market (hard to recoup dev costs)
» Technology dev. eclipsed by microprocessor (‘killer micro’) market
*» 1990s-present. Commodity Microprocessor Market
= The Chip is the commodity: shared by larger desktop/server market
ARM play is to make IP the commodity (not the chip)
» Share NRE costs with an even larger embedded market
» Feasible as 64-bit addressing and DP started to appear in embedded
» Also feasible when clock-rates stopped scaling (arrays of simple cores)

» Embedded market also enables China, Japan, EU to develop a
“domestic technology”

Two kinds of licenses

= |SA License: vendor/country develops microarchitecture, but ISA
compliance ensures ALL licensees can rely on common software

= |P License: Can buy a “commodity” IP circuit design from ARMs design
library (cost of developing technology is amortized by

L)

*

L)

>

— _LAWRENCE BERKELEY NATIONAL LABORATORY st



	Structure Bookmarks
	Figure 4. Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs. 


