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Science is poised for transformation

Part 1



Old School Scientists: The Lone Scientist



Team Science



New Scientists

17-year-old Brittany Wegner creates breast cancer detection tool that is 99% 
accurate on a minimally invasive, previously inaccurate test.

Machine Learning +  Online Data + Cloud Computing



Experimental Science is Changing

• sdf



Old School Scientific Workflow



Computing, experiments, networking and 

expertise in a “Superfacility” for Science
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Slot die printer 
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HipGISAXS & RMC

GISAXS

Slot-die printing of 
Organic photovoltaics

Liu et al, “Fast printing 
and in situ morphology 
…”. Adv Mater. 2015 



Old School HPC: only for Simulation

Experimentation Theory

Computing
9



HPC is equally important in experimentation

Experimentation Theory

SimulationData Analysis

Computing

Growth in Sequencers, 
CCDs, sensors, etc. 
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Integration of Simulation and Observational 

Science
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Intermediate Palomar Transient Factory

• Nightly images transferred

• Subtractions, machine learning

• Candidates in database in < 5 minutes

• Simulations aid in interpreting data
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Yi Cao, et al. (2015) Nature,

“A strong ultraviolet pulse from 
a newborn Type Ia supernova”



Old School Scientific Data Search



Automated Search, Meta-Data Analysis, and 

On-Demand Simulation 
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Figure 1: Conceptual System Overview. The figure shows the interaction of various system components

of ScienceSearch.

Challenge 2: Search needs to account for scale and lineage of data and the I /O challenges of future sys-

tems. Data search capabilities need to address scalability at various levels: a) machine learning algorithms

must generatemetadataat therateand scaleof thedatavolumesbeing generated; b) themetadatageneration

process must address the I/O challenges of the future exascale systems and, c) the metadata storage layer

needs to address scalability.

Challenge 3: The complexities and intricacies of scientific data, as well as, machine and deep learning

algorithms require a careful consideration of the human factors. Machine learning techniques can help

with learning about thedataand generating metadata. However, this isnot sufficient for scientific data, since

the complexity of the data often requires specialized domain knowledge and understanding. Automated

metadata generated from machine learning algorithms will likely need to be curated by humans to ensure

accuracy. Additionally, the machine learning model needs to understand the terms or signals that might

arise from auser’s query. Thus, it is important to understand how people interact and want to interact with

scientific data search and machine-generated metadata labels.

Project Objectives: Designing a data integration ecosystem. Our proposed techniques bring together

a unique blend of skills that includes machine learning, human-computer interaction, and experience with

scientific domains and users at facilities. Our goal is to make data a first-class discoverable resource at

supercomputing centers through the powerful concept of search.

Figure 1 shows the conceptual system architecture that will be enabled by the research proposed in this

proposal. The ScienceSearch framework has three key components: a) metadata generation, b) the Ground

[38] metadata storage framework, and c) an interface layer. The metadata generation framework uses a

variety of machine learning techniques to generate the context of the data from both application data, as

well as system level information. Ground is a data context service that provides the metadata storage layer.

The interface layer allows the users to interact with the system to verify and validate automated metadata

generated.

We envision the ScienceSearch framework will be available at supercomputing centers and users can

maketheir dataavailable to thesystem. TheScienceSearch framework will use thedatasetsand, ecosystem

artifacts associated with the data (e.g., proposals, workflow and system logs, publications) to learn and

generate metadata labels. The ScienceSearch framework will use active learning to surface the metadata

labels to users for feedback. The users can validate, add, delete or edit labels. Similarly, we anticipate that
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Jobs submitted by “bots” based 
on queries; algorithms extract 
informatics for design

Automated metadata extraction  
using machine learning 



ASCR Facilities need to adapt 

Part 2



ESnet: Exponential data growth drives 

capacity
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100 Exabytes/year by 2024!

Traditional IP

Transatlantic

Big science data

Science DMZ to deliver bandwidth to the end users
OSCARS for bandwidth reservation 

Science DMZ



ESnet: Discovery Unconstrained by 

Geography

LCLS/NERSC/Esnet Superfacility demo for 
Photosystem II 

 3x network traffic

ESnet-6 Upgrade Options trade off risk and capability

Software Defined 

Networking Programmable 

switches may improve 

cost and speed

 Adapt lower level 

network layers for 

major science flows

Packet Optical

 Combine 

hardware for 

packetization/rout

ing with optical 

transport

 Lower cost

 Keep packet and 

optical separate 

with current fixed 

routing tables

 Known technology

Current 

Architecture

Network performance enables efficiency of centralized 

computing



Systems configured for data-intensive science

NERSC Cori has data partition (Phase 1, Haswell)  pre-exascale (Phase 2, KNL preproduction)
WAN-to-Cori optimized for streaming data: 100x faster from LCLS to Cori and Globus to CERN



Real-time queue prototyped at NERSC

- 18 -

• In 1998 dedicated hardware; now prototype queue on Cori
• <1% of NERSC allocation
• Cryo-Em, Mass spec, Telescopes, Accelerator, Light sources

Cryo-EM: Image classification
Nogales Lab

ALS: 3D Reconstruction, 
rendered on SPOT web portal

PTF: Image subtraction pipeline



Containers for HPC Systems

• Data analysis pipelines are often large, complex software stacks
• NERSC Shifter (with Cray),  supports containers for HPC systems
• Used in HEP and NP projects 

(ATLAS, ALICE, STAR, LSST, DESI)

- 19 -

Startup Time



ASCR Research challenges 

are substantial

Part 3



Designing 
mathematical 

algorithms to allow  
real-time analysis next 

to the equipment

New algorithms to 
transform  manual  into 

automatic  analysis

Inventing new math 
and models to match 

new acquisition 
technologies    

Robust and reliable 
codes and data flow:  

workflow environments

Cultural and 
Sociological Challenges

Compare and integrate 
multiple analysis tools 

Multi-modal: Building 
the math that fuses 

information from 
multiple experiments 

CAMERA: Math for the Facilities

Fluctuation 
scattering and 
single particle 
imaging  for  the 
LCLS

Automatic image 
processing for the 
ALS/GE

Real-time streaming 
ptychography—ALS, delivered 
to NSLS2, LANL, BESSY, 

Workflow and 
access to remote 
supercomputers:
XiCAM for ALS, 
SSRL, APS, NSLS2

SFM/TEM + GISAXS

CAMERA 
workshop on 
Tomography: 
Joint with APS, 
ESRF, 
DIAMOND, 
LNLS, LLNL, 
SSRL,…., 



Discrete mathematics/
Computational geometry

ALS

Molecular Foundry

NCEM

APS

SSRL

DIAMOND (UK)

CLS (Canada)

ESRF (Grenoble)

JCAP
PHaSE

JCESR

EFRC Gas Separation

NSLS-2

BES Nanoporous Materials
BES Functional Electronic Materials

LBNL

LLNL/LANL

BNL

NERSC

OLCF

SIESTA, CP2K, ImageJ, Fiji

Universities: e.g.: Berkeley, Northwestern, Georgia Tech, Rice, UCSD, 
U.I.C, McMaster, Austin, Stanford,…

(Bosch, Samsung, Intel,GE,…) 

ALCF

PETRA III (Germany)

ANL

LCLS

ORNL

Probabilistic Graphical Models

Iterative Phasing

Spectral analysis

Model-based reconstruction

Constrained optimization

New mathematical modeling

Machine learning, feature 
detection, persistent homology 

Fast PDE solvers: (Level Set, DG,…)

Linear Algebra (Selected inversion, 
fast pseudoinverse approximation,...)

Materials Design (Zeo++)

Electronic Structure (PEXSI)

Image Analysis/Tomography  (QuantCT,F3D)

Ptychography (SHARP)

Fluctuation/Single Particle

GISAXS  

=LABS =Universities
=ASCR Facilities

=BES (and  other) Facilities
=BES Centers/Internat.

=3Rd Party Codes =Industry

CAMERA: Making the connections



Analytics vs. Simulation Kernels: 

7 Giants of Data 7 Dwarfs of Simulation

Basic statistics Monte Carlo methods

Generalized N-Body Particle methods

Graph-theory Unstructured meshes

Linear algebra Dense Linear Algebra

Optimizations Sparse Linear Algebra

Integrations Spectral methods

Alignment Structured Meshes



Dense 
Matrix 
Vector

(BLAS2)

Sparse -
Sparse 
Matrix 

Product
(SpGEMM)

Sparse Matrix 
Times 

Multiple 
Dense Vectors

(SpMM)

Sparse 
Matrix-
Dense 
Vector 
(SpMV)

Sparse 
Matrix-
Sparse 
Vector 

(SpMSpV)

Increasing arithmetic intensity

Graphical 
Model 

Structure 
Learning (e.g., 

CONCORD)

Clustering 
(e.g., MCL, 

Spectral 
Clustering)

Logistic 
Regression, 

Support 
Vector 

Machines

Dimensionality 
Reduction (e.g., 
NMF, CX/CUR, 

PCA)

Machine Learning Mapping to Linear Algebra

Deep Learning 
(Convolutional 
Neural Nets)

Sparse -
Dense 
Matrix 

Product
(SpDM3)

Dense 
Matrix 
Matrix 
(BLAS3)

Aydin Buluc



Software implementations at scale in pipeline

MicroCT

imaging
Segmentation

Topological

Analysis

VisualizationAnalysis Simulation



Interactive Analytics using Jupyter

Science notebooks through 

Jupyter (iPython)

• Widely used in science

• Interactive HPC LDRD

Deployed at NERSC:

• >100 users pre-production

Fernando Perez et al



Random Access Analytics

buckets entries 
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• Genome assembly “needs shared memory”

• Low overhead communication

• Remote atomics

• Partitions for any structure

Global Address Space

Scales to 15K+ cores

Under 10 minutes for human

First ever solution

E. Georganas, A. Buluc, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan, L. Oliker, D. Rokhsar, K. Yelick 



Data Fusion for Observation with Simulation

• Unaligned data from observation

• One-sided strided updates 

Scott French, Y. Zheng, B. Romanowicz, K. Yelick
Hawaii hotspot geology



Productive Programming

• High failure rate

• Slow network

• Fast (local) disk

Speed
Run programs up to 100x faster than Hadoop
MapReduce in memory, or 10x faster on disk.

And Spark is still 10x+ 
slower than MPI



SPARK Analytics on HPC
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You do need a good TCP

Cluster Cluster with RDMA HPC

SPARK on HPC vs. clusters
Network, I/O, and virtualization all key to performance

Chaimov, Malony, Iancu, Ibrahim, Canon, Srinivasan



Architectures for Data vs. Simulation

Massive 
Indepen-
dent Jobs 

for Analysis 
and 

Simulation

Compute-
Intensive 
Dense LA 
for Deep 
Learning 

and 
Simulation

Nearest 
Neighbor 

Simulation

All-to-All 
Simulation 
(3D FFTs) 

and 
analysis

Random 
access, 

large data 
Analysis

Different architectures for simulation?  Can 
simulation use data architectures?  



Data processing with special purpose hardware

3
2

• General trend towards specialization for continued 

performance growth

• Data processing (on raw data) will be first in DOE

Particle Tracking with Neuromorphic chips

Computing in Detectors

FPGAS for genome analysis

Deep learning processors for image analysis



Extreme Data Science

The scientific process is poised to undergo a 
radical transformation based on the ability 
to access, analyze, simulate and combine 

large and complex data sets.    



Computing and 
Data Facilities

Expertise

User Community

Experimental 
Facilities

Superfacility: Integrated network of experimental and 

computational facilities and expertise

A single interconnected 

“facility” where data is 

acquired, stored, 

analyzed and served

Methods, models, analytics, and 

software

Sequencers

Light Sources

Telescopes

Particle 

Detectors

Microscopes

Execution plan: 

one science area 

at a time
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