

Los Alamos National Laboratory

NNSA Investigation of Advanced
Programming Models and Runtime Systems

for Exascale

Patrick McCormick
Programming Models Team Lead / ASC Project Lead

Los Alamos National Laboratory

April 4, 2016

LA-UR-16-22224

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

ASCR Advisory Committee Meeting
American Geophysical Union

Washington, DC

Los Alamos National Laboratory

4/4/16 | 2

Addressing Disruptive Changes: Formation of the
Advanced Technology Development and Mitigation
Subprogram

• ATDM formed in FY14.
• Split into two primary components:

• Next generation Code Development
and Applications (CDA)

• Next generation Architecture and
Software Development (ASD)

• Foundation for the NNSA’s execution
of ECI responsibilities.
• Engaged with ASCR to address the

barriers to exascale and evolving
architectures (including *Forward
activities)

• Supported by phase 2 of the Predictive
Science Academic Alliance Program
(PSAAP)

ATDM

CDA ASD

PSAAP II

University of Florida
University of Illinois

University of Notre Dame
Stanford University

Texas A&M University
University of Utah

http://www.eng.ufl.edu/ccmt/
http://xpacc.illinois.edu/
http://www.c-swarm.nd.edu/
https://www.stanford.edu/group/exascale/cgi-bin/wordpress/
http://class.tamu.edu/cert
http://ccmsc.utah.edu/

Los Alamos National Laboratory

4/4/16 | 3

 The Balancing Act of Meeting Requirements for

Programming Environments within ATDM
• Achieve a balance between:

• Performance
• Portability
• Productivity/Programmability
• Support for multiple languages and models (interoperability)
• Don’t forget: correctness and reproducibility

• ATDM direction: Consider moving beyond the status
quo for addressing these goals
• Explore new models / more effective abstractions
• Shape and influence standards
• Tight coupling between CDA and ASD activities

Los Alamos National Laboratory

4/4/16 | 4

AsyncFetch(X);
DoWork(Y);
Sync();
F(X);

• How much work should I do?
• Is this performance portable?
• When does forward progress

really occur?
• What if I have more work and

data movement happening in
DoWork?
– What resources are in use?

Where is the data? Who is using
it and how?

• Is this modular?

Based on Mike Bauer’s Thesis (Stanford), Legion: Programming Distributed
Heterogeneous Architectures with Logical Regions

The Importance of Programming
Abstractions for Achieving Our Goals

Today: Imperative, explicit data
movement:
• Focus on control flow, explicit

parallelism and low-level data
abstraction.

http://legion.stanford.edu/pdfs/bauer_thesis.pdf
http://legion.stanford.edu/pdfs/bauer_thesis.pdf

Los Alamos National Laboratory

4/4/16 | 5

 Outline: Layers of Abstraction from the Node

Outward
• Node Level Models

• Kokkos (Sandia) and RAJA (Livermore)
• C++ template metaprogramming for performance portability
• Functional-like programming techniques (e.g. functors/labmdas)

• System Level Models

• Legion (LANL)
• DARMA (Sandia)

• Conclusions

Los Alamos National Laboratory

4/4/16 | 6

 Kokkos: Performance Portable Thread-

Parallel Programming Model

• Open source, C++11-based
library for node-level
programming: application
identifies parallelizable grains
of computations and data

Many-core Multi-core CPU+GPU

Kokkos

APU

Applications & Libraries

https://github.com/kokkos/kokkos

Multicore CPU - including NUMA architectural concerns
 Intel Xeon Phi (KNC) – testbed prototype toward Trinity / ATS-1
NVIDIA GPU (Kepler) – testbed prototype toward Sierra / ATS-2
 IBM Power 8 – testbed prototype toward Sierra / ATS-2
 AMD Fusion – via collaboration with AMD
 Regularly and extensively tested
 Ramping up testing

https://github.com/kokkos/kokkos

Los Alamos National Laboratory

4/4/16 | 7

 Kokkos Abstractions: Patterns, Policies,

and Spaces
• Parallel Pattern of user’s computations

• parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)
• Execution Policy tells how the computations will be executed

• Static scheduling, dynamic scheduling, thread-teams, ... (extensible)
• Execution Space tells where the computations will execute

• Which cores, numa region, GPU, ... (extensible)
• Memory Space tells where user data resides

• Host memory, GPU memory, high bandwidth memory, ... (extensible)
• Layout (policy) tells how user data is laid out in memory

• Row-major, column-major, array-of-struct, struct-of-array … (extensible)

parallel_for(nrow, KOKKOS_LAMBDA(int i){
 for (int j = irow[i] ; j < irow[i+1] ; ++j)
 y[i] += A[j] * x[jcol[j]];
});

Los Alamos National Laboratory

4/4/16 | 8

 RAJA: A Systematic Approach to

Node-Level Portability and Tuning
• Loops are the main conceptual abstraction in RAJA

• Based on loop structures and mesh traversal patterns in LLNL ASC codes
(many loops O(10K) but only O(10) patterns – RAJA categorizes these
patterns.

• Lightweight, can be adopted incrementally, does not overburden
maintenance, allows easy exploration of alternative parallel
strategies

• Key abstractions:
• Traversals & execution policies (loop scheduling, execution,

implementation details)
• IndexSets (iteration space partition, data placement, dependency

scheduling)
• Reduction types (programming model portability)

More on RAJA: http://1.usa.gov/1MJXlGd

http://1.usa.gov/1MJXlGd

Los Alamos National Laboratory

4/4/16 | 9

IndexSets Allow Common Algorithms to
Run Safely in Parallel Without Refactoring
or Critical Sections
• Allows loop traversals to execute groups of work in parallel that

guarantee no race conditions in otherwise non thread-safe loops
• E.g. Element volume can be distributed to nodes without

contention-heavy fine-grained synchronization such as
critical sections, atomic operations, and temporary arrays

forall<colorset>(elemSet, [=] (int elem) {
 int p0 = elemToNodeMap[elem][0];
 int p1 = elemToNodeMap[elem][1];
 int p2 = elemToNodeMap[elem][2];
 int p3 = elemToNodeMap[elem][3];
 double volFrac = elemVol[elem]/4.0 ;
 nodeVol[p0] += volFrac ;
 nodeVol[p1] += volFrac ;
 nodeVol[p2] += volFrac ;
 nodeVol[p3] += volFrac ;
}) ;

• Indexsets allow for ‘contention-light’ coarse-grained locking

Parallel
reductions

Los Alamos National Laboratory

4/4/16 | 10

0

2000

4000

6000

8000

10000

12000

14000

FO
M

 (Z
/s

)

LULESH Figure of Merit Results (Problem 60)
HSW 1x16 HSW 1x32 P8 1x40 XL

KNC 1x224 ARM64 1x8 NV K40

Kokkos Performance Metrics (Summer 2015)

Higher
is Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Increasing levels of optimization
(novice to expert hand-tuning).

LULESH: https://codesign.llnl.gov/lulesh.php

https://codesign.llnl.gov/lulesh.php

Los Alamos National Laboratory

4/4/16 | 11

 C++ Metaprogramming Impacts on Productivity

0

4

8

12

16

20

C
om

pi
le

 T
im

e
(S

ec
s)

LULESH Compile and Link Time

Courtesy: Si Hammond (Sandia)

• Template mechanisms can result in:
• Long compile times, large executable sizes, code optimization challenges

Los Alamos National Laboratory

4/4/16 | 12

 C++ Metaprogramming Impacts on Productivity

• Template mechanisms can result in:
• Long compile times, large executable sizes, code optimization challenges

• C++ Embedded DSLs can be even more costly…

“Domain-specific Language Integration with Compile-time Parser Generator
Library”, Zoltan Porkolab and Abel Sinkovics, Proceeding GPCE '10 the Ninth
International Conference on Generative Programming and Component Engineering.

Compilation Times

safe::printf<_S("Hello, %s!")>(”world”);

Los Alamos National Laboratory

4/4/16 | 13

• Leveraging LLVM “domain-specific toolchain” approach
based on work funded by ASCR (Lucy Nowell) and recent
work from the IDEAS Project (ASCR & BER)

• Kokkos constructs recognized and skip template expansion
and instead use semantics-aware code generation.
• SC15 Kokkos tutorial code: Compiles ~4.5x faster

• Early code generation: GPU parallel-for ~5% faster (GPUs), other
statements and architectures a work in progress…

The Lack of “Model-Awareness” is a
Limitation of C++ Metaprogramming...
We are using a lot of “functional-like” programming but the
compiler, optimizer, toolchain isn’t really aware of it all…

https://ideas-productivity.org

Los Alamos National Laboratory

4/4/16 | 14

NNSA Support for Open Source Fortran
solution for LLVM

 LLVM continuing to make strong inroads in HPC
• High quality C/C++ (clang)
• Basis for compiler strategy on Sierra
• Infrastructure lacking a quality Fortran front end

 ATDM kicked off a project in FY15 to fund
NVIDIA/PGI to release their production front-end
Fortran compiler to LLVM community (aka “Flang”)

 Expected to be available for community feedback,
input and contributions in late 2016
• Currently being tested with a small set of alpha

testers
• Many requests to grow team from labs, industry and

academia.

Los Alamos National Laboratory

4/4/16 | 15

 Is the key Cost Really Data Movement?

• “Data movement is
expensive, compute
is free.”

• But…Idle processors
are not free
• Trinity: If you dump

data from memory to
disk you spend 10X
more power waiting on
the data to move than to
move the data!

• No surprise… We
want to keep
processors busy…

Courtesy Greg Asfalk (HPE) and Bill Dally
(NVIDIA)

Operation Energy (pJ)
64-bit integer operation 1
64-bit floating-point operation 20
256 bit on-die SRAM access 50
256 bit bus transfer (short) 26
256 bit bus transfer (1/2 die) 256
Off-die link (efficient) 500
256 bit bus transfer (across die) 1,000
DRAM read/write (512 bits) 16,000
HDD read/write O(106)

Los Alamos National Laboratory

4/4/16 | 16

 Quick Overview of the Legion

Programming Model

Targets heterogeneous, distributed memory machines

• Task: unit of parallel execution
• Task arguments are regions (collection of data w/ an index and field space)
• Regions may be arbitrarily partitioned (by index space) and sliced by field

(access)
• Tasks must specify how they use their regions:

• Privlieges(read-only,write-only,read+write,reduce)
• Coherence(exclusive,atomic,simultaneous) –w/ respect to “sibling” tasks

• Tasks launches follow sequential semantics with relaxed
execution order

https://github.com/StanfordLegion/legion

https://github.com/StanfordLegion/legion

Los Alamos National Laboratory

4/4/16 | 17

Mapper

Task

Mapping Tasks and Data to Hardware
Resources

Region 1 Region 2

CPU
NUMA 0
NUMA 1

CPU
NUMA 0
NUMA 1

CPU
NUMA 0
NUMA 1

CPU
NUMA 0
NUMA 1

GPU
MEMORY

• Application selects:
• Where tasks run and where regions are placed
• Computed dynamically
• Decouple correctness from performance

Los Alamos National Laboratory

4/4/16 | 18

Mapper

Region 1 Region 2

CPU
NUMA 0
NUMA 1

CPU
NUMA 0
NUMA 1

CPU
NUMA 0
NUMA 1

CPU
NUMA 0
NUMA 1

GPU
MEMORY

Kokkos “Processor”

Kokkos “Processor”

Kokkos
Task

• Interoperability: Allow tasks to be written in
different programming models
• Different versions of a task may be provided…

Mapping Tasks and Data to Hardware Resources
Interoperability: Supporting Task-Level Models

Los Alamos National Laboratory

4/4/16 | 19

 Legion S3D Execution and

Performance Details
Weak scaling results on Titan out to 8K nodes

• Mapping for 963 Heptane
• Top line shows runtime workload
• Different species required mapping

changes (e.g., due to limited GPU
memory size) – i.e. tuning is often
not just app and system specific…

Los Alamos National Laboratory

4/4/16 | 20

Workflow: Integration of External Resources into the
Programming Model
• We can’t ignore the full workflow!

• Amdahl's law sneaks in if we
consider I/O from tasks – 15-76%
overhead vs. 2-12% of original
Fortran code!

• Introduce new semantics for
operating with external resources
(e.g. storage, databases, etc.).
• Incorporates these resources into

deferred execution model
• Maintains consistency between different

copies of the same data
• Underlying parallel I/O handled by

HDF5 but scheduled by runtime

• Allow applications to adjust the
snapshot interval based on
available storage and system fault
concerns instead of overheads.

Performance of S3D checkpoints running on 64
nodes (i.e., 1,024 cores) of Titan.

THANKS OLCF!

Los Alamos National Laboratory

4/4/16 | 21

 What do we do about our Legacy Codes?

• Legacy (mostly means Fortran)
• Fortran actually has some nice/helpful…

• Refactor code to use well defined, pure functions/subroutines

• Remaining aspects of Legion-Fortran interface is a work in
progress (unfortunately details can vary between compiler
implementations – one size does not fit all…)

function square(x)
 real :: x, square
 square = x * x
end function

pure function square(x)
 real, intent(in) :: x
 real :: square
 square = x * x
end function

Los Alamos National Laboratory

4/4/16 | 22

Sandia ASC/ATDM Level 2 milestone: Assess
leading AMT runtimes to inform ATDM’s technical
roadmap

• Broad survey of many AMT runtime systems
• Deep dive on Charm++, Legion, Uintah assessing

• Programmability: Will this runtime enable efficient expression
of our codes?

• Performance: How performant is this runtime on current
platforms and how well suited is this runtime to address future
architecture challenges?

• Mutability: What is the ease of adopting this runtime and
modifying it to suit Sandia ASC/ATDM needs?

Performance Findings Programmability + Mutability Findings

Empirical studies show an AMT runtime can mitigate
performance heterogeneity inherent to the machine itself

Legion runtime needs hardening and lacks application
facing API

MPI and AMT runtimes perform comparably under
balanced conditions

Uintah is targeted at Cartesian structured mesh
applications (ATDM requires hybrid meshing capabilities)

Previous experiments show strengths of AMT runtimes for
dynamic applications

Charm++ requires new abstractions and improved
component implementations to realize its full potential

Los Alamos National Laboratory

4/4/16 | 23

 DARMA is a portability layer for AMT runtimes that

addresses key gaps identified in the L2 study

• DARMA serves several key purposes:
• Insulate applications from runtime system and machine architecture
• Improve application programmability
• Synthesize application requirements for HPC runtime system

developers

• DARMA is an embedded DSL (C++11/14) comprising three
layers:
• Application-facing front end API
• Translation layer (C++ template metaprogramming)
• Back end API (abstract classes and functions for runtime

developers to implement)

23

Los Alamos National Laboratory

4/4/16 | 24

Active collaborations with industry, vendors and
researchers are helping to ensure success

• Compiler teams and programming model developers
are improving support for C++ based encapsulation
• IBM, NVIDIA, Intel, GNU, AMD (Trinity/Sierra CoE, DesignForward,

FastForward)
• OpenMP 4.0 OpenMP 4.5 & beyond

• C++ Issues and feature requests coordinated between Kokkos and
RAJA teams, participation in C++ ANSI Standard across labs
(happy to see rest of DOE community joining us)

• Prototyping C++ transformations in ROSE, Clang/LLVM.

• Tool support for C++ templates and new models/tasking

• We have a start, need more activity…

Los Alamos National Laboratory

4/4/16 | 25

 Conclusions

Overall ATDM has used a holistic approach
• Employing all available resources to maximize leverage

• Vendor research (FF/DF)
• ATS procurements (pre-exascale architectures)
• PSAAP2 (aggressive pursuit of exascale solutions)
• ATDM (new codes and supporting software)
• ASCR exascale research
• ASC research in algorithms, software, and hardware

• Questions?

	NNSA Investigation of Advanced Programming Models and Runtime Systems for Exascale�
	Addressing Disruptive Changes: Formation of the Advanced Technology Development and Mitigation Subprogram
	The Balancing Act of Meeting Requirements for Programming Environments within ATDM
	The Importance of Programming Abstractions for Achieving Our Goals
	Outline: Layers of Abstraction from the Node Outward
	Kokkos: Performance Portable Thread-Parallel Programming Model
	Kokkos Abstractions: Patterns, Policies, and Spaces
	RAJA: A Systematic Approach to Node-Level Portability and Tuning
	IndexSets Allow Common Algorithms to Run Safely in Parallel Without Refactoring or Critical Sections
	Kokkos Performance Metrics (Summer 2015)
	C++ Metaprogramming Impacts on Productivity
	C++ Metaprogramming Impacts on Productivity
	The Lack of “Model-Awareness” is a Limitation of C++ Metaprogramming...
	NNSA Support for Open Source Fortran solution for LLVM
	Is the key Cost Really Data Movement?
	Quick Overview of the Legion Programming Model
	Slide Number 17
	Slide Number 18
	Legion S3D Execution and �Performance Details
	Workflow: Integration of External Resources into the Programming Model
	What do we do about our Legacy Codes?
	Sandia ASC/ATDM Level 2 milestone: Assess leading AMT runtimes to inform ATDM’s technical roadmap
	Slide Number 23
	Active collaborations with industry, vendors and researchers are helping to ensure success
	Conclusions

