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ISSUES & EVENTS

Cancer, brain research, and supercomputing

By contributing to health
research, the Department of
Energy could transform its
approach to designing the
next generation of high-
performance computers

hen computers capable of working

at the exascale level (10" floating-

point calculations per second) come
on line, they will be brought to bear on
figuring out how another, quite different
computer, the human brain, works. With
that goal in mind, Energy secretary
Ernest Moniz and National Institutes of
Health director Francis Collins are ex-
ploring how to bring the Department of
Energy, which houses the nation’s lead-
ing supercomputers, into the presider
tial initiative known as BRAIN (Brain
Research through Advancing Innovative
Neurotechnologies; see PHYSICS TODAY,
December 2013, page 20)

T'he brain is just one area of biomed-
ical research that could benefit from the
computational and physical sciences ex-
pertise at DOE and its national laborato-
ries, In December Moniz asked his Sec-
retary of Energy Advisory Board (SEAB)
to look for ways to increase DOE’s con-
tribution to biomedical sciences. A SEAB
task force, cochaired by former NIH and
National Cancer Institute (NCI) director
Harold Varmus and former DOE under-
secretary Steven Koonin, will report to
him in September.

The BRAIN Initiative will require ad-
vances across several scientific fields.
“We need better ways of detecting and
recording neural signals,” says Roderic
Pettigrew, director of NIH’s National
Institute of Biomedical Imaging and
Bioengineering. “Then we need analyti-
cal tools to interpret those signals. We
need ways of deciphering meaningful
signals from noise, an area DOE scien-
tists are accustomed to dealing with.”

Another area of focus is the model-
ing of what goes on in the brain, re-
solved in three dimensions and in
time. “People often don't think of the
time domain of medical data,” notes
Pettigrew, the designated liaison to DOE.
“But life is temporal, and biological
dimensions change in the time domain
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for cooling crystallized samples. This setup

s used to explore the molecular machinery

involved in brain signaling in atomic-scale detail

Proteins fold and unfold, protein r
ceptors go from inactive to active state.

In October representatives from the
two agencies held a jointly sponsored
BRAIN workshop at Argonne National
Laboratory that coincided with a major
neuroscience conference in nearby
Chicago. Reports from those discussions
were delivered to Moniz and Collins b
haven't been made public

“There is a lot of opportunity and a
lot of need in the neuroscience commu
nity to benefit from the tools and the
organization of the labs to do this kind
of big project,” Moniz told reporters in

November, days before issuing his

arge to SEAB.

Dimitri Kusnezov, chief scientist for
DOE’s National Nuclear Security Ad-
ministration, is involved in discussior
with NIH. “The question we're asking
ourselves is, Are there real wins in pus|
ing diagnostics—for example, in a multi-
mode analysis—or is the community
geared to move forward at the same pace
anyway?” he says. “Can we accelera
things in a significant way or not? We
don’t have the answer yet.”

Biomedical research has long bene-
fited from DOE assets. Life-sciences
researchers represent the single largest

sector of users (about 40%) at the DOE
national laborat g y light sourc
half of whom are supported by NIH
And initial genome-sequencing work at
Los Alamos National Laboratory begat
the NIH-led Hu Genome Project

The nanoscale-science research cen-
ters operated by the al labs and
other groups have bee:
sors that can read nanoparticles. “It's
conceivable that nanoparticles with cer-
tain characteristics can be embedded ina
living system like a brain,” says Steve
Binkley, associate director f
scientific computing researct
Office of Science. “And one could 1
also conceive of reading the signals com-
ing out of them. The holy grail is to get
real-time mapping of signals that exist i
neurons as a function of time to ¢
stimuli,” he says. Such mapping has
been done with mice, but scientists used
invasive probes not suitabl esearch
on humans.

Imaging is another DOE strength that
will be useful to BRAIN, Binkley says
T'he labs have expertise using UV, x rays,
IR, coherent light sources, and lasers f
imaging. “It's often not ob at t
outset how one puts all those things to-

gether to image a certain type of thing

Cancer, Brain and
Supercomputing
Three White House Initiatives
* National Strategic Computing

* Precision Medicine

* BRAIN



Joint Design of Advanced
Computing Solutions for Cancer

DOE-NCI partnership to advance
cancer research and high
performance computing in the U.S.

Computing NCl

driving cancer ;
advances National

Cancer
DOE Institute
December 11, 2015 Department Cancer driving

of Energy computing
d advances

Presented to:
Secretary Moniz and Director Lowy
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The NCI-DOE partnership will extend the frontiers
of precision oncology (Three Pilots)

RAS pathway

Cancer Biology D
— Molecular Scale Modeling of RAS Pathways o

— Unsupervised Learning and Mechanistic models
— Mechanism understanding and Drug Targets

PDX mouse model

Pre-clinical Models
— Cellular Scale PDX and Cell Lines O

R—

‘ o
Biopsy sample of tumor

— ML, Experimental Design, Hybrid Models s implanted into a mouse
— Prediction of Drug Response
Cancer Surveillance

— Population Scale Analysis

— Natural Languge and Machine Learning
— Agent Based Modeling of Cancer PateintTrajectories
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Developing new therapeutic approaches to target
RAS-driven cancer

WWWWW

6% of cancers have mutated RQ

~1M deaths/year

uuuuuuuuuu

Molecular Dynamics
Simulation

Modeling RAS biology

ID targets
New inhibitors

Current therapies ineffective

Kagainst RAS-driven cancer/
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Pilot 2: RAS proteins in membranes

RAS activation
experiments at NCI/FNL

X-ray/neutron
scattering

CryoEM imaging

Multi-modal experimental
data, image reconstruction,
analytics

Protein structure

databases
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New adaptive sampling molecular dynamics

simulation codes
Adaptive © N N Adaptive
time Coarse-grain ‘ Classical ‘Quantum spatial
stepping MD MD MD resolution
\/ \/
\_ High-fidelity subgrid modeling
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Kinteraction simulations

Predictive simulation and analysis of

Granular RAS membrane Atomic resolution sim of

RAS activation

Inhibitor target

RAS-RAF interaction discovery

)
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Unsupervised deep

K feature learning

Machine learning guided dynamic

validation
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models

Uncertainty
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Patient Derived Xenograft Models

Patient-derived xenografts (PDX) &

conditionally reprogrammed cell lines A > _ -,: 05 Molecularly characterize,
= [ Create reprogrammed N treat/screen mice bearing
' | cell lines transplants & cells with
o & relevant drugs.

“Pre-clinical clinical trials”

Tumorigenesis

Transplantation
into NSG mice

Tumor/patient
heterogeneity

Nature Rev. Clin. Oncol. 11: 649-662, 2014.
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Pilot 1: Predictive Models for Pre-Clinical Screening

A
Terabytes
v . . . .
Cell Line Machine Learning Based Predictive Models
Compound / \
Screens Cell Line Based Screens Machine Learning Methods PDX Based Screens
; Terabytes ,: ég C g
Cell Line g § 2 g
Molecular E28 5 g
Assays = £
v

k Feature Engineering, Cross Validation, Scalable Compute on CORAL

-

Terabytes

Petabytes >

Uncertainty and Optimal Experiment Design

/ k Small RNAs

Terabytes

KUQ Analysis, Model Selection, Model Improvement, Proposed ExperimentS/

Hypotheses Formation and Mixed Modeling ~

-

Feature Importance Mining Biological Interaction Network Modeling

Petabytes

K Integration of Mechanistic, Statistical and Inferential Modeling j
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Aims for Pre-Clinical Screening Pilot

Reliable machine learning based predictive models of drug
response that enable the projection of screening results from
and between cell-lines and PDX models

Uncertainty quantification and optimal experimental design
to assert quantitative limits on predictions and to
recommend experiments that will improve predictions

Improved modeling paradigms that support the graded
introduction of mechanistic models into the machine learning
framework and to rigorously assess the potential modeling
improvements obtained thereof

U.S. DEPARTMENT OF
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Cancer Patient Surveillance and Information
Integration

Cancer patient demographic and clinical outcomes data
° o s o 0 s o °» o 0
AP LI IR L L L L L)
'N'M 'NH 'N'M AR E AR R R
Pathology Molecular Radlat|on Initial Treatment Subsequent  Survival, Progression,
Treatment Effectiveness Treatment Patient Outcomes

N

A4

General population
optimized treatments ‘§ § §

Future diagnostics _
#7  and treatments

‘ SEER Cancer Information
Resource




Pilot 3: Population Information Integration,
Analysis and Modeling
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Emerging NSCi Public Private Partnership for
Computing Precision Medicine
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The NCI-DOE partnership will extend the frontiers
of DOE computing capabilities

= |n simulation

— Atomic-resolution MD simulations of critical protein complex interactions that will require
exaflops of floating point performance

— New integrations of QM and multi-timescale methods that enable high-accuracy
interactions over extended time windows

— Integration of data-driven modeling and analytics at scale for rapid-cycle new intervention
development and testing in silico

— Extended theory and tools for UQ in multiple spatial and temporal scales

= |n data analytics

— Learning dynamic patterns from molecular to population scale data sets on CORAL-class
architectures

— Integrated machine-learning and simulation systems that bring together mechanistic and
probabilistic models

= In new computing architectures

— Codesign of architectures integrating learning systems and simulation in new memory-
intensive hierarchies

— Growth of new computing ecosystems bringing together leadership-class HPC and cloud-
based data systems

— Integration of beyond Von Neumann architectures into mission workflows

- % U.S. DEPARTMENT OF

JENERGY [ID) NATIONAL CANCER INSTITUTE y



The NCI-DOE partnership will extend the frontiers
of precision oncology (Three Pilots)

= In understanding cancer biology
— Deepen awareness of disease initiation in key RAS-related cancers
— Improve understanding of critical cancer pathways
— Develop new molecular models to probe and explain complexities of cancer
— Develop predictive models to identify novel targets and substances

= In pre-clinical models
— Develop technologies to bridge insight between cell line and PDX models
— Accelerate identification and evaluation of new promising cancer drugs
— Prepare foundations to expand breadth of treatments and conditions for
cancer precision medicine
= By expanding the population’s role in future advances

— Increase comprehensiveness and efficiency of critical information within
cancer registries

— Identify new biomarkers impacting patient outcomes
— Develop capabilities to identify optimal care pathways for cancer patients
— Develop data-driven predictive models of patient health trajectories

R, U.S. DEPARTMENT OF

ENERGY [I[) NATIONAL CANCER INSTITUTE .
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Integration of Simulation,
Data Analytics and Machine Learning

/\\

Large-Scale
Numerical
Simulati

/\T

Scalable
Data Analytics

Learning

U.S. DEPARTMENT OF

CORAL Supercomputers
And Exascale Systems
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Deep Learning and Drug Screening

@Johnson and Johnson
Jorg K. Wegner and Hugo Ceulemans, et. al. (NIPS2014)

“Deep learning outperformed all other
methods with respect to the area under ROC
(auc 0.83) curve and was significantly better
than all commercial products. Deep learning
surpassed the threshold to make virtual
compound screening possible and has the
potential to become a standard tool in industrial
drug design.”



Hybrid Models in Cancer

Genome —
Inform

s| Mechanistic biological [ s T Insight
: +/-Predictive performance
Transcriptome models ' cive p

— Hybrid models

Cancer cell

[ [

i Analyze ;s -
Methylation y >| Machine learning |—> T Predictive performance Predictive performance

+/- Insight T Insight
Proteome -

/)N

Figure 1. Intwo DREAM challenges, high throughput data characterizing cancer cells are used to build predictive models. Mechanistic models provide
insight into the underlying biology, but do not take full advantage of the information within the data to achieve high performance. Machine learning methods

are associative and extract maximum predictive value from the data, but do not always provide insight about mechanism. The future may bring hybrid
models that combine the best of both approaches.

Predicting Cancer Drug Response: Advancing the DREAM
Russ B. Altman

Summary: The DREAM challenge is a community effort to assess current capabilities in systems biology. Two

recent challenges focus on cancer cell drug sensitivity and drug synergism, and highlight strengths and weaknesses
of current approaches. Cancer Discov; 5(3); 237-8. ©2015 AACR.
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The Big Picture Goal

* The challenge is to map the circuits of the brain,
measure the fluctuating patterns of electrical
and chemical activity flowing within those
circuits, and understand how their interplay
creates our unique cognitive and behavioral
capabilities.

 We should pursue this goal simultaneously in
humans and in simpler nervous systems in which
we can learn important lessons far more quickly.

But our ultimate goal is to understand our own
brains.



DENTATE GYRUS

POSSIBLE LONG-TERM OUTCOMES

The BRAIN Initiative has the
potential to do for neuroscience what
the Human Genome Project did for
genomics by supporting the
development and application of
innovative technologies that can
create a dynamic understanding of
brain function. It aims to help
researchers uncover the mysteries of
brain disorders, such as Alzheimer's
and Parkinson's diseases,
depression, Post-Traumatic Stress
Disorder (PTSD), and traumatic
brain injury (TBI).






Goals of the BRAIN 2025

Discovering diversity: cell types

Maps at multiple scales: connectome
Brain in action: dynamic activity
Demonstrating causality: link to behavior
ldentifying fundamental principles
Advancing human neuroscience

BRAIN to brain: integration and translation



NIH Blueprint for Brain

started in 2004.. GC launched in 2009 (15 institutes)

Blueprint Grand Challenges

e The Human Connectome Project is an effort to map the connections of the healthy brain. It
is expected to help answer questions about how genes influence brain connectivity, and
how this in turn relates to mood, personality and behavior. The investigators will collect
brain imaging data plus genetic and behavioral data from 1,200 adults. They are working to
optimize brain imaging techniques to see the brain’s wiring in unprecedented detail.
Building on the success of the Connectome Project, in 2014 the Blueprint authorized funds
to expand the age range of normal subjects to include both young people and older adults.

e The Grand Challenge on Chronic Neuropathic Pain supports research to understand the
changes in the nervous system that cause acute, temporary pain to become chronic. The
initiative has supported multi-investigator projects to partner researchers in the pain field
with researchers in the neuroplasticity field.

e The Blueprint Neurotherapeutics Network is helping small labs develop new drugs for
nervous system disorders. The Network provides research funding, plus access to millions of
dollars worth of services and expertise to assist in every step of the drug development
process, from laboratory studies to preparation for clinical trials. Project teams across the
U.S. have received funding to pursue drugs for conditions from vision loss to
neurodegenerative disease to depression.



Overall Planning Document
(15 academic authors, NIH, NSF, DARPA, FDA)

BRAIN 2025

A SCIENTIFIC VISION

Brain Research through Advancing Innovative
Neurotechnologies (BRAIN) Working Group
Report to the Advisory Committee to the
Director, NIH

June 5, 2014 m National Institutes of Health
Rening Discovery fnto Health

Vision and Philosophy
Priority Research Areas

Implementation goals,
deliverables, timelines
and Costs

6 workshops
~100 Participants

computer scientists?
Mathematicians?



Proposed BRAIN Initiative 12 Year Budget

$500M
$400m —Total
$300M - NEUroscience
~— Neurotechnology
$200M
——— |nfrastructure
$100M -
0 -' 1 1
A A A AN A A A A A A AN A
. Tk Tk TR TR TR TR TR TR TR TR CE
e s T T T T o Y D T N

Figure caption. Proposed 12-year budget for the BRAIN Initiative. Collaborative technology
development is emphasized through FY2019, while discovery-driven science receives
priority beginning in FY2020. ‘Infrastructure’ is for facilities and capabilities that will benefit
researchers across the entire nation, with emphasis on data sharing resources, training in
the use of new technologies and quantitative methods, and possible regional
instrumentation centers during the last half of the BRAIN Initiative.



BRAIN initiative Awards
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BRAIN Initiative Major Areas

Cell Types

Circuit Diagrams

Monitor Neural Activity
Interventional Tools

Theory and Data Analysis Tools
Human Neuroscience
Integrated Approaches



FY2016 Investments
FY2015 ~$200M

* NIH S135M
 DARPA  $S95M
* NSF S72M
* |ARPA Y
* FDA Y

Building off of 57100 million in
commitments announced last year
at NIH, NSF and DARPA, the
BRAIN Initiative is growing to five
participating federal agencies with
the addition of FDA and IARPA.

DOE has a proposed FY17 role for BES, BER and ASSCR



The challenge of understanding the brain
requires extraordinary advances in neuroscience...

... along with cross-disciplinary efforts combining

physics, computation, X- ergy science
) i A )\l : /! W /
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Connectomics Workflow

Tissue
Preparatio
n

Sectioning
& Wafer
Prep

Image
Acquisition
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on &
Synapse
Detection

Visualizati
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Analysis
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Hand segmentation (VAST)
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Kasthuri et al., Cell 2015
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Progress on the Connectome
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Bobby Kasthuri, et. al. Argonne, Uchicago and Harvard



Kasthuri et al., Cell 2015



2 person-years

Kasthuri et al., Cell
2015

1500 pm?
1/666,666th of 1 mm?



APS and X-Rays for Connectome

Kasthuri et. al. Argonne
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In-situ Reconstruction via X-ray
Tomography




Neurolines —
Neuronal Connectivity Analysis
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Al-Awami et al., TVCG 2014



BIGNEURON: Automated Image
Reconstruction for Large-scale
Phenotyplng of Neuron Morphologies

Algorithms (M > 20) Neuron Images (N > 30K) Annotation
Algorithm porting and data analysis workshop to establish “gold standard”
hackathons (4) manual reconstruction

Example snapshot of
automated neuronal
reconstruction
algorithms

Supercomputing (4 centers) Bench testing of Data hosting (1-3 mirror sites)
algorithms across all images

* Integrated data analysis and visualization for petabyte scale datasets on
TITAN/EVEREST
* Hosting about 30,000 neurons + O(200 TB) reconstruction data
Enable standardization of neuronal reconstruction algorithms at scale

Nov 2015: Hackathon

at EVEREST ] ] i
visualization center * Interactive portal to wsuahge and download datasets for users -
Contacts: Arvind Ramanathan (ORNL) & Hanchuan Peng (Allen Institute)
#,OAK RIDGE .
N Laoripy ramanathana@ornl.gov & hanchuan.peng@gmail.com

https://www.ornl.gov/news/digitizing-neurons



https://www.ornl.gov/news/digitizing-neurons
mailto:ramanathana@ornl.gov
mailto:hanchuan.peng@gmail.com

Multi-modal tools for interrogating brain function

Optimize signals
for specific questions

UpConverting Opto-acoustic Fast lonic

\, Nanoparticles / \  Approaches / \ Sensors /

o , ##8 | High-throughput
High Channel-Count Data acquisition Novel Probes Neural
Electrocorticography \  andFPGA / \ [(e-beamlitho) / \ Engineering Lab

= A f, U.S. DEPARTMENT OF Office of
B;Dm,u f ENERGY Science




Critical disease processes take place at scales that
simply cannot be seen, even by today’s best tools

Normal Alzheimer's
=g=1lg Disease

PET scan showing activity in the brain of an Alzheimer’s patient, National Institute on Aging



In vivo: Optogenetics allows visualisation of neural activity

.l,l‘h&\' - ""},’. "“'?P i .."“'."

4, !'"
w.“.’:h} “M' \'.

S Vi
y '

)
| 1 A f

frontal view
~ "
- - -
) : e
; = - )s“ ‘
> A
s S == D sy 4 R
3 ﬂ - ey ;’4. & L vl X
? . ¢ ¢ e ;. -~ . -
i ghl - ‘ . 4
~ .- - e R ‘{j‘ A q ‘ !\. 1) ’
- e . ’ ’ 3 . .".‘:\~‘ A .
3 ¥ s p r“k;iv;‘cjw ney,
¥\ t.-;— ‘. . bl I b ] i ¥ “‘..";’." vy
o e L TIOER A !
et S -y e ' @
- = > - &. " 5 g." A
g TS N
- * ‘
E3 A
1 :
= (4
L ,
L
©
0

lateral view

dorsal view
0.000 s

L "...

100 um



The Functional Connectome:

structure of brain functions

A weighted, direct graph

describing the dynamic,
casual interactions amongst ? '.
neurons in the functioning brain.

(e.g.) Each edge is estimated '.
from data using machine learning.

Neuron

Large
Dimension

UoJNaN

Functional network from human electrophysiology derived using LBNL

developed algorithms
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GlassBrain — Visualization

EEG powered by BCILAB | SIFT
EEG (color indicates “power” and frequency, MRI (Diffusion Tensor Imaging) for structure
Adam Gazzeley Lab - UCSF



mapping tools

Brain-




ASCR can uniquely contribute to BRAIN

LA\ ASCR can play a unique role in BRAIN
computing through advances in applied
mathematics and computer science
together with HPC facilities.

itiative

4

Function Theory & Models

dynamic data abstractions static data

Generation and analysis of raw data

Linking structure to function is a ‘grand challenge’ in general biology and materials

. DEPARTMENT OF Ofﬁce Of

NERGY Science



Top Level Computing Opportunities

* Large-scale Data Analysis
— Reverse engineering (e.g. BRAIN, microbiome)
— Searching, diagnostics and sensors (e.g. id, amr)
— Data integration and bioinformatics (e.g. amr, Cancer)

e Large-scale Predictive (statistical) Modeling
— Predictive Tools (PMI, cancer, public health, amr)
— Hypothesis Formation (e.g. id, amr, cancer)
e Large-scale Explainatory (mechanistic) Modeling
— Molecular Interactions (molecules, pathways)
— Physiological Modeling (cell, organ, organism)
— Cellular Populations (brain, id, cancer, evo-devo, etc.)



Labs are Particularly Good at

Building flexible teams that cross disciplines and
cross laboratories

Sustained technology development needed to reach
a goal and involves partners (vendors, uni, labs, etc.)

Large-scale project management

Production quality software development and
software engineering (code teams)

Building user communities around new scientific
capabilities (facilities, and online services)

Integrating across multiple domains and facilities



DOE NIH Interaction Models

NIH can and does tap into labs via University
Grants and Contracts (extramural)

— Lab Pls with Joint appointments

NIH supported Pls are users of lab user facilities
— Light sources, EMSL, JGI, LCFs, Nanoscience, etc.

— Software and materials sharing

Direct funding/hosting arrangements

— Structural Biology at some labs (APS, ...)
Agency-to-Agency arrangements

— DOE-NCI Pilots?, BRAIN?, ....



What Might be Needed for the Future

* A flexible framework for larger scale
partnerships that tap into the capabilities and
culture of the labs in a more direct fashion
— Partnership projects (Intramural/Laboratory)

* DOE/NCI/Moonshot, Informatics, Computing?
— NIH centric facility hosted at Labs

e National Brain Observatory (e.g. connectome facility)
* Hosted computers/data infras (e.g. “X Commons”)
— NIH projects as “plug-ins”
* Co-Design participant for Exascale Apps
* Intramural computing partnership with ASCR facilities



Computing is a Great Integrator

To truly understand something means we can build
models that predict future states or outcomes and give
us insights or explainations of the behavior of the system

To do this often requires integration of knowledge from
many sources into a coherent computable representation
that can be used to test hypotheses and conjectures

In this sense computing/modeling collaborations often
play the role of grand scientific integrators this is true in
DOE mission space and also is often true in NIH mission
space

Computing collaborations with DOE could improve how
NIH integrates science across domains, institutes and
projects
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