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Motivation and background =

* Reliability is crucial for large-scale systems
* Must confirm reliability models are accurate
* Use data from real systems to correlate to models

Cielo at Los Alamos National Lab Hopper at NERSC / Lawrence Berkeley National Lab

8-core AMD Opteron™ CPUs

8,944 nodes : 1,144,832 DRAM 6,384 nodes : 817,152 DRAM
DDR-3 DRAM, Chipkill-correct ECC DDR-3 DRAM, Chipkill-detect ECC
Production systems

500M+ CPU socket-hours

- 40B+ DRAM device-hours
ce of
ENERGY Science -3-
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Sources of Failure E) (e

» Solder joints and other connector/mechanical failures

 Ephemeral bit upset is tied to energetic particle strikes
(probability is proportional to surface qrea exposure)

Oxide lr.usulation

---------

"~ Depletion Region

' Office of
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Why Focus on Memory EZ s

 HPC has an overwhelming obsession with compute
* But most of your computer is in fact memory
* And the probability of a bit upset is proportional to

silicon surface area
. : Incoming Charged V ‘
Oxide lzzsulatlon Particle

o Depletion Region
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SRAM Structures Consume a LOT of Area on Modern CPUs

AMD Magnycours Die
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nst. Tag/TLB

Branch Predict

x86 Decode

Ucode ROM | | ,

Data Tag/TLB

w h uw B pme =

Each rectangle contains 16k bits of SRAM
100k+ flip flops and latches
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DRAM Involves a lot of Discrete Components  gewa 0
and even MORE Silicon Surface Area e

* Dynamic random-access memory
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— Used for almost all computer main memory
— Single-capacitor memory

— Reads are destructive — must rewrite data
after read (“precharge”)

— Capacitors lose charge over time — must
periodically rewrite data (“refresh”)

 DRAM reliability is important today
— Laptop: O(1-10 GB) of DRAM

— Petascale supercomputer: 0O(10-100 TB) of
DRAM

 DRAM reliability will be critical in the
future
Exascale: O(1-100 PB) of DRAM
— In-package (die-stacked) DRAM

CERY, U.-S. DEPARTMENT OF Ofﬁce Of
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Motivation  ave

* Architectural & micro-architectural approaches to
reliability

* To get it right, you must know the faults to expect

* This talk looks at faults collected in production
systems in the field (validating the fault model)

Office of
Science
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Failure Rates in Context s
What is a FIT? C.< S=

* AFIT is ONE failure per Billion hours of operation

* AFIT rate of 1 corresponds to....
— 1 Billion hours of operation Failure every 115,000 years
— For 8,944 nodes (Cielo): Failure every 12.8 years
— For 71,552 DIMMs: Failure every 1.6 years
— For 1,144,832 DRAM chips: Failure every 36 days

* Real FIT rates (FIT rates for components on Cielo)
— Target socket FIT rate of 1000: failure every 2.3 days
— Target DRAM chip FIT rate of 35: failure every 1 days

Office of
Science
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Terminology

i =

FOREFRONT

Fault

— Theunderlyingcause of an error, such as a stuck-atbit or

high-energy particle strike

Transient fault

— Returnincorrectdata until overwritten
— Random and notindicative of device damage

Hard fault

— Consistentlyreturnanincorrectvalue
— Repairbydisablingor by replacing the faulty device

Intermittent fault

— Sometimesreturnanincorrectvalue
— Under specific conditionssuch as elevated temperature
— Indicative of device damage or malfunction

v
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Terminology

* Error: An incorrect state resulting from an active
Fault, such as an incorrect value in memory
Fault

Detection?

Correction? Does Bit Matter?

Detected Uncorrected Error
(DUE)

officeof |.’h| -
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Methodology ow

e Data collection

m Send data
— O O >
to appllcatlon

Record error

MCA Registers OS Poll
to console

* Use presence of scrubber to coalesce errors into faults

Error Error
Scrub Interval

Potential
Permanent Fault

Transient Fault

Time ‘ Epoch ,
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Parity Protection m
just detects errors Oosaé“som

Data in memory Read-out data
Parity Read Parity
Data bit out Data bit
01011001 1 00011001 1

— 1

) m—— Compared =9

*

Error

The parity bit is calculated from the read-in data. detected
Since the number of 1s is an odd number, the panty bitis "0".
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at the

ECC (Error Correcting Code) Protection m-()“
(SEC-DED) Single Error Correct, Double Error Detect -

Data read from memory

4

Data ECC code
0010 01 o0 --- 0

l ECC code generated l

The read ECC code and the newly
generated ECC code are compared,

4

OK: The data i1s correct

NG: The data contains an error
For 1-bit errors, correctable
For 2-bit errors, detection only

00 * 89 0—
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Interleaving Data for Protection (chip-Kkill) mo“

When data is stored in contiguous locations

: Uncorrectable due to 4-bit error
Failure
—
100110(*---0100 1001 <] --- 0100
When data is stored in When data is stored in
noncontiguous locations noncontiguous locations
*Failure
1001 1001 - 0100 101 1001 - 0100

| Correctable due to 1-bit error

SR, U.S. DEPARTMENT OF Office of
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The Good
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DRAM Fault Rates and MODES

=O= Total Permanent =O= Transient
4 Fault rates
— Constant rate of transient faults 8> \ Py A
. . (o)
— Declining rate of permanent faults =) \ 7% / o P
. = 20 - he o~d \
— >50% permanent faults v Y P
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4 Fault modes T of
— Often affect multiple rows/columns 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
30 Day Period
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DDR Address/Command Parity m'o

DDR-3 Address/command parity
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Address Parity ECC

| Address/command parity is a valuable addition to the DDR spec
PR U-S- DEPARTMENT OF Office of
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SRAM: Case Study
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SRAM Structure
* Uncorrected errors dominated by L1DTag

— Small structure, ~50% of all errors

 L2Tag has ECC: why so many errors?
— One bit per entry is covered by parity

| Details matter: seemingly small decisions can have large impact on system reliabilify |
Office of i
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Per-bit Fault Rate

SRAM Faults

ACCELERATED TESTING CORRECTLY PREDICTS ERROR RATES IN THE FIELD

SRAM faults are well-understood Most errors are from parity-protected structures
< - I 1
o | 1214 %
© ~ 7 1.109 © |
o 1057 4025 00 o
o s 2
3 O ©.
QO D ©_ c* o
:3 °
e © 0k Y
o F o 2W ©
= -
S % N 02
Q o
< - o .
® |2Data L3Data L2Tag L3 Tag Parity-protected ECC-protected

SRAM faults and mitigation techniquesare well-understood
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SRAM Faults

FAULT MODEL IS VALIDATED BY ACCELERATED TESTING AND FIELD DATA

SRAM faults are well-understood At scale, even small structures see faults

15000- 14214

1.214

1.109

1.057 1025

L2 Data L3 Data L2Tag L3 Tag

10000 -

5446

Testing
00 02 04 06 08 10 12 14

(&7
[
o
o
1

per Socket

Per-bit Fault Rate
Relative to Accelerated

Relative Fault Rate

226175407 3 ik

413 1 58

o
1

Chip architects must pay attention to reliable design (and they do)
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Altitude Effects E] e

1974-2014

Measuring cosmic-ray and gamma-ray air showers

Radiation Dose Rate vs. Altitude

A5000
«<——— First interaction (usually several 10 km high]
40000 1)/ 9]
Air shower evolves (particles are created 0
< and most of them later stop or decay) B
35000 0 0 08
g o
B 30000 0
- 0
Measuren 0
S - fluorescen - 25000 00
me of the particles )
Measurement of Cherenkov e (Fly’'sEye 3 Q o
h th d
light with telescopes Resi s - 0
& 20000 o 9
\ < 0, °
Measurement with scintillation counters 15000 Q J
Pz 0 §
= = 10000 | 9
? / ~. Measurement of low-energy muons Q
with scintillation or tracking detectors
Measurement of particles s |9
with tracking detectors '
(with drift chambers or Measurement of high-energy
streamer or Geiger tubes) muons deep underground 0 0
(€) 199 U S0 100 150 200 250
Dose Rate (uRad/hr)
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Location Dependence for DRAM Errors?  EEEZN M )ew
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LDRAM reliability studies must account for DRAM vendor or risk inaccurate conclusions

RENT O
£ D
17 A\
) %
2 &

\‘%‘ &

U.S. DEPARTMENT OF Offlce of /r:}l I’I}
ENERGY oreeo o




at the

Altitude Effects in DRAM?
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Relative FIT/DRAM,
10 20

l / A B C

DRAM Vendor

* Differencein DRAM fault rate on Cielo vs. Hopper

— Effect differs per vendor

— Almost entirely due to a subset of fault modes (single-bit, single-column transient)
* Primarydifference between the two systemsis altitude

— Cielo at 7000+ ft., Hopper at 43 ft.

| Some DRAM devices show a potential altitude effect
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FITs/DRAM

Vendor Effects

Vendor C

58.4%
0%
11.9%
14.9%
9.9%
2.0%
3.0%

B Permanent
B Transient

Fault Mode Vendor A Vendor B
Single-bit 64.6% 69.5%
Single-word 0% 0.3%
Single-column 8.7% 8.8%
Single-row 12.2% 10.6%
Single-bank 13.5% 7.8%
Multiple-bank 1.3% 0.7%
Multiple-rank 1.3% 3.0%
3 7 73.6
o _
©
- 41.2
5
o _
N
o -
A B
Manufacturer

Overall fault rate per vendor
R, U.S. DEPARTMENT OF Office of
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Fault modes are present across vendors
Fault rates differ significantly by vendor
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DRAM: Chipkill vs. SEC-DED ECC ()
- Chipkill ECC

— The abilityto correctanyerrorfrom a single DRAM device

— Requires moreoverhead than SEC-DEDECC(12.5% instead of 7%)
— 30% multibit errors detectableby SEC-DED, but 70% were not

A SEC-DED @ Chipkill SEC-DED: Rate of Faults Causing Undetected Errors
100 25 -
v A A A A A A A _42X 21 F B Larger Error Preceded 2-bit Error
"'5 (o] o - A A 20 - B 2-bit Error Preceded Larger Error
= A
£ 910 =
< 9 Z 151
2 § 3 10 1.6 days 85 days
& 5 1 6—06—06—06—0—06—0—0—0¢ ¢
UV QO L
x c 5
> 1.8 0.2
0.1 T | T | | T T T | 0 - — .
2 3 4 5 6 7 8 9 10 11 B C
Month DRAM Vendor

SEC-DED ECC is poorly suited to modern DRAM technology

CERY, U.-S. DEPARTMENT OF Ofﬁce Of

ENERGY Science -29-
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Counting Faults vs. Gounting Errors o

« Counting logged errors overemphasizes the impact of
permanent faults
— Erroreventsare notindependent
— Asingle faultgenerates an arbitrary numberof errors (0-> infinite)
— Permanentfaults tend to cause more errors than transientfaults

4 The logged corrected error count is meaningless for system health
— Operatingsystempolls for corrected errors(e.g.,once every 10 seconds)
— Buta modern system can experience millions of errors per second
— Consolelogcontainsa(small) sample of corrected errors

4 The logged uncorrected error count is meaningful for system health
— Everyuncorrectederrorisreported to the operatingsystemviainterrupt
— Consolelogcontains an exactcountof uncorrected errors

Incorrect methodology can lead to incorrect conclusions about system reliability

U.S. DEPARTMENT OF Office of
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Hopper has a memory error rate 4x that of Cielo,
but a memory fault rate 0.625x that of Cielo.

Error counts are confounded by other factors
such as workload behavior, they are not an
accurate measure of system health.

— Hopper’s DRAM error rate was 4x greater than Cielo’s € Cieis iz mzs=renable

— Reality: Hopper’s DRAM fault rate was 37% lower than Cielo’s

A M

Median o

Relative DRAM Errors
1 2 3 4 5 6 7 8 9 10

||||||||||||||||
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Month
| Incorrect methodology can lead to incorrect conclusions about system reliability

EEEEEEEEEEEE Office of
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Projecting to Exascale
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SRAM: Projecting to Exascale

AT SCALE, EVEN SMALL STRUCTURES SEE FAULTS

15000 - 14214

10000 -
5446

o
-
-
o
1

226175407 3 413 1

Relative Fault Rate
per Socket

o
1

O’E’{b <3

P 2D D P
F S S GG S
A

A\ \
VYR ENENAN

SRAM Structure

Vendors must pay attentionto reliable design
:« U.S. DEPARTMENT OF Officeof
& ENERGY  scierce -33-




SRAM: Projecting to Exascale

SRAM UNCORRECTED ERROR RATE RELATIVE TO CIELO

4 Two potential systems o 100 102x _
— Small: 10k nodes 46 51x 38
— Large: 100k nodes 14 3 2
= 19x
20
4 Same fault rate as 45nm w o 10 - — £ Ex
— Sky is falling 8 ) 3 6x
o2
o
4 Scale faults per current trend 50
— Sky falls more slowly 0 3 1- -
— Switch to FinFETs may make = N @ N D N L0
this even better c,@ \'b& (:z}‘“ ‘(fz}q’ (O(J \‘V(J
; 9 N @
W o\ Q)
o o % %Q (9& \/’b‘
4 Add some engineering effort SO

— Sky stops falling

SRAM faults are unlikely to be a significantly larger problemthan today

v/\* U.S. DEPARTMENT OF Office of /\I A
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DRAM: Projecting to Exascale m@“

11111111

~o- 8Gbit / High FIT - 16Gbit / High FIT -e= 32Gbit / High FIT
~o- 8Gbit / Low FIT -e= 16Gbit / Low FIT -e- 32Gbit / Low FIT

60 -

30- /
20 =
] —g— =8

Uncorrected Error Rate
(Relative to Cielo)
S
1

1 1 1 1
32PB 64PB 96PB 128PB
System Memory Capacity
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DRAM: Projecting to Exascale =

‘ Uncorrected errorrate 8Gbit / High FIT -e= 16Gbit / High FIT -e- 32Gbit / High FIT
-0~ 8Ghit / Low FIT -#= 16Gbit / Low FIT 32Gbit / Low FIT

— 10-70x error rate of current systems

: 580

— Is the sky falling? 070+
o '560-
W o 50—
T Ty 40 -
o o o %330_
A This is not just a problem for exascale ¢ 2o-
Q10—

— Cost problem for data centers / cloud §" 0 . i i |

32PB 64PB 96PB . 128PB
— Reliability problem in client (smart cars)? System Memory Capacity

A SEC-DED # Chipkill
4 Solutions are out there
— Including for die-stacked DRAM?
— Lots of people working on this...

100
T
10

AAA

1 6—6—06—¢—0—0—0 ¢ 0o

4 Historicalexample
— Chipkill vs. SEC-DED

0.1

I I I I I I 1

2 3 4 5 6 7 8 9 10 11
Month

DRAM subsystems need higher reliability than today, but will likely get it
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Conclusions

* Large systems require reliable design and reliability
modeling

* Field data analysis is necessary to correlate reliability
models and guide DOE investments

— Must measure the underlying fault rate to correctly evaluate
the model

— Must track component supplier to make proper conclusions

 Collaboration between DOE researchers, vendors, and
integrators, and facilities is critical to achieving this

Office of
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Risk Factors for the Future U

e SRAM Structures

— Likelihood of faults: very high
— Risk:low

— Why?: Modelfor particle strikes on CMOS SRAM remains solid
(it’s a matter of engineeringand cost... no magic required)

* JEDECDIMM Structures
— Likelihood of faults: medium
— Risk: medium (lower if move to chip-kill)

— Why?: Componentsupplierhas more pronounced effect than
environmental factors. SEC-DED and DRAM is clearly insufficient

 Stacked DRAM (HBM, etc...)
— Likelihood of faults: medium
— Risk: high (will be lower after field data collected from first sys.)

— Why?: No field test data to confirm very well thought-out
models (might be no issue, but always risk for unverified model)

Office of
Science
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Reliability of Components Set by Market m()

100000

10000

1000

100

SDC FIT

8 s 38 8
& & & &

Year

—&— 100% Vulnerable, 100°% AVF
20% Vulnerable, 100% AVF
—®— 100% Vulnerable, 10% AVF
20% Vulnerable, 10% AVF
—¥— IBM Goal

2004
2005
2010
2011
2012
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Reliability of Components Set by Market

(setpoint for hardware resilience set by market) mo YEARS

(be slighly more reliable than the 0S) T

@ Windows OS W Hard drive O CPU 0O Memory

10,000,000

1,000,000 {

100,000

10,000 {

8

FIT (per 10° hours)

100 |

10

1998 (Win 98) 1999 (Win NT) 2000 (Win 2000) 2001 (Win XP)

Figure 2. Failures in billions of hours of operatign.z=



Synergy with Embedded Industry S e

* The error tolerance requirements for self-driving
vehicles are approaching that required

 The same microarchitecture error-tolerance
techniques will be employed in both places (more
leverage for HPC resilience)

e ...l just wrote this a few seconds ago in response to
Martin Berzins’ question during the break... (so lets
just talk about this)

Office of
Science
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arXiv.org > astro-ph > arXiv:1410.2895

Astrophysics > Instrumentation and Methods for Astrophysics

Observing Ultra-High Energy Cosmic Rays with Smartphones

Daniel Whiteson, Michael Mulhearn, Chase Shimmin, Kyle Cranmer, Kyle Brodie, Dustin Burns
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We propose a novel approach for observing cosmic rays at ultra-high energy (> 1018~eV) by repurposing the existing network of smartphones
as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by
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phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.
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DRAM FAULT Rates and MODES

A Fault rates

— Constant rate of transient faults
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The more more general techniques have more overhead (like TMR), but can

be used for broad array of code without any understanding of the code. Mike e
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