Reversible Software DOE ASCAC
Execution Systems

Research funded by DOE (ASCR)
Early Career Award ERKJR12 2010-2015

Kalyan Perumalla

Group Leader, Discrete Computing Systems
Distinguished R&D Staff Member, ORNL
Adjunct Professor, Georgia Tech

PO Box 2008, MS-6085
Oak Ridge National Laboratory (ORNL),
Oak Ridge, TN 37831-6085

perumallaks@ornl.gov
www.ornl.gov/~2ip

865-241-1315 Washington, DC, USA
December 10, 2015

'lﬂ EﬁPEﬁEFY *’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

mailto:perumallaks@ornl.gov
http://www.ornl.gov/~2ip

Reversible Software Execution Systems

Objectives

= Enable and optimize reversible computing to overcome the
formidable challenges in exascale and beyond

= Memory wall: Move away from reliance on memory to
reliance on computation

= Concurrency: Increase concurrency by relieving blocked
execution semantics, via bi-directional execution

= Resilience: Enable highly efficient and highly scalable
resilient execution via computation

= Prepare for emerging architectures (adiabatic, quantum
computing) that are fundamentally reversible

Approach

= Tackle the challenges in making reversible computing
possible to use for large scientific applications

= Automation: Reverse compilers, reversible libraries

= Runtime: Reversible execution supervisor, reversibility
extensions to standards

= Theory: Unified reversible execution complexities,
memory limits, reversible physical system modeling

= Experimentation: Prototypes, benchmarks, scaled
studies

Relaxed Efficient Support for
Synchronization Debugging

Others
Adiabatic computing,

Solution: Quantum

Computing, etc.
Reversible
Software

Efficient Support for
Fault Tolerance

Reversible Computing Software is Most Promising in Tackling Key
Software-level Challenges in Exascale and Beyond

= Provides a new path to

Impact

Pr=Faulted processor
Pr=Rolled-back processor
LC=Latest checkpoint

Forward computation

P
lie

exploiting inherent model-
level (in contrast to

B when

system-level, opaque) e,
reversibility P H—H P
Provides an efficient &
alternative to b e
checkpoint/restart S e T
: e
approaCheS P s sk I P, el VI -
"\IIIILICr FII!HLICfH I
= Addresses fundamental e Femon,.

computational science

questions with respect to

(thermodynamic) limits of

energy and computation % OAK RIDGE NATIONAL LABORATORY

time MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

ReveR-SES (Continued)

Selected Advancements Selected Publications —
: - _ = Perumalla, “Introduction to Reversible peversible Comping
= Reversible source-to-source compilation techniques Computing,” CRC Press, ISBN

1439873403, 2013

= Perumalla et al, “Towards reversible basic
linear algebra subprograms...,” Springer

= Reversible physical models (reversible elastic collisions)
= Reversible random number generators (uniform, and non-

uniform distributions, including non-invertible CDFs) TCS, 24(1), 2014
= Reversible dynamic memory allocation :
= RBLAS — Reversible Basic Linear Alaebra Suboroarams = Perumalla et al, “Reverse computation for rollback-based
on CPUs and GPUs ! brog fault tolerance...,” Cluster Computing Journal, 17(2), 2014
= Proposed reversible interface for integer arithmetic = Perumalla et al, “Reversible efastic collisions,” ACM

TOMACS, 23(2), 2013

Rollback Ti —
_____________________ EqrwaerigTr:lge(rsg?) e I OUthOk
--------------- Irreversible ' Reversible | Reversible Irreversible
Program . Program | Program Program
--- Irreersible Irreersible Rev-e\j}rsible ' Reversible
Machine Machine Machine Machine
... = = —— :
(a) Existing (b) Short-term (¢) Medium-term (d) Long-term
= Reversible programming models, runtime, middleware

SS1.GPU SS2.6PU ROGPU = Reversible hardware technologies

= Reversible numerical computation
Reversible computing-based recovery significantly more efficient than , o
memory-based recovery. Speed and memory gains observed with ideal = Reversible applications
gas simulation on GPUs

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Book

& @ www.amazon.com/Introduction-Re Contents
- |. Introduction
Click to LOOK INSIDE! I. Theory

l1l. Software
V. Hardware
V. Future

Inbrdo L iEn Lo

Reversible Computing

.....

Product Details
Series: Chapman & Hall/CRC Computational Science (Book
Hardcover: 325 pages
Publisher: Chapman and Hall/CRC (September 10, 2013)
Language: English
ISBN-10: 1439873402
ISBN-13: 978-1439873403
Product Dimensions: 9.3 x 6.2 x 0.9 inches

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversible Computing Spectrum

Computational
Example Component

C, C++ Irreversible
FORTRAN Language
v
Sort, Irreversible ‘
Math Program

Forward-only

RCC Compller

86 Irreversmle
Instruction Set | S

ItIONa

Computer

v

NAND, Irreversible
NOR Gates

v

Irreversible
Circuits

[rad

Cross-compile

GCC, |rrever5|ble ‘ ‘

Cross-compile

2,
o

w Irrever5|ble ‘ ‘
3 |

Reversible |Janus E ;U
i Interpreter
Comp|ler P O (D
Reversible (-B (<D
Pendulum
te Instruction Set O —
- - O
Reversible O -
Computer w > @)
v D o

Computational
Component Example

Reversible |Janus,
Language R

v

Reversible Sort,
Program | Math

v

Reversible CNOT,
Gates CCNOT

v

Reversible
Circuits

#, OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversible Logic: Considerations

* Reversibility Conservation
— Ability to design an inverse circuit ~ — Number of 1's in input is same as
for every forward circuit number of 1's in output for every
— Inverse circuits recovers input Input bit vector

signals from output signals

— Inverse may be built from same
or different gates as forward
circuit

* Adequacy

— 2-bit gates are inadequate for
reversibility and universality

. . — 3-bit gates are sufficient for
 Universality reversibility and universality

— Ability to realize any desired logic, Examples

via composition of gates _ _
— Common approach: (AND, OR, — Fredkin and Toffoli gates are well

known for reversibility and
NOT) or (NAND) or (NOR) universaliy y

&O\K RIDGE NATIONAL LABORATORY

EE

Reversible Logic: Fredkin Gate

Controlled Swap (CWAP)

3-bit Instance

Input | Output Description

o Yo = Toxg + Toxq | If x5 is set, then yg = xg else yg = 21
1 Y1 = Toxo + o1 | If 2o is set, then y; = x1 else y; = xg
o Yo = T2 Pass through unconditionally

3-bit Fredkin gate truth table

Input Bits || Output Bits || Permutation Fredkin-based reversible AND gate\

o | 1 | 22 || Yo | Y1 | Y2 o T1 X2 [Yo Y1 Y2
O o0 10 0 1

0 [0 |1 0 [0 |1 1-cycle 1 0 111 o0 1
0 |1 |1 0 |1 |1 1-cycle o 0 olo o o

1 0 1 1 10 |1 1-cycle 1 0 0|0 1 O

T (1 |1 |1 [1 |1 | I-cyde
0 |0 [0 [[o]0o [0 [1-cycle To—* —> Yo = To ® T2
0 1 0 1 |0 |0 9 | z1 = 0—» Fredkin > Y1 = 2o ® T2
1 [0 |0 o |1 |0 |Fwdel N B
1 |1 |0 |1 |1 |0 1-cycle -)

#, OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversible Logic: Toffoli Gate (CCNOT)

4 Y4)
Input bits || Output bits | Permutation Lo T1 %2 | Yo Y1 Y2

o | T1 | T2 || Yo | Y1 | Y2 0 0 1 0 0 1

0]0O [0 JO O [0 [Icycle o 1 1470 1 1

0 |0 [T [0 0 [T [1=cycle 10 1,1 0 1

0 [1 [0 o [1 [0 [1-cycle 11 1]1 1 0

O (1 |1 |0 |1 |1 1-cycle

1 10 {0 (1 |0 |O 1-cycle Zo— — Yo = Zo

i (1) (1) i (i i l-cycle r1—» Toffoli Y1 =1

1 1 1 1 1 0 2-cycle]l Ty = 1—> Gate — Y2 = To @ I

_ _ = Zo®T1
3-bit Toffoli gate truth table _
Example use of Toffoli Gate for a
Generalized w-bit Toffoli Gate _2-bit NAND operation J
~ R
Input Bits Output Bits Permutation

o Tw—2 | Tw_1 | Property Yo Yw—2 | Yw—1 | Property

1 1 0 x; = 1 for all 1 1 1 y; = 1 for all 2-cycle §

1 1 1 0<i<w-2 |1 1 0 0<i<w-2|“

o Tw_2 | Tw_1 | T; # 1 for some || xg Tw_2 | Tw_1 | y; = z; for all | 1-cycle

0<i<w—2 0<:<w-—1

N Y,

*a OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Relaxations of Forward-only Computing
to Reversible Computing

Compute-Copy-Uncompute (CCU)

« Adiabatic Computing; Bennett's Trick

Forward-Reverse-Commit (FRC)

« Optimistic Parallel Discrete Event Simulation, Speculative Processors

Undo-Redo-Do (URD)

« Graphical User Interfaces

Begin-Rollback-Commit (BRC)

 Databases, Nested Tree Computation Scheduling; HPC Languages

% OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Compute-Copy-Uncompute (CCU) Paradigm

Forward-only | Compute-Copy-Uncompute Execution

F(P) CCU(P) = F(P) ~ Y (F(P)) ~ R(F(P))

Notation Basic algorithmic building block to avoid

bit erasures in arbitrary programs

hU
|

Program code fragment
P) = Traditional forward-only execution of P
P Reversible forward execution of P Charles Bennett, “Logical Reversibility

Saving a copy of output from F(P) of Computation,” IBM J. Res. Dev.,
Reverse execution of P after F'(P) 17(6), 1973

.
Juoge
I3

[

X ~Y = X followed by Y
CCU(f)
H; =F o— _z(:c) x = Input bits
f f(x) = Output bits
> [= Clean bits
d = Dirty bits
l d F' = f expanded for inversion
P! ~ F~! = Inverse of F
F-1 f~! = Inverse part of f in F~!
* J e = Copy operation
f(z)

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Forward-Reverse-Commit (FRC) Paradigm

Forward-only

Forward-Reverse-Commit Execution

Time Warp algorithm

Basic operation in optimistic parallel
discrete event simulations such as the

Program unit

Forward execution of P
Reversal of F'(P)
Committing F'(P)
Program start

Normal exit

No-op exit

F(P) FRC(P) = [F(P) ~ R(P)|* ~ F(P) ~ C(F(P))
Notation
P = Program code fragment
F(P) = Traditional forward-only execution of P
F(P) = Reversible forward execution of P
R(P) = Reverse execution of P after F(P)
C(F(P)) = Committing to irreversibility of F(P)
X ~Y = X followed by Y
X* = Zero or more executions of X
FRC(P) P=
F(P)
R(P)
S — F'(P P)l—» E
(P)—e+(C(P) et
S
O <—6—R(P) L
L]
O —

Choice in execution path

#, OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Fundamental Relation of Reversibility to
Energy Consumption for Computing

* Initial Question * Follow-on Question
What is the minimum energy ~ What is the minimum number
needed/dissipated to of bit erasures needed to
‘compute?” ‘compute?”
— Initial thesis — Initial hypothesis
Every bit operation dissipates a There would be a non-zero,
unit of energy (kTIn2) computation-specific number
— Next development — Bennett’s surprising solution:
Not every bit operation, but Zero bit erasures! Bennett's
every bit erasure dissipates a “compute-copy-uncompute”
unit of energy (kTIn2). algorithm avoids all bit erasures
Other bit operations can be for any arbitrary (Turing) program
implemented without energy — Further refinements
dissipation Algorithmic complexity, tradeoffs
Partial reversibility

%O\K RIDGE NATIONAL LABORATORY

EE

Bennett’'s Reversible Simulation of
Irreversible Turing Machine Programs

C O
2. Save state 5. Save output 4
1. Forward 15t half j 4. Forward 2™¢ half
ol < 3. Reverse 15 half P 6. Reverse 2% half
3 =
N 7. Forward 1% half again =
9. Reverse 15 half a,gairT
i
T8. Erase state

I Cc-!

. Forward execution from initial state with input I to midpoint
. Saving the half-way state C'

. Reverse execution from midpoint back to initial state

. Forward execution from midpoint to final state with output O
. Saving the final output O

. Reverse execution from final state back to midpoint

. Forward re-execution from initial state with input I to midpoint
. Reversibly erasing C' with C~!

. Reverse execution from midpoint back to initial state

Time(T) = 6Time(%)

Time(1) =1,

O 00~ O Ut = Wi

Time(T) = 6'°82T = 10826 — l+logs 3 o 7259 Space(T) < Slog, T < Slog, 2° = S?

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Manifestations of Reversible Computing

Energy-Optimal Computing New Uses Relevant to High
Hardware Performance Computing
« LOW-power processors Synchronization in Parallel Computing

— Generalized Asynchronous Execution
— Super-criticality
— Low-level Performance Effects

» Adiabatic circuits Processor Architectures

« Asymptotically isentropic — Speculative Execution
processing — Very Large Instruction Word (VLIW)

— Anti-Memoization (sic)
Efficient Debugging

Fault Detection

Fault Tolerance

Quantum Computing
Others

*’ OAK RIDGE NATIONAL LABORATORY

EE

Reversible Model Execution: Case Study

» Example: Simulate elastic collisions reversibly

n-particle collision in d dimensions, conserving
momentum and energy

Incoming velocities X', outgoing velocities X

» Traditional, inefficient solution

In forward execution, checkpoint X'

In reverse execution, restore X' from checkpoint
— Memory M proportional to n, d, and #collisions N,

M=nxdx8x N, bytes

» New, reversible software solution

Generate new reverse code
In forward execution, no checkpoint of X'

In reverse execution, invoke reversal code to
recover X' from X

Memory dramatically reduced to essential zero
We have now solved it for n=2, 1<d< 3, and n=3, d=1

#{ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

References

ACM TOMACS 2013, arXiv.org Feb’13

Reversible Simulations of Elastic Collisions*

Kalyan S. Perumalla'

Vladimir A. Protopopescu

Oak Ridge National Laboratory

One Bethel Valley Rd, Oak Ridge, TN 37831-6085, USA
February 5, 2013

Cluster Computing Journal: Special Issue
on Heterogeneous Computing, 2014

Reverse Computation for Rollback-based Fault Tolerance

Abstract

Consider a system of N identical hard spherical p4
box and undergoing elastic, possibly multi-particle,
algorithm that recovers the pre-collision state from
system, across a series of consecutive collisions, wit]
head. The challenge in achieving reversibility for an
general, n < N) arises from the presence of nd—d—]
angles) during each collision, as well as from the co
placed on the colliding particles. To reverse the collis

in Large Parallel Systems

Evaluating the Potential Gains and Systems Effects

Received: 18 February 2013 £ Accepted: 13 May 2013
& Springer Science+Business Media New York 2013

Abstract Reverse computation (s presented here as an im-
portant future direction in addressing the challenge of fault
tolerant execution on very large cluster platforms for paral-
lel computing. As the scale of parallel jobs increases, trodi-
tional checkpointing approaches suffer scalability problems
ranging from computational slowdowns to high congestion
at the persistent stores for checkpoinis, Reverse computation
can overcome such problems and is also better suited for par-
allel computing on newer architectures with smaller, cheaper
or gligrﬁy-l:l'lluiq.-ul. miemories and file HYRLEITIN, Imitinl evi-
dence for the feasibility of reverse computation in large sys-
tems is presented with detailed performance data from a par-
ticle {ideal gas) simulation scaling 1o 65,536 processor coras
and 950 accelermtors (GPUs). Reverse computation is ob-
served o deliver very large gains relative 1o checkpointing
schemes when nodes rely on their host processors/memaory
to tolerate faults at their accelerators. A comparison between
reverse computation and checkpointing with measuremenis
such as cache miss ratios, TLEB misses and memory us-
age indicates that reverse computation is hoard to ignore
as o future altemative to be pursued in emerging architec-
tures,

Reverse computation for rollback-based
fault tolerance in large parallel systerms

Kalyan 5, Perumalla & Alfred |, Park

Charian § mampuiing
—— CLUSTE
— COMPUTINGS

Chsti Lamgnd
[T

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

n-Particle d-Dimensional
Elastic Collision Constraints

SV =S V=ai
1=1 1=1 .
. - > Dynamics,
Y (V)P =) (V) =E>0
=1 =1 /

Vi, j such that particles | 75; - (17’ i =V ;) < 0 (pre-collision)

: . : L Geometry.
¢ and j are in contact | 7, . (V; — V;) > 0 (post-collision)

*’ OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

2 Particle Collision in 2 Dimensions

.......

. Phase space
 post-collisior

....
......

*’ OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Elastic Collision Constraints for 2
Particles in 3 Dimensions

a+b+c=«w

\

a?+b +c*=46,30 >a2J

satisfied for any given geometric

[Only two of these three need be]

configuration ry1,739,713 > 0

» Dynamics.

Tzl'(a—b)>0,\
7’32'(6—6)>0,
7’13'(C—a)>0j

> Geometry.

2
A 2 —b b
a’ + 3 2 :5—a—,wherea _ 2 ,andb:a—'_ ,
1 3 V2 V2
\ V3 /
2
a:%cosqbl,g :?a—l—\/ﬁ)\\/_smm,)\ V2 5—% and ¢1 € [0,2m)

*’ OAK RIDGE NATIONAL LABORATORY

EE

Sub-Problem: Reversibly Sample the
Circumference of an Ellipse

2
a = %cosqbl, b = ?a—l— \/;\/gsinm, A=1v24/6 — %, and ¢1 € [0,2m)
~_ A Major Sampling Challenge
v {@ None of sampling procedures
q LW In the literature iIs reversible
X

Needed a New Algorithm
dy New sampling algorithm is
designed to be reversible

#, OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

General Sub-Problem: Reversibly Sample
the hyper-surface of a hyper-ellipsoid

Procedure 5 (G — W): Generate the Parameters ¥ of a Random Point on
the Surface of an s-Dimensional Hyper-FEllipsoid, Hs, using Random Numbers G =
{G1,...,Gs—1}

2
1: Input: s,{s\; | 1 < i < s}, where integer s > 1, and > ._, (IT) = 1 is the

hyper-ellipsoid
2: OQutput: {v; | 1 < i < s}, where ; are the parameters of
a random pomt (7@1,...,+2s) on the hyper-ellipsoid, such that ,z; =

s A COS P H;,«—1 sing; for all 1 <i <s, and rzs = A]_[3 | sin;

Multi-particle (>2) collisions

New Algonthm require hyper-ellipsoid sampling

* The first algorithm to correctly e ee
sample an arbitrary dimensioned Y
hyper-ellipsoid
» Moreover, it does so reversibly! ee ee
C3 @ @ C4

#’ OAK RIDGE NATIONAL LABORATORY

EE

100,000 Particles Reversibly Simulated

on CPU

i LHLL.:\P’UJHJ i’“ts Ll
if collided|iteration) then
4 num_collisions < num_collisions — 1;
] checkpoint_restore(state_history, save_t)
positions, velocities);
5 end
else
repeat
) reverse(particle_rng);
) reverse(particle_rng);
i « random particle id;
J < random particle id;
reverse(particle_rng);
1 reverse(particle_rng);
] until i /= j ;
; if collided|[iteration] then
7 num_collisions <— num_collisions — 1;
3 reverse(dt_rng);
) dt < random();
) reverse(dt_rng);
reverse_collision(i, j, positions, velocitic
reverse_movement(dt, positions, velociti
end

4000 -
Rollback Time (ms) =
Forward Time (ms) =<
3’0} o FO (ms) :
3000 [gy -
2500 B ;:‘:‘:" ”””
e ‘
35
2000 | e
J
.
’-VV'V RV
1500 - S
GRS
FSPHH AR A
1000 % S .
RIS AHAK KK
S PR ICHK K KR
bevele! DKL A A A
IS PR ICIC KR X
s SRR
500 e 0000000‘0‘0’0‘3&&:::::::::.:.:“:::::1 """""""""
LIRS o
S S IR O XSRS RRH KL
00008
0 OSSR XA A AR

SS1-CPU SS2-CPU RC-CPU

Reversible computing-based runtime performance significantly
better than that of checkpointing-based approaches

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

100,000 Particles Reversibly Simulated
on GPU

4000 _
Rollback Time (ms)
3500 |- [N Forward Time (ms) =0
3000 I
2500] % % ‘: ,, | AMD Interlaga:nm. nVidia Tesla X2090

EaEAEAENEAGEA RS
Cwnwrsbmi Compute Unit | | Compute Unit | | Compute Linit | mmam | : " | maw: mma]] L
u;F._mI u_;w m;n |_r_¢_;_-|m |
U | | o | e | o |
4L 4 Ui PCle

| |z 2 L2 = e |
2000 R, o e — a— Shared L2 Cache
e EREAEAENEAAEAEED

Compute Unit | | Campute ':.:T "n;n‘mm Unit | | Compute Ut
1500 b | KL A ol ifid el e
CRIKKILKKE s s sescEsm— || N1 | Cray Gemini
25 5 Router
% e :
1000 + | % R Titan GPU Accelerator

5
55
eledele!

&5
500 |- oSeseseseterel
000

255
FREES
2RSS

0

SS1-GPU SS2-GPU RC-GPU

Gains from reversible computing software dramatically
pronounced on GPU-based execution with large no. of particles

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Performance

ISIONS

o
=
i
=
q
&
e

Q
£
=
B
&
o
T8

PO 0a0. 0.0 0. 0000

[0 X o
SRRRRRERAS

+

Max Forward Time

S
M

ST
j}

-
B
PR RTINS

A
g

N\
7

T AN

L\\F‘—‘gx

o

Sl

e
b N
e

‘e
v

[

Forward L1 DCM R

Max Total Time
Forward L2 DCM
Rollback TLB DM

Rollback L1 DCM
Rollback L2 DCM

101 16
14 -

Increase iIs due to Better Memory

Reversible Coll

Behav

AN O
—

)
0]
w

3e+09
2.5e+09 -
2e+09 -
1.5e+09 -
1e+09 -
5e+08
0

) swl

3.5e+09 -

Soss||N MEY

*’ OAK RIDGE NATIONAL LABORATORY

0
1
000
System gize

RC
PSSo
OSs+

FSS

DEPARTMENT OF ENERGY

MANAGED BY UT-BATTELLE FOR THE U.S.

A Fault Tolerance Scheme that Builds on
Reversible Computing Software

P Faulted processor
—RoHed back processor
LE‘ Latest checkpoint

Forward computation

I I | I N I I IO O I I IO I I [I I | : .
Pr LU I R L B Pr LI, L I B L B B L 9 * Relieves file system
r r 1
gf;;nﬁréd congestlon
Forward computation’ ° Relaxes need for
PIIIIIIII |] | pIIIIIIII 11 | {
ARE NS U0 I O O O global snapshot
LCr LCr Fault
point
y « Enables node-level
freedom of
S N B I T P, el LU L checkpoint frequency
gamppemsim o oL ARl I |
| Pffa“'ted:> « Avoids message
replay
AN NEEEEE IR
I:'"|||||| I:'*'||||||||| |
Rettart cu putation
gglgt Recomputation

“Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems,”
Cluster Computing Journal: Special Issue on Heterogeneous Computing, 2014

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversible Languages and Programming

Constructs

e Janus

e R

e SRL, ESRL
e Reversible C

Irreversible

Reversible

JL:

:

jump, e, JL

b

FL: jumpto, e;, TL ______

|

TL: jumpfrom, ey, FL —.

!

*’ OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Janus — Reversible Conditional

Forward Reverse

% IF eq IF e5
= || THEN S THEN S;*
- ELSE S5 ELSE 82_1

FI es FI e

U U

int v =eq; int v = e9;

if (v) S, if (v) S;t
O else So else S, *

assert(v == e5); assert(v == eq);

#, OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Janus - Reversible Looping

Forward Reverse
FROM e4 FROM eo
2 1| DOS; DO S;*
= || LooP S, LOOP S, !
= || UNTIL e, UNTIL e,

U U
assert(ey); assert(es);
for(;;) for(;;)

{ -
Sq ST

O if (eg) break; if (eq1) break;
S, Syt

assert(ley);

assert(lesy);

*’ OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Janus - Reversible Looping (continued)

Forward Reverse
FROM e; FROM e
DO S, DO S;*
LOOP Sy LooP S; !
UNTIL e UNTIL e

[|
| |

FS €1 Sl !62 S2 !61 Sl IBQ FE = RS GQISI_I!Gl 52_1!62 Sl_l €1 RE

FS=Forward start FE=Forward end
RS=Reverse start RE=Reverse end

*’ OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Janus — Reversible Subroutine Invocation

Callee Mode

Caller mode || Forward | Reverse
Forward CALL UNCALL
Forward UNCALL CALL
Reverse CALL UNCALL
Reverse UNCALL CALL

#, OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Janus — Other Constructs:

Swap, Arithmetic, Input/Output

Forward

Inverse
"CALL mame UNCALL name
UNCALL name CALL name
T 1 2 1 2
var : var var : var
name += erpression name —= erpression

name —= erpression name += erpression
name "= ETPTESSILON, name "= empressz'on'
"READ name WRITE name '
"WRITE name READ name

%O\K RIDGE NATIONAL LABORATORY

EE

Jump Instruction

Irreversible Reversible
jump, e, JL FL:A jumpto, €7, TL —
Y Y

JL: cer g TLiujumpfrom, ey, FL —|

Due to their symmetry, jumpfrom and jumpto can simply drop their tags
and become a single instruction type jump

*O\K RIDGE NATIONAL LABORATORY

EE

Automation: Unified Composite Approach

 Approaches combined to provide
unified composite for reversibility

Reversibility
Support

Checkpointing

Periodic

Incremental

Reversible
Computation

Automated

Compiler-
based

IEPEEE
based

Library-based

Programmer

Assisted

Source code-
based

Model-based

Pragma-based

% OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Automation: Source-to-Source Compiler

* Source-to-source compilation approach

 For implementation ease, memory
minimization over application code can be
achieved via #pragma hints by the user

Application software
to be reversed

Reverse
—— . —
compiler

Executable

Forward and
reverse functions

Normal

Runtime Engine

\. compiler /™

Reversible

Libraries

Reverse
Compiler

*O\K RIDGE NATIONAL LABORATORY

EE

Automation: Libraries and Interfaces

Reversible versions of commonly-used libraries

« Example 1. Reversible linear algebra building blocks
— Defining reversible interfaces of classical forward-only sub-programs
— Prototypes in C and FORTRAN, executable on CPUs and GPUs

« Example 2: Reversible random number generation
— Complex distributions, inverse or rejection-based methods

— Reversible random number generator RRNG (to be released soon) in C, Java,
and FORTRAN

— Large period, multiple independent streams

« Example 3: Reversible dynamic memory

— Memory allocation and de-allocation, both of which are individually and
separately reversible

« Example 4: Reversible integer arithmetic
— Proposed framework for new internal representation and reversible operations

EE

RBLAS - Reversible Basic Linear Algebra
Subprograms

Reversal via Computation

BLAS Levels 1
CPU, GPU

2 and 3

Cache and TLB effects
Accuracy of reversal (empirical)

‘Call |F0rward H Reversal HT}-'pes‘Notes

XGER [A +azy” + 4 Ae—ozy +4A S,D |General

XGERU|A + azy” + A Ae—azy’ + A C,Z |General

XGERC|A + azy™ + A Ae—azy' + A C,Z |General

HER |A « azz™ + A Ae -z + A C,Z |Hermitian

HPR [A « azz™ + A A —azz +A C.Z |Packed Hermitian
xHER2|A & axy™ + y(ax)” + A[|A & —azy™ — y(ox)® + Al| C,Z [Hermitian
xHPR2|P & azy” + y(azx)” + P||P —azy™ — y(az)™ + P|| CZ |Packed Hermitian
SR Y ~azz’ +Y Y « —azz’ +Y S,D |Symmetric

xSPR |P azz’ + P P+ —azz’ +P S.D [Packed

wSYR2|Y «azy” +ayz” +Y || Y & —azy’ —ayz’ +Y || S.D [Symmetric
xSPR2|P azy” +ayz’ + P || P+ —azy” —aye” +P || S.D [Packed

lllustration: Level 2 Forward-Reverse Interfaces

Prototype and Performance Study

 “Towards Reversible Basic Linear
Algebra Subprograms” Perumalla and
Yoginath, Transactions on
Computational Sciences, 2014

llustration of Reversible Run time (GPU)
(lower is better)

10°

o
=

10°

107!

|=e~ zSCAL-RC
|-¥~ zSCAL-CP

7/

o, =6~ zROT-RC

N T =y~ zROT-CP

N
/

102 10®* 10*
1 1 L

107
L

10°
1

10° 10" 10°

10°

100 108 10° 10 10° 105 107 108

RC=Reversible Computing; CP=Checkpointing

*’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversible Linear Congruential
Generators (LCG)

[:UZ-H = (ax; +c¢) mod m Forward J

b=am"? modm

[Reverse x; = (bx;11 —c) mod m}

r if0<z<m,
r modm=< (x—m) modm ifm <z, and
(x+m) modm ifzx<O.

#’ OAK RIDGE NATIONAL LABORATORY

EE

LCG Code and Example

x {Seed} S(): S71()
m {Modulus}
a {Multiplier} x < (ax+c) mod m z < (b(z —¢)) mod m
¢ {Increment}
b+ a™ 2 modm
Variables Forward Reverse
Example m=7,a=3, andc=21|b = 3772 mod7 =5
Forward Reverse
i | z; | xiy1 < (ax; +¢) mod m || x; + (b(xj11 —c)) mod m
0| zo D T9
1|z +3 T3
2| x2 +4 T4
3| z3 10 T0
4 | x4 42 T2
5 | o5 11 T1
6 | 6 15 795

*a OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversibility Challenge in Sampling
Complicated Random Distributions

R;=Uniform distribution generator

R J—Complex distribution generator ¢ Reverse computation

Forward computation

Ry

-
“
*
..
+*
*
‘0

"
*
+*
+*
*
+*
*
+*
+*
+*
*
+*
*
.0
*

EE

Upper-bounded Rejection Sampling

‘f‘) -
.\L(-~

g .7

//

—> Probability(X=x)
N

= ~

Sl .
E‘f y r \
R~ \

Generates samples from any complicated

distribution p(x) without

need for any

saved (checkpointed) memory to enable
repeatable and reversible (bi-directional)

sampling

Ry ()
N+ N+1
for ever do
T < Ru O
o < Ru()
T, < c;t(ry)
Yy < - u(*"’;r)
Ypr < T2 Yy
Yp < p(2r)
if y. <y, then
exit loop
end if
end for
return z,

Rs ()

ro < Ry~ (){Recover recent ro}
T C;l('(’g)
Ry~ (){Go back past recent 1}
for ever do
ro < Ry~ ()
ry < Ry~ ()
Ly c"t:l(rrl)
Yy — - u(x,)
Yr <~ T2 Yu
Yp < p(zr)
if y, < yp then
Ru(){Correct back to 71}
Ru(){Correct back to 72}
exit loop
end if
end for
N+ N -1
return z

(a) Forward

(b) Reverse

#’ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reversible Procedures for Dynamic
Memory Allocation

Operation Traditional Reversible
P Forward-only F(P) || Forward | Reverse | Commit
F(p) R(F(P)) | C(F(P))
Allocation m=malloc () m=malloc ()| m=pop () pop()
push (m) free(m)
Deallocation free(m) push (m) pop () m=pop ()
free(m)

#, OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Verifying Correctness of malloc under
FRC (Forward-Reverse-Commit) Paradigm

F(P) =

m=malloc()

[F'(P) ~ R(F(P))]" ~ F(P) ~ C(F(P))

m=malloc()

free(m)

*
m=malloc () m=pop ()

{push(m) 7 | free(m) } ~

m=malloc()

push (m)

m=pop ()

free(m)

h *

Vo

O]

m=malloc ()
push (m)

D

pop ()

A

7

-~

m=malloc()
push (m)

pop()

——

!
!

m=malloc()

Y

m=malloc()

#’ OAK RIDGE NATIONAL LABORATORY

EE

Verifying Correctness of free under FRC
(Forward-Reverse-Commit) Paradigm

F(P) = [F(P) ~ R(F(P))|]" ~ F(P) ~ C(F(P))

x

free(m) | — || push(m) | . | pop(O) ~ | push(m) | o m=pop ()
free(m)
\ . - J/ N /
*
[push (m) } pUSh(?;
m=pop

popO) free(m)

o) ——

free(m)

-_

free(m)

#’ OAK RIDGE NATIONAL LABORATORY

EE

Reversible Math - A New Framework
Proposed for Reversible Integer Arithmetic

Typical Alternative
Forward Forward Reverse
/
Al— A+ B Al AQ:W+ Bb‘WW;a, A AQ:W—Bb:WW:a
Al A—B | A + AQ:W—Bb:WW:a A« A’Q:W+ B"”WW:G
!
A'+— Ax B A Al o X Bb:WW:Bb A A
A’ A A A’
T LELB] LB .
A"+ A/B / ,
A C'+||C] . + Q(A)WW' Ce|Cw—[QA)] |
(A mod B) ¢ W:e
C'+—||C L T R(A) v C+||C W R(A)
W:e w W:e

EE

Future: Integrated Reversible Software

ot
Automatio,, P\\)\Oma@\e‘s
Compi/er \(\\6‘9_“30@5
Libr, aries
iments _ " - : oo™
‘\;/_'):tgae\\r::s\t-bed, Implementation Fully Optimized 1 066\35
Scalng, Proot0f-coneep Reversible d

Software at
Scale

Applcato™®

Mini-apP®
Ul AD

Existing Approaches
Asynchronous Collectives
Heterogeneous System on

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Future: Evolution from Irreversible to

Reversible Computing

Irreversible
Program

Irreversible
Machine

(a) Existing

=

Reversible
Program

.

lreversible

Machine

=

(b) Short-term

Reversible
Prog_ram

3

Reversible
Machine

=

(c) Medium-term

Irreversible
Program

4

Reversible
Machine

(d) Long-term

% OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Thank you

|

Q&A

Y AN
MRy AVa ey
-

e L

LW

b -

—

U.S. DEPARTMENT OF

_. E N ERGY *, OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Additional Slides

|

Back up

Y AN
MEY AWE WL
”

e L

LT

b -

—

U.S. DEPARTMENT OF

_. E N ERGY *, OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Model-based Reversal: Example

Diffusion Equation

OF 0°F

—=KkK
ot OX*

O

Discretization
j+1 j j j j
a, —a a.,,—2a +a

L=k - +a
At (AX)

Forward

+al)+ (Z—Ax)aJ

a
(3 KAt

al™ = kAt

(Ax°)

+ aAt

Reverse

i kAt(a!,

I +al)—(Ax®)a™ + a(Ax?)At

! (AX?) — 2kAt

Reversible Execution
e Space discretized into cells

eEach cell /at time increment /
computes a/

eCan go forward & reverse in
time
» Forward code computes a/+1

» Reverse code recovers a,f

e Note that a,/*1=a,/ due to
discretization across cells

*‘O\K RIDGE NATIONAL LABORATORY

EE

Simplified lllustration of
Reversible Software Execution

Traditional Checkpointing Reversible Software

Undo by saving and restoring Undo by executing in reverse

e.o. e.g.

—{save(X);x = x+1} — { X = x+1 }

«~{restore(x)} - { X =x-11}

Disadvantages Advantages

* Large state memory size Reduced state memory size

« Memory copying overheads * Reduced overheads; moved
slow down forward execution from forward to reverse

 Reliance on memory increases | |* Reliance on computation can be
energy costs more energy-efficient

#’ OAK RIDGE NATIONAL LABORATORY

EE

Janus - Example of Reversible Program:
Integer Square Root Computation

Program Notes
num root z bit Variables
procedure root Computes floor(sgrt(num)) into root
bit +=1
from bit=1 Coarse search
loop call doublebit
until (bit*bit)>num Back up with fine search

do uncall doublebit
iIf ((root+bit)**2)<=num
then root += bit
fi (root/bit)\2 # 0

until bit=1

bit -=1

num -= root*root Reversibly compute z = bit*bit

procedure doublebit

Z += bit

bit += z

z -= hit/2

*O\K RIDGE NATIONAL LABORATORY

EE

Automation Algorithms - Linear Codes

Example: Reversibly computing nt and n+1™ Fibonacci number:
f(n)=f(n-1)+f(n-2)

Forward inta=0,b=1 [Reverse
for i from 2 to n: for i fromnto 2.
Invoke f() Invoke ()
0 |) |
{ e { _
INtc=a INtc=a
a=>h a=-ath
b=b+c b=c
})
: f1(f(a,b)) = (a,b)
I 213 |45 15 P (f(f(ab))))=(ab) ...
a 141 2|3 |5 In general, can reverse linear codes, by using single
b |1 1112 1315 |8 static assignment (SSA), inversion and reduction.
Examples: Swap, Circular Shift
C 0 (1 |1 |2 |3

*a OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Full, Periodic, Incremental Checkpointing

""""Dao PR P RS a. a,
| ? —* >

*’ OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Automation of Reversal: Example Code to
Illustrate Different Approaches

subroutine f()
I, Ry, W1
while (Rwhile)

Is, Ro, Wo

I3a R3J WS
end while
if (R;¢)

Iy, Ry, Wy
else

I5, R5, W5
end if
lg, Rg, Wi

end subroutine

Irreversible forward code

ith non-control flow instruction

Inverse instruction of I;

Set of variables read by I;

Set of variables overwritten by I;
Variables used in loop condition
Variables used in branch condition

#’ OAK RIDGE NATIONAL LABORATORY

EE

Automation Example: Compilation Approach

subroutine f()
I, Ry, W1
c+ 0
while (Rynie)
c+—c—+1

I3, Ry, Wy
I3, R3, W3
end while
if (R;y)
b+ 1
Iy, Ry, Wy
else
b+ 0
I5, R5, W5
end if
v IG) Rﬁa W6
end subroutine

--~~

subroutine f~

I, Rg, W

if (b=1)
It Ry, Wy

else
IL._-)_l,R5,W5

end if

while (¢ > 0)
c<—c—1
I3' R3, W3
I, Ry, Wy

end while

T=> 7L R, W,
end subroutine

0

A

#’ OAK RIDGE NATIONAL LABORATORY

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEE

Automation Example: Interpretation or Log-based
Approach

I, R, W1 I6_1,R6,W6 A
'[29R21JW21 \ IE,_laRE)JWE) \
I3, R3,, W3, . or =
I2, Ra,, Wa, =N IRy Wy |
13,332,W32 v E Ig_i,Rgc,Wgc)

. \‘\ 12 ; RQC,WQC P
Io, Ro,, Wa,, \ . E
Is, Ry, Wao \| I3 Ra, Wa, (P
Iy, Ry, Wy \\ I, Ry, Wa,

or = l: I3_1,R31,W31

V| Is,Rs,Ws (I3 Ry ,Wo,

Is, R, We v IflaR1,W1

%O\K RIDGE NATIONAL LABORATORY

EE

	Reversible Software Execution Systems
	Reversible Software Execution Systems
	ReveR-SES (Continued)
	Book
	Reversible Computing Spectrum
	Reversible Logic: Considerations
	Reversible Logic: Fredkin Gate Controlled Swap (CWAP)
	Reversible Logic: Toffoli Gate (CCNOT)
	Relaxations of Forward-only Computing to Reversible Computing
	Compute-Copy-Uncompute (CCU) Paradigm
	Forward-Reverse-Commit (FRC) Paradigm
	Fundamental Relation of Reversibility to Energy Consumption for Computing
	Bennett’s Reversible Simulation of Irreversible Turing Machine Programs
	Manifestations of Reversible Computing
	Reversible Model Execution: Case Study
	References
	n-Particle d-Dimensional�Elastic Collision Constraints
	2 Particle Collision in 2 Dimensions
	Elastic Collision Constraints for 2 Particles in 3 Dimensions
	Sub-Problem: Reversibly Sample the Circumference of an Ellipse
	General Sub-Problem: Reversibly Sample the hyper-surface of a hyper-ellipsoid
	100,000 Particles Reversibly Simulated on CPU
	100,000 Particles Reversibly Simulated on GPU
	Reversible Collisions: Performance Increase is due to Better Memory Behavior
	A Fault Tolerance Scheme that Builds on Reversible Computing Software
	Reversible Languages and Programming Constructs
	Janus – Reversible Conditional
	Janus – Reversible Looping
	Janus – Reversible Looping (continued)
	Janus – Reversible Subroutine Invocation
	Janus – Other Constructs:�Swap, Arithmetic, Input/Output
	Jump Instruction
	Automation: Unified Composite Approach
	Automation: Source-to-Source Compiler
	Automation: Libraries and Interfaces
	RBLAS – Reversible Basic Linear Algebra Subprograms
	Reversible Linear Congruential Generators (LCG)
	LCG Code and Example
	Reversibility Challenge in Sampling Complicated Random Distributions
	Upper-bounded Rejection Sampling
	Reversible Procedures for Dynamic Memory Allocation
	Verifying Correctness of malloc under FRC (Forward-Reverse-Commit) Paradigm
	Verifying Correctness of free under FRC (Forward-Reverse-Commit) Paradigm
	Reversible Math – A New Framework Proposed for Reversible Integer Arithmetic
	Future: Integrated Reversible Software
	Future: Evolution from Irreversible to Reversible Computing
	Thank you
	Additional Slides
	Model-based Reversal: Example
	Simplified Illustration of�Reversible Software Execution
	Janus – Example of Reversible Program: Integer Square Root Computation
	Automation Algorithms – Linear Codes
	Full, Periodic, Incremental Checkpointing
	Automation of Reversal: Example Code to Illustrate Different Approaches
	Automation Example: Compilation Approach
	Automation Example: Interpretation or Log-based Approach

