
Reversible Software
Execution Systems

Kalyan Perumalla
Group Leader, Discrete Computing Systems
Distinguished R&D Staff Member, ORNL
Adjunct Professor, Georgia Tech

PO Box 2008, MS-6085
Oak Ridge National Laboratory (ORNL),
Oak Ridge, TN 37831-6085

perumallaks@ornl.gov
www.ornl.gov/~2ip
865-241-1315

DOE ASCAC
Meeting

Washington, DC, USA
December 10, 2015

Research funded by DOE (ASCR)
Early Career Award ERKJR12 2010-2015

mailto:perumallaks@ornl.gov
http://www.ornl.gov/~2ip

2 ASCAC Meeting – Perumalla, ORNL

Reversible Software Execution Systems

Objectives Approach
 Tackle the challenges in making reversible computing

possible to use for large scientific applications
 Automation: Reverse compilers, reversible libraries
 Runtime: Reversible execution supervisor, reversibility

extensions to standards
 Theory: Unified reversible execution complexities,

memory limits, reversible physical system modeling
 Experimentation: Prototypes, benchmarks, scaled

studies

Impact
 Provides a new path to

exploiting inherent model-
level (in contrast to
system-level, opaque)
reversibility

 Provides an efficient
alternative to
checkpoint/restart
approaches

 Addresses fundamental
computational science
questions with respect to
(thermodynamic) limits of
energy and computation
time

 Enable and optimize reversible computing to overcome the
formidable challenges in exascale and beyond
 Memory wall: Move away from reliance on memory to

reliance on computation
 Concurrency: Increase concurrency by relieving blocked

execution semantics, via bi-directional execution
 Resilience: Enable highly efficient and highly scalable

resilient execution via computation
 Prepare for emerging architectures (adiabatic, quantum

computing) that are fundamentally reversible

Reversible Computing Software is Most Promising in Tackling Key
Software-level Challenges in Exascale and Beyond

Solution:
Reversible
Software

Efficient Support for
Fault Tolerance

Relaxed
Synchronization

Efficient Support for
Debugging

Others
Adiabatic computing,

Quantum
Computing, etc.

3 ASCAC Meeting – Perumalla, ORNL

ReveR-SES (Continued)
Selected Advancements Selected Publications

 Perumalla, “Introduction to Reversible
Computing,” CRC Press, ISBN
1439873403, 2013

 Perumalla et al, “Towards reversible basic
linear algebra subprograms…,” Springer
TCS, 24(1), 2014

 Reversible source-to-source compilation techniques
 Reversible physical models (reversible elastic collisions)
 Reversible random number generators (uniform, and non-

uniform distributions, including non-invertible CDFs)
 Reversible dynamic memory allocation
 RBLAS – Reversible Basic Linear Algebra Subprograms

on CPUs and GPUs
 Proposed reversible interface for integer arithmetic

Reversible computing-based recovery significantly more efficient than
memory-based recovery. Speed and memory gains observed with ideal

gas simulation on GPUs

 Perumalla et al, “Reverse computation for rollback-based
fault tolerance…,” Cluster Computing Journal, 17(2), 2014

 Perumalla et al, “Reversible elastic collisions,” ACM
TOMACS, 23(2), 2013

Outlook

 Reversible programming models, runtime, middleware
 Reversible hardware technologies
 Reversible numerical computation
 Reversible applications

4 ASCAC Meeting – Perumalla, ORNL

Book
Contents
I. Introduction
II. Theory
III. Software
IV. Hardware
V. Future

5 ASCAC Meeting – Perumalla, ORNL

Reversible Computing Spectrum
Tr

ad
iti

on
al

Fo

rw
ar

d-
on

ly
 R

eversible
Bidirectional

6 ASCAC Meeting – Perumalla, ORNL

Reversible Logic: Considerations
• Reversibility

– Ability to design an inverse circuit
for every forward circuit

– Inverse circuits recovers input
signals from output signals

– Inverse may be built from same
or different gates as forward
circuit

• Universality
– Ability to realize any desired logic

via composition of gates
– Common approach: (AND, OR,

NOT) or (NAND) or (NOR)

• Conservation
– Number of 1’s in input is same as

number of 1’s in output for every
input bit vector

• Adequacy
– 2-bit gates are inadequate for

reversibility and universality
– 3-bit gates are sufficient for

reversibility and universality
• Examples

– Fredkin and Toffoli gates are well
known for reversibility and
universality

7 ASCAC Meeting – Perumalla, ORNL

Reversible Logic: Fredkin Gate
Controlled Swap (CWAP) 3-bit Instance

Fredkin-based reversible AND gate
3-bit Fredkin gate truth table

8 ASCAC Meeting – Perumalla, ORNL

Reversible Logic: Toffoli Gate (CCNOT)

3-bit Toffoli gate truth table
Example use of Toffoli Gate for a
2-bit NAND operation Generalized w-bit Toffoli Gate

9 ASCAC Meeting – Perumalla, ORNL

Relaxations of Forward-only Computing
to Reversible Computing

• Adiabatic Computing; Bennett’s Trick

Compute-Copy-Uncompute (CCU)

• Optimistic Parallel Discrete Event Simulation, Speculative Processors

Forward-Reverse-Commit (FRC)

• Graphical User Interfaces

Undo-Redo-Do (URD)

• Databases, Nested Tree Computation Scheduling; HPC Languages

Begin-Rollback-Commit (BRC)

10 ASCAC Meeting – Perumalla, ORNL

Compute-Copy-Uncompute (CCU) Paradigm

Basic algorithmic building block to avoid
bit erasures in arbitrary programs

Charles Bennett, “Logical Reversibility
of Computation,” IBM J. Res. Dev.,
17(6), 1973

11 ASCAC Meeting – Perumalla, ORNL

Forward-Reverse-Commit (FRC) Paradigm

Basic operation in optimistic parallel
discrete event simulations such as the
Time Warp algorithm

12 ASCAC Meeting – Perumalla, ORNL

Fundamental Relation of Reversibility to
Energy Consumption for Computing
• Initial Question

What is the minimum energy
needed/dissipated to
“compute?”
– Initial thesis

Every bit operation dissipates a
unit of energy (kTln2)

– Next development
Not every bit operation, but
every bit erasure dissipates a
unit of energy (kTln2).
Other bit operations can be
implemented without energy
dissipation

• Follow-on Question
What is the minimum number
of bit erasures needed to
“compute?”
– Initial hypothesis

There would be a non-zero,
computation-specific number

– Bennett’s surprising solution:
Zero bit erasures! Bennett’s
“compute-copy-uncompute”
algorithm avoids all bit erasures
for any arbitrary (Turing) program

– Further refinements
Algorithmic complexity, tradeoffs
Partial reversibility

13 ASCAC Meeting – Perumalla, ORNL

Bennett’s Reversible Simulation of
Irreversible Turing Machine Programs

14 ASCAC Meeting – Perumalla, ORNL

Manifestations of Reversible Computing

Energy-Optimal Computing
Hardware
• Low-power processors

• Adiabatic circuits
• Asymptotically isentropic

processing

New Uses Relevant to High
Performance Computing
• Synchronization in Parallel Computing

– Generalized Asynchronous Execution
– Super-criticality
– Low-level Performance Effects

• Processor Architectures
– Speculative Execution
– Very Large Instruction Word (VLIW)
– Anti-Memoization (sic)

• Efficient Debugging
• Fault Detection
• Fault Tolerance
• Quantum Computing
• Others

15 ASCAC Meeting – Perumalla, ORNL

Reversible Model Execution: Case Study

• Example: Simulate elastic collisions reversibly
– n-particle collision in d dimensions, conserving

momentum and energy
– Incoming velocities X‘, outgoing velocities X

• Traditional, inefficient solution
– In forward execution, checkpoint X'
– In reverse execution, restore X‘ from checkpoint
– Memory M proportional to n, d, and #collisions Nc

M=n×d×8× Nc bytes

• New, reversible software solution
– Generate new reverse code
– In forward execution, no checkpoint of X'
– In reverse execution, invoke reversal code to

recover X‘ from X
– Memory dramatically reduced to essential zero

We have now solved it for n=2, 1≤d≤ 3, and n=3, d=1

P2

P1

D/2

-D/2
R12

+θ +θ

D'/2

-D'/2

Phase
Space

16 ASCAC Meeting – Perumalla, ORNL

References
ACM TOMACS 2013, arXiv.org Feb’13

Cluster Computing Journal: Special Issue
on Heterogeneous Computing, 2014

17 ASCAC Meeting – Perumalla, ORNL

n-Particle d-Dimensional
Elastic Collision Constraints

18 ASCAC Meeting – Perumalla, ORNL

2 Particle Collision in 2 Dimensions

19 ASCAC Meeting – Perumalla, ORNL

Elastic Collision Constraints for 2
Particles in 3 Dimensions

20 ASCAC Meeting – Perumalla, ORNL

Sub-Problem: Reversibly Sample the
Circumference of an Ellipse

Major Sampling Challenge
None of sampling procedures
in the literature is reversible

Needed a New Algorithm
New sampling algorithm is
designed to be reversible

21 ASCAC Meeting – Perumalla, ORNL

General Sub-Problem: Reversibly Sample
the hyper-surface of a hyper-ellipsoid

New Algorithm
• The first algorithm to correctly

sample an arbitrary dimensioned
hyper-ellipsoid

• Moreover, it does so reversibly!

Multi-particle (>2) collisions
require hyper-ellipsoid sampling

22 ASCAC Meeting – Perumalla, ORNL

100,000 Particles Reversibly Simulated
on CPU

Reversible computing-based runtime performance significantly
better than that of checkpointing-based approaches

23 ASCAC Meeting – Perumalla, ORNL

100,000 Particles Reversibly Simulated
on GPU

Gains from reversible computing software dramatically
pronounced on GPU-based execution with large no. of particles

Titan GPU Accelerator

24 ASCAC Meeting – Perumalla, ORNL

Reversible Collisions: Performance
Increase is due to Better Memory
Behavior

25 ASCAC Meeting – Perumalla, ORNL

A Fault Tolerance Scheme that Builds on
Reversible Computing Software

• Relieves file system
congestion

• Relaxes need for
global snapshot

• Enables node-level
freedom of
checkpoint frequency

• Avoids message
replay

“Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems,”
Cluster Computing Journal: Special Issue on Heterogeneous Computing, 2014

26 ASCAC Meeting – Perumalla, ORNL

Reversible Languages and Programming
Constructs

• Janus
• R
• SRL, ESRL
• Reversible C
• …

27 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Conditional

28 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Looping

29 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Looping (continued)

30 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Subroutine Invocation

31 ASCAC Meeting – Perumalla, ORNL

Janus – Other Constructs:
Swap, Arithmetic, Input/Output

Forward Inverse

32 ASCAC Meeting – Perumalla, ORNL

Jump Instruction

Due to their symmetry, jumpfrom and jumpto can simply drop their tags
and become a single instruction type jump

33 ASCAC Meeting – Perumalla, ORNL

Automation: Unified Composite Approach
• Approaches combined to provide

unified composite for reversibility
Reversibility

Support

Checkpointing

Full

Periodic

Incremental

Reversible
Computation

Automated

Compiler-
based

Interpreter-
based

Library-based

Programmer
Assisted

Source code-
based

Model-based

Pragma-based

34 ASCAC Meeting – Perumalla, ORNL

Automation: Source-to-Source Compiler

• Source-to-source compilation approach
• For implementation ease, memory

minimization over application code can be
achieved via #pragma hints by the user

Application software
to be reversed

Reverse
compiler

Forward and
reverse functions

Normal
compiler Executable

Reversible
Libraries

Runtime Engine

35 ASCAC Meeting – Perumalla, ORNL

Automation: Libraries and Interfaces
Reversible versions of commonly-used libraries
• Example 1: Reversible linear algebra building blocks

– Defining reversible interfaces of classical forward-only sub-programs
– Prototypes in C and FORTRAN, executable on CPUs and GPUs

• Example 2: Reversible random number generation
– Complex distributions, inverse or rejection-based methods
– Reversible random number generator RRNG (to be released soon) in C, Java,

and FORTRAN
– Large period, multiple independent streams

• Example 3: Reversible dynamic memory
– Memory allocation and de-allocation, both of which are individually and

separately reversible
• Example 4: Reversible integer arithmetic

– Proposed framework for new internal representation and reversible operations

36 ASCAC Meeting – Perumalla, ORNL

RBLAS – Reversible Basic Linear Algebra
Subprograms
Reversal via Computation Prototype and Performance Study

• “Towards Reversible Basic Linear
Algebra Subprograms” Perumalla and
Yoginath, Transactions on
Computational Sciences, 2014

Illustration of Reversible Run time (GPU)
(lower is better)

• BLAS Levels 1, 2 and 3
• CPU, GPU
• Cache and TLB effects
• Accuracy of reversal (empirical)

Illustration: Level 2 Forward-Reverse Interfaces
RC=Reversible Computing; CP=Checkpointing

37 ASCAC Meeting – Perumalla, ORNL

Reversible Linear Congruential
Generators (LCG)

Forward

Reverse

38 ASCAC Meeting – Perumalla, ORNL

LCG Code and Example

Example

39 ASCAC Meeting – Perumalla, ORNL

Reversibility Challenge in Sampling
Complicated Random Distributions

40 ASCAC Meeting – Perumalla, ORNL

Upper-bounded Rejection Sampling

Generates samples from any complicated
distribution p(x) without need for any
saved (checkpointed) memory to enable
repeatable and reversible (bi-directional)
sampling

41 ASCAC Meeting – Perumalla, ORNL

Reversible Procedures for Dynamic
Memory Allocation

42 ASCAC Meeting – Perumalla, ORNL

Verifying Correctness of malloc under
FRC (Forward-Reverse-Commit) Paradigm

43 ASCAC Meeting – Perumalla, ORNL

Verifying Correctness of free under FRC
(Forward-Reverse-Commit) Paradigm

44 ASCAC Meeting – Perumalla, ORNL

Reversible Math – A New Framework
Proposed for Reversible Integer Arithmetic

45 ASCAC Meeting – Perumalla, ORNL

Future: Integrated Reversible Software

Fully Optimized
Reversible
Software at

Scale

46 ASCAC Meeting – Perumalla, ORNL

Future: Evolution from Irreversible to
Reversible Computing

Thank you

Q&A

Additional Slides

Back up

49 ASCAC Meeting – Perumalla, ORNL

Model-based Reversal: Example

α+
∂
∂

=
∂
∂

2

2

x
Fk

t
F α+

∆
+−

=
∆
− −+

+

2
11

1

)(
2

x
aaak

t
aa j

i
j

i
j

i
j

i
j

i

Reversible Execution
•Space discretized into cells
•Each cell i at time increment j
computes ai

j

•Can go forward & reverse in
time
 Forward code computes ai

j+1

 Reverse code recovers ai
j

•Note that ai+1
j+1=ai+1

j due to
discretization across cells

Diffusion Equation
Discretization

Forward

tkx
txaxaatka

j
i

j
i

j
ij

i ∆−∆
∆∆+∆−+∆

=
+

−+

2)(
)()()(

2

212
11 α

Reverse

t
x

a
tk

xaa
tka

j
i

j
i

j
i

j
i ∆+

∆
∆
∆

−++
∆=

−+
+ α

)(

)2()(
2

2

11
1

50 ASCAC Meeting – Perumalla, ORNL

Simplified Illustration of
Reversible Software Execution

Traditional Checkpointing
Undo by saving and restoring
e.g.
 {save(x);x = x+1}
 {restore(x)}
Disadvantages
• Large state memory size
• Memory copying overheads

slow down forward execution
• Reliance on memory increases

energy costs

Reversible Software
Undo by executing in reverse
e.g.
 { x = x+1 }
 { x = x-1 }

Advantages
• Reduced state memory size
• Reduced overheads; moved

from forward to reverse
• Reliance on computation can be

more energy-efficient

51 ASCAC Meeting – Perumalla, ORNL

Janus – Example of Reversible Program:
Integer Square Root Computation
Program
num root z bit
procedure root
 bit += 1
 from bit=1
 loop call doublebit
 until (bit*bit)>num
 do uncall doublebit
 if ((root+bit)**2)<=num
 then root += bit
 fi (root/bit)\2 # 0
 until bit=1
 bit -= 1
 num -= root*root
procedure doublebit
 z += bit
 bit += z
 z -= bit/2

Notes
Variables
Computes floor(sqrt(num)) into root

Coarse search

Back up with fine search

Reversibly compute z = bit*bit

52 ASCAC Meeting – Perumalla, ORNL

Automation Algorithms – Linear Codes
Example: Reversibly computing nth and n+1th Fibonacci number:

f(n)=f(n-1)+f(n-2)
Forward

for i from 2 to n:
 Invoke f()
 .
f()
{
 int c = a
 a = b
 b = b + c
}

Reverse

for i from n to 2:
 Invoke f-1()
 .
f-1()
{
 int c = a
 a = -a + b
 b = c
}

i 2 3 4 5 6
a
b

0
1

1
1

1
2

2
3

3
5

5
8

c 0 1 1 2 3

f-1(f(a,b)) = (a,b)
f-1(f-1(f(f(a,b)))) = (a,b) …

Reverse

int a = 0, b = 1

In general, can reverse linear codes, by using single
static assignment (SSA), inversion and reduction.
Examples: Swap, Circular Shift

53 ASCAC Meeting – Perumalla, ORNL

Full, Periodic, Incremental Checkpointing

54 ASCAC Meeting – Perumalla, ORNL

Automation of Reversal: Example Code to
Illustrate Different Approaches

Irreversible forward code

55 ASCAC Meeting – Perumalla, ORNL

Automation Example: Compilation Approach

56 ASCAC Meeting – Perumalla, ORNL

Automation Example: Interpretation or Log-based
Approach

	Reversible Software Execution Systems
	Reversible Software Execution Systems
	ReveR-SES (Continued)
	Book
	Reversible Computing Spectrum
	Reversible Logic: Considerations
	Reversible Logic: Fredkin Gate Controlled Swap (CWAP)
	Reversible Logic: Toffoli Gate (CCNOT)
	Relaxations of Forward-only Computing to Reversible Computing
	Compute-Copy-Uncompute (CCU) Paradigm
	Forward-Reverse-Commit (FRC) Paradigm
	Fundamental Relation of Reversibility to Energy Consumption for Computing
	Bennett’s Reversible Simulation of Irreversible Turing Machine Programs
	Manifestations of Reversible Computing
	Reversible Model Execution: Case Study
	References
	n-Particle d-Dimensional�Elastic Collision Constraints
	2 Particle Collision in 2 Dimensions
	Elastic Collision Constraints for 2 Particles in 3 Dimensions
	Sub-Problem: Reversibly Sample the Circumference of an Ellipse
	General Sub-Problem: Reversibly Sample the hyper-surface of a hyper-ellipsoid
	100,000 Particles Reversibly Simulated on CPU
	100,000 Particles Reversibly Simulated on GPU
	Reversible Collisions: Performance Increase is due to Better Memory Behavior
	A Fault Tolerance Scheme that Builds on Reversible Computing Software
	Reversible Languages and Programming Constructs
	Janus – Reversible Conditional
	Janus – Reversible Looping
	Janus – Reversible Looping (continued)
	Janus – Reversible Subroutine Invocation
	Janus – Other Constructs:�Swap, Arithmetic, Input/Output
	Jump Instruction
	Automation: Unified Composite Approach
	Automation: Source-to-Source Compiler
	Automation: Libraries and Interfaces
	RBLAS – Reversible Basic Linear Algebra Subprograms
	Reversible Linear Congruential Generators (LCG)
	LCG Code and Example
	Reversibility Challenge in Sampling Complicated Random Distributions
	Upper-bounded Rejection Sampling
	Reversible Procedures for Dynamic Memory Allocation
	Verifying Correctness of malloc under FRC (Forward-Reverse-Commit) Paradigm
	Verifying Correctness of free under FRC (Forward-Reverse-Commit) Paradigm
	Reversible Math – A New Framework Proposed for Reversible Integer Arithmetic
	Future: Integrated Reversible Software
	Future: Evolution from Irreversible to Reversible Computing
	Thank you
	Additional Slides
	Model-based Reversal: Example
	Simplified Illustration of�Reversible Software Execution
	Janus – Example of Reversible Program: Integer Square Root Computation
	Automation Algorithms – Linear Codes
	Full, Periodic, Incremental Checkpointing
	Automation of Reversal: Example Code to Illustrate Different Approaches
	Automation Example: Compilation Approach
	Automation Example: Interpretation or Log-based Approach

