
Reversible Software
Execution Systems

Kalyan Perumalla
Group Leader, Discrete Computing Systems
Distinguished R&D Staff Member, ORNL
Adjunct Professor, Georgia Tech

PO Box 2008, MS-6085
Oak Ridge National Laboratory (ORNL),
Oak Ridge, TN 37831-6085

perumallaks@ornl.gov
www.ornl.gov/~2ip
865-241-1315

DOE ASCAC
Meeting

Washington, DC, USA
December 10, 2015

Research funded by DOE (ASCR)
Early Career Award ERKJR12 2010-2015

mailto:perumallaks@ornl.gov
http://www.ornl.gov/~2ip

2 ASCAC Meeting – Perumalla, ORNL

Reversible Software Execution Systems

Objectives Approach
 Tackle the challenges in making reversible computing

possible to use for large scientific applications
 Automation: Reverse compilers, reversible libraries
 Runtime: Reversible execution supervisor, reversibility

extensions to standards
 Theory: Unified reversible execution complexities,

memory limits, reversible physical system modeling
 Experimentation: Prototypes, benchmarks, scaled

studies

Impact
 Provides a new path to

exploiting inherent model-
level (in contrast to
system-level, opaque)
reversibility

 Provides an efficient
alternative to
checkpoint/restart
approaches

 Addresses fundamental
computational science
questions with respect to
(thermodynamic) limits of
energy and computation
time

 Enable and optimize reversible computing to overcome the
formidable challenges in exascale and beyond
 Memory wall: Move away from reliance on memory to

reliance on computation
 Concurrency: Increase concurrency by relieving blocked

execution semantics, via bi-directional execution
 Resilience: Enable highly efficient and highly scalable

resilient execution via computation
 Prepare for emerging architectures (adiabatic, quantum

computing) that are fundamentally reversible

Reversible Computing Software is Most Promising in Tackling Key
Software-level Challenges in Exascale and Beyond

Solution:
Reversible
Software

Efficient Support for
Fault Tolerance

Relaxed
Synchronization

Efficient Support for
Debugging

Others
Adiabatic computing,

Quantum
Computing, etc.

3 ASCAC Meeting – Perumalla, ORNL

ReveR-SES (Continued)
Selected Advancements Selected Publications

 Perumalla, “Introduction to Reversible
Computing,” CRC Press, ISBN
1439873403, 2013

 Perumalla et al, “Towards reversible basic
linear algebra subprograms…,” Springer
TCS, 24(1), 2014

 Reversible source-to-source compilation techniques
 Reversible physical models (reversible elastic collisions)
 Reversible random number generators (uniform, and non-

uniform distributions, including non-invertible CDFs)
 Reversible dynamic memory allocation
 RBLAS – Reversible Basic Linear Algebra Subprograms

on CPUs and GPUs
 Proposed reversible interface for integer arithmetic

Reversible computing-based recovery significantly more efficient than
memory-based recovery. Speed and memory gains observed with ideal

gas simulation on GPUs

 Perumalla et al, “Reverse computation for rollback-based
fault tolerance…,” Cluster Computing Journal, 17(2), 2014

 Perumalla et al, “Reversible elastic collisions,” ACM
TOMACS, 23(2), 2013

Outlook

 Reversible programming models, runtime, middleware
 Reversible hardware technologies
 Reversible numerical computation
 Reversible applications

4 ASCAC Meeting – Perumalla, ORNL

Book
Contents
I. Introduction
II. Theory
III. Software
IV. Hardware
V. Future

5 ASCAC Meeting – Perumalla, ORNL

Reversible Computing Spectrum
Tr

ad
iti

on
al

Fo

rw
ar

d-
on

ly
 R

eversible
Bidirectional

6 ASCAC Meeting – Perumalla, ORNL

Reversible Logic: Considerations
• Reversibility

– Ability to design an inverse circuit
for every forward circuit

– Inverse circuits recovers input
signals from output signals

– Inverse may be built from same
or different gates as forward
circuit

• Universality
– Ability to realize any desired logic

via composition of gates
– Common approach: (AND, OR,

NOT) or (NAND) or (NOR)

• Conservation
– Number of 1’s in input is same as

number of 1’s in output for every
input bit vector

• Adequacy
– 2-bit gates are inadequate for

reversibility and universality
– 3-bit gates are sufficient for

reversibility and universality
• Examples

– Fredkin and Toffoli gates are well
known for reversibility and
universality

7 ASCAC Meeting – Perumalla, ORNL

Reversible Logic: Fredkin Gate
Controlled Swap (CWAP) 3-bit Instance

Fredkin-based reversible AND gate
3-bit Fredkin gate truth table

8 ASCAC Meeting – Perumalla, ORNL

Reversible Logic: Toffoli Gate (CCNOT)

3-bit Toffoli gate truth table
Example use of Toffoli Gate for a
2-bit NAND operation Generalized w-bit Toffoli Gate

9 ASCAC Meeting – Perumalla, ORNL

Relaxations of Forward-only Computing
to Reversible Computing

• Adiabatic Computing; Bennett’s Trick

Compute-Copy-Uncompute (CCU)

• Optimistic Parallel Discrete Event Simulation, Speculative Processors

Forward-Reverse-Commit (FRC)

• Graphical User Interfaces

Undo-Redo-Do (URD)

• Databases, Nested Tree Computation Scheduling; HPC Languages

Begin-Rollback-Commit (BRC)

10 ASCAC Meeting – Perumalla, ORNL

Compute-Copy-Uncompute (CCU) Paradigm

Basic algorithmic building block to avoid
bit erasures in arbitrary programs

Charles Bennett, “Logical Reversibility
of Computation,” IBM J. Res. Dev.,
17(6), 1973

11 ASCAC Meeting – Perumalla, ORNL

Forward-Reverse-Commit (FRC) Paradigm

Basic operation in optimistic parallel
discrete event simulations such as the
Time Warp algorithm

12 ASCAC Meeting – Perumalla, ORNL

Fundamental Relation of Reversibility to
Energy Consumption for Computing
• Initial Question

What is the minimum energy
needed/dissipated to
“compute?”
– Initial thesis

Every bit operation dissipates a
unit of energy (kTln2)

– Next development
Not every bit operation, but
every bit erasure dissipates a
unit of energy (kTln2).
Other bit operations can be
implemented without energy
dissipation

• Follow-on Question
What is the minimum number
of bit erasures needed to
“compute?”
– Initial hypothesis

There would be a non-zero,
computation-specific number

– Bennett’s surprising solution:
Zero bit erasures! Bennett’s
“compute-copy-uncompute”
algorithm avoids all bit erasures
for any arbitrary (Turing) program

– Further refinements
Algorithmic complexity, tradeoffs
Partial reversibility

13 ASCAC Meeting – Perumalla, ORNL

Bennett’s Reversible Simulation of
Irreversible Turing Machine Programs

14 ASCAC Meeting – Perumalla, ORNL

Manifestations of Reversible Computing

Energy-Optimal Computing
Hardware
• Low-power processors

• Adiabatic circuits
• Asymptotically isentropic

processing

New Uses Relevant to High
Performance Computing
• Synchronization in Parallel Computing

– Generalized Asynchronous Execution
– Super-criticality
– Low-level Performance Effects

• Processor Architectures
– Speculative Execution
– Very Large Instruction Word (VLIW)
– Anti-Memoization (sic)

• Efficient Debugging
• Fault Detection
• Fault Tolerance
• Quantum Computing
• Others

15 ASCAC Meeting – Perumalla, ORNL

Reversible Model Execution: Case Study

• Example: Simulate elastic collisions reversibly
– n-particle collision in d dimensions, conserving

momentum and energy
– Incoming velocities X‘, outgoing velocities X

• Traditional, inefficient solution
– In forward execution, checkpoint X'
– In reverse execution, restore X‘ from checkpoint
– Memory M proportional to n, d, and #collisions Nc

M=n×d×8× Nc bytes

• New, reversible software solution
– Generate new reverse code
– In forward execution, no checkpoint of X'
– In reverse execution, invoke reversal code to

recover X‘ from X
– Memory dramatically reduced to essential zero

We have now solved it for n=2, 1≤d≤ 3, and n=3, d=1

P2

P1

D/2

-D/2
R12

+θ +θ

D'/2

-D'/2

Phase
Space

16 ASCAC Meeting – Perumalla, ORNL

References
ACM TOMACS 2013, arXiv.org Feb’13

Cluster Computing Journal: Special Issue
on Heterogeneous Computing, 2014

17 ASCAC Meeting – Perumalla, ORNL

n-Particle d-Dimensional
Elastic Collision Constraints

18 ASCAC Meeting – Perumalla, ORNL

2 Particle Collision in 2 Dimensions

19 ASCAC Meeting – Perumalla, ORNL

Elastic Collision Constraints for 2
Particles in 3 Dimensions

20 ASCAC Meeting – Perumalla, ORNL

Sub-Problem: Reversibly Sample the
Circumference of an Ellipse

Major Sampling Challenge
None of sampling procedures
in the literature is reversible

Needed a New Algorithm
New sampling algorithm is
designed to be reversible

21 ASCAC Meeting – Perumalla, ORNL

General Sub-Problem: Reversibly Sample
the hyper-surface of a hyper-ellipsoid

New Algorithm
• The first algorithm to correctly

sample an arbitrary dimensioned
hyper-ellipsoid

• Moreover, it does so reversibly!

Multi-particle (>2) collisions
require hyper-ellipsoid sampling

22 ASCAC Meeting – Perumalla, ORNL

100,000 Particles Reversibly Simulated
on CPU

Reversible computing-based runtime performance significantly
better than that of checkpointing-based approaches

23 ASCAC Meeting – Perumalla, ORNL

100,000 Particles Reversibly Simulated
on GPU

Gains from reversible computing software dramatically
pronounced on GPU-based execution with large no. of particles

Titan GPU Accelerator

24 ASCAC Meeting – Perumalla, ORNL

Reversible Collisions: Performance
Increase is due to Better Memory
Behavior

25 ASCAC Meeting – Perumalla, ORNL

A Fault Tolerance Scheme that Builds on
Reversible Computing Software

• Relieves file system
congestion

• Relaxes need for
global snapshot

• Enables node-level
freedom of
checkpoint frequency

• Avoids message
replay

“Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems,”
Cluster Computing Journal: Special Issue on Heterogeneous Computing, 2014

26 ASCAC Meeting – Perumalla, ORNL

Reversible Languages and Programming
Constructs

• Janus
• R
• SRL, ESRL
• Reversible C
• …

27 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Conditional

28 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Looping

29 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Looping (continued)

30 ASCAC Meeting – Perumalla, ORNL

Janus – Reversible Subroutine Invocation

31 ASCAC Meeting – Perumalla, ORNL

Janus – Other Constructs:
Swap, Arithmetic, Input/Output

Forward Inverse

32 ASCAC Meeting – Perumalla, ORNL

Jump Instruction

Due to their symmetry, jumpfrom and jumpto can simply drop their tags
and become a single instruction type jump

33 ASCAC Meeting – Perumalla, ORNL

Automation: Unified Composite Approach
• Approaches combined to provide

unified composite for reversibility
Reversibility

Support

Checkpointing

Full

Periodic

Incremental

Reversible
Computation

Automated

Compiler-
based

Interpreter-
based

Library-based

Programmer
Assisted

Source code-
based

Model-based

Pragma-based

34 ASCAC Meeting – Perumalla, ORNL

Automation: Source-to-Source Compiler

• Source-to-source compilation approach
• For implementation ease, memory

minimization over application code can be
achieved via #pragma hints by the user

Application software
to be reversed

Reverse
compiler

Forward and
reverse functions

Normal
compiler Executable

Reversible
Libraries

Runtime Engine

35 ASCAC Meeting – Perumalla, ORNL

Automation: Libraries and Interfaces
Reversible versions of commonly-used libraries
• Example 1: Reversible linear algebra building blocks

– Defining reversible interfaces of classical forward-only sub-programs
– Prototypes in C and FORTRAN, executable on CPUs and GPUs

• Example 2: Reversible random number generation
– Complex distributions, inverse or rejection-based methods
– Reversible random number generator RRNG (to be released soon) in C, Java,

and FORTRAN
– Large period, multiple independent streams

• Example 3: Reversible dynamic memory
– Memory allocation and de-allocation, both of which are individually and

separately reversible
• Example 4: Reversible integer arithmetic

– Proposed framework for new internal representation and reversible operations

36 ASCAC Meeting – Perumalla, ORNL

RBLAS – Reversible Basic Linear Algebra
Subprograms
Reversal via Computation Prototype and Performance Study

• “Towards Reversible Basic Linear
Algebra Subprograms” Perumalla and
Yoginath, Transactions on
Computational Sciences, 2014

Illustration of Reversible Run time (GPU)
(lower is better)

• BLAS Levels 1, 2 and 3
• CPU, GPU
• Cache and TLB effects
• Accuracy of reversal (empirical)

Illustration: Level 2 Forward-Reverse Interfaces
RC=Reversible Computing; CP=Checkpointing

37 ASCAC Meeting – Perumalla, ORNL

Reversible Linear Congruential
Generators (LCG)

Forward

Reverse

38 ASCAC Meeting – Perumalla, ORNL

LCG Code and Example

Example

39 ASCAC Meeting – Perumalla, ORNL

Reversibility Challenge in Sampling
Complicated Random Distributions

40 ASCAC Meeting – Perumalla, ORNL

Upper-bounded Rejection Sampling

Generates samples from any complicated
distribution p(x) without need for any
saved (checkpointed) memory to enable
repeatable and reversible (bi-directional)
sampling

41 ASCAC Meeting – Perumalla, ORNL

Reversible Procedures for Dynamic
Memory Allocation

42 ASCAC Meeting – Perumalla, ORNL

Verifying Correctness of malloc under
FRC (Forward-Reverse-Commit) Paradigm

43 ASCAC Meeting – Perumalla, ORNL

Verifying Correctness of free under FRC
(Forward-Reverse-Commit) Paradigm

44 ASCAC Meeting – Perumalla, ORNL

Reversible Math – A New Framework
Proposed for Reversible Integer Arithmetic

45 ASCAC Meeting – Perumalla, ORNL

Future: Integrated Reversible Software

Fully Optimized
Reversible
Software at

Scale

46 ASCAC Meeting – Perumalla, ORNL

Future: Evolution from Irreversible to
Reversible Computing

Thank you

Q&A

Additional Slides

Back up

49 ASCAC Meeting – Perumalla, ORNL

Model-based Reversal: Example

α+
∂
∂

=
∂
∂

2

2

x
Fk

t
F α+

∆
+−

=
∆
− −+

+

2
11

1

)(
2

x
aaak

t
aa j

i
j

i
j

i
j

i
j

i

Reversible Execution
•Space discretized into cells
•Each cell i at time increment j
computes ai

j

•Can go forward & reverse in
time
 Forward code computes ai

j+1

 Reverse code recovers ai
j

•Note that ai+1
j+1=ai+1

j due to
discretization across cells

Diffusion Equation
Discretization

Forward

tkx
txaxaatka

j
i

j
i

j
ij

i ∆−∆
∆∆+∆−+∆

=
+

−+

2)(
)()()(

2

212
11 α

Reverse

t
x

a
tk

xaa
tka

j
i

j
i

j
i

j
i ∆+

∆
∆
∆

−++
∆=

−+
+ α

)(

)2()(
2

2

11
1

50 ASCAC Meeting – Perumalla, ORNL

Simplified Illustration of
Reversible Software Execution

Traditional Checkpointing
Undo by saving and restoring
e.g.
 {save(x);x = x+1}
 {restore(x)}
Disadvantages
• Large state memory size
• Memory copying overheads

slow down forward execution
• Reliance on memory increases

energy costs

Reversible Software
Undo by executing in reverse
e.g.
 { x = x+1 }
 { x = x-1 }

Advantages
• Reduced state memory size
• Reduced overheads; moved

from forward to reverse
• Reliance on computation can be

more energy-efficient

51 ASCAC Meeting – Perumalla, ORNL

Janus – Example of Reversible Program:
Integer Square Root Computation
Program
num root z bit
procedure root
 bit += 1
 from bit=1
 loop call doublebit
 until (bit*bit)>num
 do uncall doublebit
 if ((root+bit)**2)<=num
 then root += bit
 fi (root/bit)\2 # 0
 until bit=1
 bit -= 1
 num -= root*root
procedure doublebit
 z += bit
 bit += z
 z -= bit/2

Notes
Variables
Computes floor(sqrt(num)) into root

Coarse search

Back up with fine search

Reversibly compute z = bit*bit

52 ASCAC Meeting – Perumalla, ORNL

Automation Algorithms – Linear Codes
Example: Reversibly computing nth and n+1th Fibonacci number:

f(n)=f(n-1)+f(n-2)
Forward

for i from 2 to n:
 Invoke f()
 .
f()
{
 int c = a
 a = b
 b = b + c
}

Reverse

for i from n to 2:
 Invoke f-1()
 .
f-1()
{
 int c = a
 a = -a + b
 b = c
}

i 2 3 4 5 6
a
b

0
1

1
1

1
2

2
3

3
5

5
8

c 0 1 1 2 3

f-1(f(a,b)) = (a,b)
f-1(f-1(f(f(a,b)))) = (a,b) …

Reverse

int a = 0, b = 1

In general, can reverse linear codes, by using single
static assignment (SSA), inversion and reduction.
Examples: Swap, Circular Shift

53 ASCAC Meeting – Perumalla, ORNL

Full, Periodic, Incremental Checkpointing

54 ASCAC Meeting – Perumalla, ORNL

Automation of Reversal: Example Code to
Illustrate Different Approaches

Irreversible forward code

55 ASCAC Meeting – Perumalla, ORNL

Automation Example: Compilation Approach

56 ASCAC Meeting – Perumalla, ORNL

Automation Example: Interpretation or Log-based
Approach

	Reversible Software Execution Systems
	Reversible Software Execution Systems
	ReveR-SES (Continued)
	Book
	Reversible Computing Spectrum
	Reversible Logic: Considerations
	Reversible Logic: Fredkin Gate Controlled Swap (CWAP)
	Reversible Logic: Toffoli Gate (CCNOT)
	Relaxations of Forward-only Computing to Reversible Computing
	Compute-Copy-Uncompute (CCU) Paradigm
	Forward-Reverse-Commit (FRC) Paradigm
	Fundamental Relation of Reversibility to Energy Consumption for Computing
	Bennett’s Reversible Simulation of Irreversible Turing Machine Programs
	Manifestations of Reversible Computing
	Reversible Model Execution: Case Study
	References
	n-Particle d-Dimensional�Elastic Collision Constraints
	2 Particle Collision in 2 Dimensions
	Elastic Collision Constraints for 2 Particles in 3 Dimensions
	Sub-Problem: Reversibly Sample the Circumference of an Ellipse
	General Sub-Problem: Reversibly Sample the hyper-surface of a hyper-ellipsoid
	100,000 Particles Reversibly Simulated on CPU
	100,000 Particles Reversibly Simulated on GPU
	Reversible Collisions: Performance Increase is due to Better Memory Behavior
	A Fault Tolerance Scheme that Builds on Reversible Computing Software
	Reversible Languages and Programming Constructs
	Janus – Reversible Conditional
	Janus – Reversible Looping
	Janus – Reversible Looping (continued)
	Janus – Reversible Subroutine Invocation
	Janus – Other Constructs:�Swap, Arithmetic, Input/Output
	Jump Instruction
	Automation: Unified Composite Approach
	Automation: Source-to-Source Compiler
	Automation: Libraries and Interfaces
	RBLAS – Reversible Basic Linear Algebra Subprograms
	Reversible Linear Congruential Generators (LCG)
	LCG Code and Example
	Reversibility Challenge in Sampling Complicated Random Distributions
	Upper-bounded Rejection Sampling
	Reversible Procedures for Dynamic Memory Allocation
	Verifying Correctness of malloc under FRC (Forward-Reverse-Commit) Paradigm
	Verifying Correctness of free under FRC (Forward-Reverse-Commit) Paradigm
	Reversible Math – A New Framework Proposed for Reversible Integer Arithmetic
	Future: Integrated Reversible Software
	Future: Evolution from Irreversible to Reversible Computing
	Thank you
	Additional Slides
	Model-based Reversal: Example
	Simplified Illustration of�Reversible Software Execution
	Janus – Example of Reversible Program: Integer Square Root Computation
	Automation Algorithms – Linear Codes
	Full, Periodic, Incremental Checkpointing
	Automation of Reversal: Example Code to Illustrate Different Approaches
	Automation Example: Compilation Approach
	Automation Example: Interpretation or Log-based Approach

