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Reversible Software Execution Systems 

Objectives Approach 
 Tackle the challenges in making reversible computing 

possible to use for large scientific applications 
 Automation: Reverse compilers, reversible libraries 
 Runtime: Reversible execution supervisor, reversibility 

extensions to standards 
 Theory: Unified reversible execution complexities, 

memory limits, reversible physical system modeling 
 Experimentation: Prototypes, benchmarks, scaled 

studies 

Impact 
 Provides a new path to 

exploiting inherent model-
level (in contrast to 
system-level, opaque) 
reversibility 

 Provides an efficient 
alternative to 
checkpoint/restart 
approaches 

 Addresses fundamental 
computational science 
questions with respect to 
(thermodynamic) limits of 
energy and computation 
time 

 Enable and optimize reversible computing to overcome the 
formidable challenges in exascale and beyond 
 Memory wall: Move away from reliance on memory to 

reliance on computation 
 Concurrency: Increase concurrency by relieving blocked 

execution semantics, via bi-directional execution 
 Resilience: Enable highly efficient and highly scalable 

resilient execution via computation 
 Prepare for emerging architectures (adiabatic, quantum 

computing) that are fundamentally reversible 

Reversible Computing Software is Most Promising in Tackling Key 
Software-level Challenges in Exascale and Beyond 

Solution: 
Reversible 
Software 

Efficient Support for 
Fault Tolerance 

Relaxed 
Synchronization 

Efficient Support for 
Debugging 

Others 
Adiabatic computing, 

Quantum 
Computing, etc. 
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ReveR-SES (Continued) 
Selected Advancements Selected Publications 

 Perumalla, “Introduction to Reversible 
Computing,” CRC Press, ISBN 
1439873403, 2013 

 Perumalla et al, “Towards reversible basic 
linear algebra subprograms…,” Springer 
TCS, 24(1), 2014 
 

 Reversible source-to-source compilation techniques 
 Reversible physical models (reversible elastic collisions) 
 Reversible random number generators (uniform, and non-

uniform distributions, including non-invertible CDFs) 
 Reversible dynamic memory allocation 
 RBLAS – Reversible Basic Linear Algebra Subprograms 

on CPUs and GPUs 
 Proposed reversible interface for integer arithmetic 

Reversible computing-based recovery significantly more efficient than 
memory-based recovery.  Speed and memory gains observed with ideal 

gas simulation on GPUs 

 Perumalla et al, “Reverse computation for rollback-based 
fault tolerance…,” Cluster Computing Journal, 17(2), 2014 

 Perumalla et al, “Reversible elastic collisions,” ACM 
TOMACS, 23(2), 2013 

Outlook 

 Reversible programming models, runtime, middleware 
 Reversible hardware technologies 
 Reversible numerical computation 
 Reversible applications 
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Book 
Contents 
I. Introduction 
II. Theory 
III. Software 
IV. Hardware 
V. Future 
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Reversible Computing Spectrum 
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Reversible Logic: Considerations 
• Reversibility 

– Ability to design an inverse circuit 
for every forward circuit 

– Inverse circuits recovers input 
signals from output signals 

– Inverse may be built from same 
or different gates as forward 
circuit 

• Universality 
– Ability to realize any desired logic 

via composition of gates 
– Common approach: (AND, OR, 

NOT) or (NAND) or (NOR) 

• Conservation 
– Number of 1’s in input is same as 

number of 1’s in output for every 
input bit vector 

• Adequacy 
– 2-bit gates are inadequate for 

reversibility and universality 
– 3-bit gates are sufficient for 

reversibility and universality 
• Examples 

– Fredkin and Toffoli gates are well 
known for reversibility and 
universality 
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Reversible Logic: Fredkin Gate 
Controlled Swap (CWAP) 3-bit Instance 

Fredkin-based reversible AND gate 
3-bit Fredkin gate truth table 
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Reversible Logic: Toffoli Gate (CCNOT) 

3-bit Toffoli gate truth table 
Example use of Toffoli Gate for a 
2-bit NAND operation Generalized w-bit Toffoli Gate 
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Relaxations of Forward-only Computing 
to Reversible Computing 

• Adiabatic Computing; Bennett’s Trick 

Compute-Copy-Uncompute (CCU) 

• Optimistic Parallel Discrete Event Simulation, Speculative Processors 

Forward-Reverse-Commit (FRC) 

• Graphical User Interfaces 

Undo-Redo-Do (URD) 

• Databases, Nested Tree Computation Scheduling; HPC Languages 

Begin-Rollback-Commit (BRC) 
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Compute-Copy-Uncompute (CCU) Paradigm 

Basic algorithmic building block to avoid 
bit erasures in arbitrary programs 
 
Charles Bennett, “Logical Reversibility 
of Computation,” IBM J. Res. Dev., 
17(6), 1973 
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Forward-Reverse-Commit (FRC) Paradigm 

Basic operation in optimistic parallel 
discrete event simulations such as the 
Time Warp algorithm 



12 ASCAC Meeting – Perumalla, ORNL 

Fundamental Relation of Reversibility to 
Energy Consumption for Computing 
• Initial Question 

What is the minimum energy 
needed/dissipated to 
“compute?” 
– Initial thesis 

Every bit operation dissipates a 
unit of energy (kTln2) 

– Next development 
Not every bit operation, but 
every bit erasure dissipates a 
unit of energy (kTln2). 
Other bit operations can be 
implemented without energy 
dissipation 
 

• Follow-on Question 
What is the minimum number 
of bit erasures needed to 
“compute?” 
– Initial hypothesis 

There would be a non-zero, 
computation-specific number 

– Bennett’s surprising solution: 
Zero bit erasures! Bennett’s 
“compute-copy-uncompute” 
algorithm avoids all bit erasures 
for any arbitrary (Turing) program 

– Further refinements 
Algorithmic complexity, tradeoffs 
Partial reversibility 



13 ASCAC Meeting – Perumalla, ORNL 

Bennett’s Reversible Simulation of 
Irreversible Turing Machine Programs 
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Manifestations of Reversible Computing 

Energy-Optimal Computing 
Hardware 
• Low-power processors 

 
• Adiabatic circuits 
• Asymptotically isentropic 

processing 

New Uses Relevant to High 
Performance Computing 
• Synchronization in Parallel Computing 

– Generalized Asynchronous Execution 
– Super-criticality 
– Low-level Performance Effects 

• Processor Architectures 
– Speculative Execution 
– Very Large Instruction Word (VLIW) 
– Anti-Memoization (sic) 

• Efficient Debugging 
• Fault Detection 
• Fault Tolerance 
• Quantum Computing 
• Others 
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Reversible Model Execution: Case Study 

• Example: Simulate elastic collisions reversibly 
– n-particle collision in d dimensions, conserving 

momentum and energy 
– Incoming velocities X‘, outgoing velocities X 

• Traditional, inefficient solution 
– In forward execution, checkpoint X' 
– In reverse execution, restore X‘ from checkpoint 
– Memory M proportional to n, d, and #collisions Nc 

M=n×d×8× Nc bytes 

• New, reversible software solution 
– Generate new reverse code 
– In forward execution, no checkpoint of X' 
– In reverse execution, invoke reversal code to 

recover X‘ from X 
– Memory dramatically reduced to essential zero 

We have now solved it for n=2, 1≤d≤ 3, and n=3, d=1 

P2 

P1 

D/2 

-D/2 
R12 

+θ +θ 

D'/2 

-D'/2 

Phase 
Space 
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References 
ACM TOMACS 2013, arXiv.org Feb’13 

Cluster Computing Journal: Special Issue 
on Heterogeneous Computing, 2014 
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n-Particle d-Dimensional 
Elastic Collision Constraints 
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2 Particle Collision in 2 Dimensions 
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Elastic Collision Constraints for 2 
Particles in 3 Dimensions 
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Sub-Problem: Reversibly Sample the 
Circumference of an Ellipse 

Major Sampling Challenge 
None of sampling procedures 
in the literature is reversible 
 
Needed a New Algorithm 
New sampling algorithm is 
designed to be reversible 
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General Sub-Problem: Reversibly Sample 
the hyper-surface of a hyper-ellipsoid 

New Algorithm 
• The first algorithm to correctly 

sample an arbitrary dimensioned 
hyper-ellipsoid 

• Moreover, it does so reversibly! 

Multi-particle (>2) collisions 
require hyper-ellipsoid sampling 
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100,000 Particles Reversibly Simulated 
on CPU 

Reversible computing-based runtime performance significantly 
better than that of checkpointing-based approaches 
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100,000 Particles Reversibly Simulated 
on GPU 

Gains from reversible computing software dramatically 
pronounced on GPU-based execution with large no. of particles 

Titan GPU Accelerator 
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Reversible Collisions: Performance 
Increase is due to Better Memory 
Behavior 
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A Fault Tolerance Scheme that Builds on 
Reversible Computing Software 

• Relieves file system 
congestion 

• Relaxes need for 
global snapshot 

• Enables node-level 
freedom of 
checkpoint frequency 

• Avoids message 
replay 

“Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems,” 
Cluster Computing Journal: Special Issue on Heterogeneous Computing, 2014 
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Reversible Languages and Programming 
Constructs 

• Janus 
• R 
• SRL, ESRL 
• Reversible C 
• … 
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Janus – Reversible Conditional 
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Janus – Reversible Looping 
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Janus – Reversible Looping (continued) 
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Janus – Reversible Subroutine Invocation 
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Janus – Other Constructs: 
Swap, Arithmetic, Input/Output 

Forward Inverse 
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Jump Instruction 

Due to their symmetry, jumpfrom and jumpto can simply drop their tags 
and become a single instruction type jump 
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Automation: Unified Composite Approach 
• Approaches combined to provide 

unified composite for reversibility 
Reversibility 

Support 

Checkpointing 

Full 

Periodic 

Incremental 

Reversible 
Computation 

Automated 

Compiler-
based 

Interpreter-
based 

Library-based 

Programmer 
Assisted 

Source code-
based 

Model-based 

Pragma-based 
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Automation: Source-to-Source Compiler 

• Source-to-source compilation approach 
• For implementation ease, memory 

minimization over application code can be 
achieved via #pragma hints by the user 

Application software 
to be reversed 

Reverse 
compiler 

Forward and 
reverse functions 

Normal 
compiler Executable 

Reversible 
Libraries 

Runtime Engine 
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Automation: Libraries and Interfaces 
Reversible versions of commonly-used libraries 
• Example 1: Reversible linear algebra building blocks 

– Defining reversible interfaces of classical forward-only sub-programs 
– Prototypes in C and FORTRAN, executable on CPUs and GPUs 

• Example 2: Reversible random number generation 
– Complex distributions, inverse or rejection-based methods 
– Reversible random number generator RRNG (to be released soon) in C, Java, 

and FORTRAN 
– Large period, multiple independent streams 

• Example 3: Reversible dynamic memory 
– Memory allocation and de-allocation, both of which are individually and 

separately reversible 
• Example 4: Reversible integer arithmetic 

– Proposed framework for new internal representation and reversible operations 
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RBLAS – Reversible Basic Linear Algebra 
Subprograms 
Reversal via Computation Prototype and Performance Study 

• “Towards Reversible Basic Linear 
Algebra Subprograms” Perumalla and 
Yoginath, Transactions on 
Computational Sciences, 2014 

Illustration of Reversible Run time (GPU) 
(lower is better) 

• BLAS Levels 1, 2 and 3 
• CPU, GPU 
• Cache and TLB effects 
• Accuracy of reversal (empirical) 

Illustration: Level 2 Forward-Reverse Interfaces 
RC=Reversible Computing; CP=Checkpointing 
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Reversible Linear Congruential 
Generators (LCG) 

Forward 

Reverse 
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LCG Code and Example 

Example 
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Reversibility Challenge in Sampling 
Complicated Random Distributions 
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Upper-bounded Rejection Sampling 

Generates samples from any complicated 
distribution p(x) without need for any 
saved (checkpointed) memory to enable 
repeatable and reversible (bi-directional) 
sampling 
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Reversible Procedures for Dynamic 
Memory Allocation 
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Verifying Correctness of malloc under 
FRC (Forward-Reverse-Commit) Paradigm 



43 ASCAC Meeting – Perumalla, ORNL 

Verifying Correctness of free under FRC 
(Forward-Reverse-Commit) Paradigm 
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Reversible Math – A New Framework 
Proposed for Reversible Integer Arithmetic 
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Future: Integrated Reversible Software 

Fully Optimized 
Reversible 
Software at 

Scale 
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Future: Evolution from Irreversible to 
Reversible Computing 



Thank you 

Q&A 



Additional Slides 

Back up 



49 ASCAC Meeting – Perumalla, ORNL 

Model-based Reversal: Example 
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Simplified Illustration of 
Reversible Software Execution 

Traditional Checkpointing 
Undo by saving and restoring 
e.g. 
     {save(x);x = x+1} 
  {restore(x)} 
Disadvantages 
• Large state memory size 
• Memory copying overheads 

slow down forward execution 
• Reliance on memory increases 

energy costs 

Reversible Software 
Undo by executing in reverse 
e.g. 
  { x = x+1 } 
  { x = x-1 } 

Advantages 
• Reduced state memory size 
• Reduced overheads; moved 

from forward to reverse 
• Reliance on computation can be 

more energy-efficient 
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Janus – Example of Reversible Program: 
Integer Square Root Computation 
Program 
num root z bit 
procedure root 
    bit += 1 
    from bit=1 
      loop call doublebit 
    until (bit*bit)>num 
    do uncall doublebit 
      if ((root+bit)**2)<=num 
      then root += bit 
      fi (root/bit)\2 # 0 
    until bit=1 
    bit -= 1 
    num -= root*root 
procedure doublebit 
    z += bit 
    bit += z 
    z -= bit/2 

Notes 
Variables 
Computes floor(sqrt(num)) into root 
 
Coarse search 
 
Back up with fine search 
 
 
 
 
 
 
Reversibly compute z = bit*bit 
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Automation Algorithms – Linear Codes 
Example: Reversibly computing nth and n+1th Fibonacci number: 

f(n)=f(n-1)+f(n-2) 
Forward 
 
for i from 2 to n: 
 Invoke f() 
                          . 
f() 
{ 
 int c = a 
 a = b 
 b = b + c 
} 

Reverse 
 
for i from n to 2: 
 Invoke f-1() 
                          . 
f-1() 
{ 
 int c = a 
 a = -a + b 
 b = c 
} 

i 2 3 4 5 6 
a 
b 

0 
1 

1 
1 

1 
2 

2 
3 

3 
5 

5 
8 

c 0 1 1 2 3 

f-1( f( a,b ) ) = (a,b) 
f-1( f-1( f( f( a,b ) ) ) ) = (a,b) … 

Reverse 

int a = 0, b = 1 

In general, can reverse linear codes, by using single 
static assignment (SSA), inversion and reduction. 
Examples: Swap, Circular Shift 
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Full, Periodic, Incremental Checkpointing 
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Automation of Reversal: Example Code to 
Illustrate Different Approaches 

Irreversible forward code 



55 ASCAC Meeting – Perumalla, ORNL 

Automation Example: Compilation Approach 



56 ASCAC Meeting – Perumalla, ORNL 

Automation Example: Interpretation or Log-based 
Approach 
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