Reversible Software Execution Systems

Research funded by DOE (ASCR) Early Career Award ERKJR12 2010-2015

Kalyan Perumalla

Group Leader, Discrete Computing Systems Distinguished R&D Staff Member, ORNL Adjunct Professor, Georgia Tech

PO Box 2008, MS-6085 Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831-6085

perumallaks@ornl.gov www.ornl.gov/~2ip 865-241-1315

DOE ASCAC Meeting

Washington, DC, USA December 10, 2015

Reversible Software Execution Systems

Objectives

- Enable and optimize reversible computing to overcome the formidable challenges in exascale and beyond
 - Memory wall: Move away from reliance on memory to reliance on computation
 - Concurrency: Increase concurrency by relieving blocked execution sémantics, via bi-directional execution
 - Resilience: Enable highly efficient and highly scalable resilient execution via computation
 - Prepare for emerging architectures (adiabatic, guantum computing) that are fundamentally reversible

Approach

- Tackle the challenges in making reversible computing possible to use for large scientific applications
 - Automation: Reverse compilers, reversible libraries
 - Runtime: Reversible execution supervisor, reversibility extensions to standards
 - Theory: Unified reversible execution complexities, memory limits, reversible physical system modeling
 - Experimentation: Prototypes, benchmarks, scaled studies

Impact

- Provides a new path to exploiting inherent model level (in contrast to system-level, opaque) reversibility
- Provides an efficient alternative to checkpoint/restart approaches
- Addresses fundamental computational science questions with respect to (thermodynamic) limits of energy and computation Stora Ridge National Laboratory time

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

ReveR-SES (Continued)

Selected Advancements

- Reversible source-to-source compilation techniques
- Reversible physical models (reversible elastic collisions)
- Reversible random number generators (uniform, and nonuniform distributions, including non-invertible CDFs)
- Reversible dynamic memory allocation
- RBLAS Reversible Basic Linear Algebra Subprograms on CPUs and GPUs
- Proposed reversible interface for integer arithmetic

Selected Publications

- Perumalla, "Introduction to Reversible Computing," CRC Press, ISBN 1439873403, 2013
- Perumalla et al, "Towards reversible basic linear algebra subprograms...," Springer TCS, 24(1), 2014
- Introduction to Reversible Computing Kalyan S. Perumalla
- Perumalla et al, "Reverse computation for rollback-based fault tolerance...," Cluster Computing Journal, 17(2), 2014
- Perumalla et al, "Reversible elastic collisions," ACM TOMACS, 23(2), 2013

Reversible computing-based recovery significantly more efficient than memory-based recovery. Speed and memory gains observed with **ideal gas simulation** on GPUs

Outlook

- Reversible programming models, runtime, middleware
- Reversible hardware technologies
- Reversible numerical computation
- Reversible applications

Book

Contents I. Introduction II. Theory III. Software IV. Hardware V. Future

Product Details

Series: Chapman & Hall/CRC Computational Science (Book Hardcover: 325 pages **Publisher:** Chapman and Hall/CRC (September 10, 2013) Language: English **ISBN-10:** 1439873402 ISBN-13: 978-1439873403 Product Dimensions: 9.3 x 6.2 x 0.9 inches

Reversible Computing Spectrum

Reversible Bidirectional

EXAMPLE 2 CAK RIDGE NATIONAL LABORATORY

Traditiona

Reversible Logic: Considerations

Reversibility

- Ability to design an inverse circuit for every forward circuit
- Inverse circuits recovers input signals from output signals
- Inverse may be built from same or different gates as forward circuit

Universality

- Ability to realize any desired logic via composition of gates
- Common approach: (AND, OR, NOT) or (NAND) or (NOR)

Conservation

 Number of 1's in input is same as number of 1's in output for every input bit vector

Adequacy

- 2-bit gates are inadequate for reversibility and universality
- 3-bit gates are sufficient for reversibility and universality

Examples

 Fredkin and Toffoli gates are well known for reversibility and universality

Reversible Logic: Fredkin Gate Controlled Swap (CWAP)

3-bit Instance

Input	Output	Description
x_0	$y_0 = x_2 x_0 + \overline{x_2} x_1$	If x_2 is set, then $y_0 = x_0$ else $y_0 = x_1$
x_1	$y_1 = \overline{x_2}x_0 + x_2x_1$	If x_2 is set, then $y_1 = x_1$ else $y_1 = x_0$
x_2	$y_2 = x_2$	Pass through unconditionally

3-bit Fredkin gate truth table

		•	1001	<u> 9¤</u>			- / -								`
Inj	put E	Bits	Ou	tput	Bits	Permutation] (F I	red	kin-	bas	ed re	evers	sible	ANI	J gate
x_0	x_1	$ x_2 $	y_0	$ y_1 $	y_2				x_0	x_1	x_2	y_0	y_1	y_2	
0	0	1	0	0	1	1-cycle]		0 1	0	1 1	0	0	1 1	
0	1	1	0	1	1	1-cycle]		0	0	0	0	0	0	
1	0	1	1	0	1	1-cycle]		1	0	0	0	1	0	
1	1	1	1	1	1	1-cycle	11								
0	0	0	0	0	0	1-cycle	1	x_0)			f	→ į	$y_0 = 1$	$x_0 \otimes x_2$
0	1	0	1	0	0	2 evelo 1	$ x_1$	= ()	F	redki	n	→ į	$y_1 =$	$x_0\otimes \overline{x_2}$
1	0	0	0	1	0	∠-cycie ↓		x_2	2→	-	Gate		→ į	$y_2 = 1$	x_2
1	1	0	1	1	0	1-cycle] [_						

Reversible Logic: Toffoli Gate (CCNOT)

Inp	put b	oits	Ou	tput	bits	Permutation
x_0	x_1	x_2	y_0	y_1	y_2	
0	0	0	0	0	0	1-cycle
0	0	1	0	0	1	1-cycle
0	1	0	0	1	0	1-cycle
0	1	1	0	1	1	1-cycle
1	0	0	1	0	0	1-cycle
1	0	1	1	0	1	1-cycle
1	1	0	1	1	1	2 evelo ↑
1	1	1	1	1	0	

3-bit Toffoli gate truth table

Generalized w-bit Toffoli Gate

Example use of Toffoli Gate for a 2-bit NAND operation

Input Bits			Output Bits				Permutation			
x_0	•••	x_{w-2}	$ x_{w-1} $	Property	y_0		y_{w-2}	$\mid y_{w-1}$	Property	
1	•••	1	0	$x_i = 1$ for all	1	•••	1	1	$y_i = 1$ for all	2 avelo ↑
1	•••	1	1	$0 \leq i \leq w-2$	1		1	0	$0 \leq i \leq w-2$	2-cycle ↓
x_0		x_{w-2}	x_{w-1}	$x_i \neq 1$ for some	x_0		x_{w-2}	x_{w-1}	$y_i = x_i$ for all	1-cycle
				$0 \le i \le w - 2$					$0 \le i \le w - 1$	

Relaxations of Forward-only Computing to Reversible Computing

- Compute-Copy-Uncompute (CCU)
- Adiabatic Computing; Bennett's Trick

Forward-Reverse-Commit (FRC)

Optimistic Parallel Discrete Event Simulation, Speculative Processors

Undo-Redo-Do (URD)

Graphical User Interfaces

Begin-Rollback-Commit (BRC)

• Databases, Nested Tree Computation Scheduling; HPC Languages

Compute-Copy-Uncompute (CCU) Paradigm

Forward-only	Compute-Copy-Uncompute Execution	
$\overline{F}(P)$	$CCU(P) \equiv F(P) \rightsquigarrow Y(F(P)) \rightsquigarrow R(F(P))$	
$\frac{\text{Notation}}{P} =$	Program code fragment	Basic algorithmic building block to avoid
$\overline{F}(P) = F(P) = -$	Traditional forward-only execution of P Reversible forward execution of P	
$\begin{array}{ccc} Y(F(P)) &= \\ R(F(P)) &= \\ \end{array}$	Saving a copy of output from $F(P)$ Boverse execution of P after $F(P)$	Charles Bennett, "Logical Reversibility of Computation," IBM J. Res. Dev.,
$\begin{array}{cc} n(F(T)) &\equiv \\ X \rightsquigarrow Y &= \end{array}$	X followed by Y	17(6), 1973

Forward-Reverse-Commit (FRC) Paradigm

Forward-o	only	Forward-Reverse-Commit Execution	
$\overline{F}(P)$		$ FRC(P) \equiv [F(P) \rightsquigarrow R(P)]^* \rightsquigarrow F(P) \rightsquigarrow C(F(P)) $	P))
Notation			
P	=	Program code fragment	
$\overline{F}(P)$	=	Traditional forward-only execution of P	Basic operation in optimistic parallel
F(P)	=	Reversible forward execution of P	discrete event simulations such as the
R(P)	=	Reverse execution of P after $F(P)$	Time Warn algorithm
C(F(P))	=	Committing to irreversibility of $F(P)$	
$X \rightsquigarrow Y$	=	X followed by Y	
X^*	=	Zero or more executions of X	

Fundamental Relation of Reversibility to Energy Consumption for Computing

Initial Question

What is the minimum energy needed/dissipated to "compute?"

- Initial thesis
 Every *bit operation* dissipates a unit of energy (*kT*ln2)
- Next development
 Not every bit operation, but every bit erasure dissipates a unit of energy (kTln2).
 Other bit operations can be implemented without energy dissipation

- Follow-on Question
 What is the minimum number
 of bit erasures needed to
 "compute?"
 - Initial hypothesis
 There would be a non-zero, computation-specific number
 - Bennett's surprising solution: Zero bit erasures! Bennett's "compute-copy-uncompute" algorithm avoids all bit erasures for any arbitrary (Turing) program

Further refinements Algorithmic complexity, tradeoffs Partial reversibility

Bennett's Reversible Simulation of Irreversible Turing Machine Programs

Manifestations of Reversible Computing

Energy-Optimal Computing	New Uses Relevant to High
Hardware	Performance Computing
 Low-power processors Adiabatic circuits Asymptotically isentropic processing 	 Synchronization in Parallel Computing Generalized Asynchronous Execution Super-criticality Low-level Performance Effects Processor Architectures Speculative Execution Very Large Instruction Word (VLIW) Anti-Memoization (sic) Efficient Debugging Fault Detection Fault Detection Fault Tolerance Quantum Computing Others

Reversible Model Execution: Case Study

• Example: Simulate elastic collisions reversibly

- n-particle collision in d dimensions, conserving momentum and energy
- Incoming velocities X['], outgoing velocities X
- Traditional, inefficient solution
 - In forward execution, checkpoint X'
 - In reverse execution, restore X['] from checkpoint
 - Memory M proportional to n, d, and #collisions N_c
 M=n×d×8× N_c bytes
- New, reversible software solution
 - Generate new reverse code
 - In forward execution, no checkpoint of X'
 - In reverse execution, invoke reversal code to recover X' from X
 - Memory dramatically reduced to essential zero
 We have now solved it for n=2, 1≤d≤ 3, and n=3, d=1

References

ACM TOMACS 2013, arXiv.org Feb'13

Reversible Simulations of Elastic Collisions^{*}

Kalyan S. Perumalla[†] Vladimir A. Protopopescu Oak Ridge National Laboratory One Bethel Valley Rd, Oak Ridge, TN 37831-6085, USA

February 5, 2013

Cluster Computing Journal: Special Issue on Heterogeneous Computing, 2014

Reverse Computation for Rollback-based Fault Tolerance

Abstract

Consider a system of N identical hard spherical periods box and undergoing elastic, possibly multi-particle, algorithm that recovers the pre-collision state from system, across a series of consecutive collisions, with head. The challenge in achieving reversibility for an general, $n \ll N$) arises from the presence of nd-d-1 angles) during each collision, as well as from the colliding particles. To reverse the collision

Evaluating the Potential Gains and Systems Effects

Received: 18 February 2013 / Accepted: 13 May 2013 © Springer Science+Business Media New York 2013

in Large Parallel Systems

Abstract Reverse computation is presented here as an important future direction in addressing the challenge of fault tolerant execution on very large cluster platforms for parallel computing. As the scale of parallel jobs increases, traditional checkpointing approaches suffer scalability problems ranging from computational slowdowns to high congestion at the persistent stores for checkpoints. Reverse computation can overcome such problems and is also better suited for parallel computing on newer architectures with smaller, cheaper or energy-efficient memories and file systems. Initial evidence for the feasibility of reverse computation in large systems is presented with detailed performance data from a particle (ideal gas) simulation scaling to 65,536 processor cores and 950 accelerators (GPUs). Reverse computation is observed to deliver very large gains relative to checkpointing schemes when nodes rely on their host processors/memory to tolerate faults at their accelerators. A comparison between reverse computation and checkpointing with measurements such as cache miss ratios, TLB misses and memory usage indicates that reverse computation is hard to ignore as a future alternative to be pursued in emerging architectures.

Kalyan S. Perumalla & Alfred J. Park

n-Particle d-Dimensional Elastic Collision Constraints

$$\sum_{i=1}^{n} \vec{V'}_{i} = \sum_{i=1}^{n} \vec{V}_{i} = \vec{M}$$

$$\sum_{i=1}^{n} (\vec{V'}_{i})^{2} = \sum_{i=1}^{n} (\vec{V}_{i})^{2} = E > 0$$
Dynamics,

 $\begin{array}{l} \forall i, j \text{ such that particles} \\ i \text{ and } j \text{ are in contact} \end{array} \middle| \begin{array}{l} \vec{r}_{ji} \cdot (\vec{V'}_i - \vec{V'}_j) < 0 \, (\text{pre-collision}) \\ \vec{r}_{ji} \cdot (\vec{V}_i - \vec{V}_j) > 0 \, (\text{post-collision}) \end{array} \right\} \text{Geometry.}$

2 Particle Collision in 2 Dimensions

Elastic Collision Constraints for 2 Particles in 3 Dimensions

$$\begin{array}{l} \left\{ \begin{array}{l} a+b+c=\alpha\\ a^{2}+b^{2}+c^{2}=\delta,\ 3\delta >\alpha^{2} \end{array} \right\} \text{ Dynamics.} \\ \left[\begin{array}{l} \text{Only two of these three need be}\\ \text{satisfied for any given geometric}\\ \text{configuration } r_{21},r_{32},r_{13}>0 \end{array} \right] \begin{array}{l} r_{21}\cdot(a-b)>0,\\ r_{32}\cdot(b-c)>0,\\ r_{13}\cdot(c-a)>0 \end{array} \right\} \text{Geometry.} \\ \left[\begin{array}{l} \bar{a}^{2}+\left(\frac{\bar{b}-\frac{\sqrt{2}}{3}\alpha}{\frac{1}{\sqrt{3}}} \right)^{2} =\delta-\frac{\alpha^{2}}{3}, \text{ where } \bar{a} \end{array} \right] = \frac{a-b}{\sqrt{2}}, \text{ and } \bar{b}=\frac{a+b}{\sqrt{2}}, \\ \bar{a}=\frac{\lambda}{\sqrt{2}}\cos\phi_{1}, \ \bar{b} \end{array} = \frac{\sqrt{2}}{3}\alpha+\frac{\lambda}{\sqrt{2}\sqrt{3}}\sin\phi_{1}, \ \lambda=\sqrt{2}\sqrt{\delta-\frac{\alpha^{2}}{3}}, \text{ and } \phi_{1} \end{array} \in \left[0, 2\pi \right] \end{array}$$

>

Sub-Problem: Reversibly Sample the Circumference of an Ellipse

$$\bar{a} = \frac{\lambda}{\sqrt{2}} \cos \phi_1, \, \bar{b} = \frac{\sqrt{2}}{3} \alpha + \frac{\lambda}{\sqrt{2}\sqrt{3}} \sin \phi_1, \, \lambda = \sqrt{2} \sqrt{\delta - \frac{\alpha^2}{3}}, \, \text{and} \, \phi_1 \in [0, 2\pi)$$

Major Sampling Challenge None of sampling procedures in the literature is reversible

Needed a New Algorithm

New sampling algorithm is designed to be reversible

General Sub-Problem: Reversibly Sample the hyper-surface of a hyper-ellipsoid

Procedure 5 $(\mathbf{G} \to \mathbf{\Psi})$: Generate the Parameters $\mathbf{\Psi}$ of a Random Point on the Surface of an s-Dimensional Hyper-Ellipsoid, \mathcal{H}_s , using Random Numbers $\mathbf{G} = \{G_1, \ldots, G_{s-1}\}$

- 1: Input: $s, \{s\lambda_i \mid 1 \leq i \leq s\}$, where integer s > 1, and $\sum_{i=1}^{s} \left(\frac{x_i}{s\lambda_i}\right)^2 = 1$ is the hyper-ellipsoid
- 2: **Output**: $\{\psi_i \mid 1 \leq i < s\}$, where ψ_i are the parameters of a random point (rx_1, \ldots, rx_s) on the hyper-ellipsoid, such that $rx_i = s\lambda_i \cos \psi_i \prod_{j=1}^{i-1} \sin \psi_j$ for all $1 \leq i < s$, and $rx_s = s\lambda_s \prod_{j=1}^{s} \sin \psi_j$

New Algorithm

- The first algorithm to correctly sample an arbitrary dimensioned hyper-ellipsoid
- *Moreover, it does so reversibly!*

100,000 Particles Reversibly Simulated on CPU

Reversible computing-based runtime performance significantly better than that of checkpointing-based approaches

100,000 Particles Reversibly Simulated on GPU

Gains from reversible computing software dramatically pronounced on GPU-based execution with large no. of particles

Reversible Collisions: Performance Increase is due to Better Memory

A Fault Tolerance Scheme that Builds on Reversible Computing Software

- Relieves file system congestion
- Relaxes need for global snapshot
- Enables node-level freedom of checkpoint frequency
- Avoids message replay

"Reverse Computation for Rollback-based Fault Tolerance in Large Parallel Systems," Cluster Computing Journal: Special Issue on Heterogeneous Computing, 2014

Reversible Languages and Programming Constructs

- Janus
- R
- SRL, ESRL
- Reversible C

Janus - Reversible Conditional

Janus – Reversible Looping

Janus - Reversible Looping (continued)

FS=Forward start **FE**=Forward end **RS**=Reverse start **RE**=Reverse end

Janus - Reversible Subroutine Invocation

	Callee Mode				
Caller mode	Forward	Reverse			
Forward	CALL	UNCALL			
Forward	UNCALL	CALL			
Reverse	CALL	UNCALL			
Reverse	UNCALL	CALL			

Janus – Other Constructs: Swap, Arithmetic, Input/Output

Forward

Inverse

CALL name	UNCALL name
UNCALL name	CALL name
var : var	$var^1 : var^2$
name += expression	name -= expression
name -= expression	name += expression
name ^= expression	name ^= expression
READ name	WRITE name
WRITE name	READ name

Jump Instruction

Due to their symmetry, **jumpfrom** and **jumpto** can simply drop their tags and become a single instruction type **jump**

Automation: Unified Composite Approach

• Approaches combined to provide unified composite for reversibility

Automation: Source-to-Source Compiler

- Source-to-source compilation approach
- For implementation ease, memory minimization over application code can be achieved via #pragma hints by the user

Original Code

Reverse

Automation: Libraries and Interfaces

Reversible versions of commonly-used libraries

- Example 1: Reversible linear algebra building blocks
 - Defining reversible interfaces of classical forward-only sub-programs
 - Prototypes in C and FORTRAN, executable on CPUs and GPUs
- Example 2: Reversible random number generation
 - Complex distributions, inverse or rejection-based methods
 - Reversible random number generator RRNG (to be released soon) in C, Java, and FORTRAN
 - Large period, multiple independent streams
- Example 3: Reversible dynamic memory
 - Memory allocation and de-allocation, both of which are individually and separately reversible
- Example 4: Reversible integer arithmetic
 - Proposed framework for new internal representation and reversible operations

RBLAS – Reversible Basic Linear Algebra Subprograms

Types Notes

Reversal via Computation

- BLAS Levels 1, 2 and 3
- CPU, GPU

Call Forward

- Cache and TLB effects
- Accuracy of reversal (empirical)

Prototype and Performance Study

 "Towards Reversible Basic Linear Algebra Subprograms" Perumalla and Yoginath, Transactions on Computational Sciences, 2014

Illustration of Reversible Run time (GPU) (lower is better)

RC=Reversible Computing; CP=Checkpointing

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-J P	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	xGER	$A \leftarrow \alpha x y^T + A$	$A \leftarrow -\alpha x y^T + A$	S,D	General
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	xGERU	$A \leftarrow \alpha x y^T + A$	$A \leftarrow -\alpha x y^T + A$	C,Z	General
xHER $A \leftarrow \alpha x x^H + A$ $A \leftarrow -\alpha x x^H + A$ C,ZHermitian xHPR $A \leftarrow \alpha x x^H + A$ $A \leftarrow -\alpha x x^H + A$ C,ZPacked Hermitian xHER2 $A \leftarrow \alpha x y^H + y(\alpha x)^H + A$ $A \leftarrow -\alpha x y^H - y(\alpha x)^H + A$ C,ZHermitian xHPR2 $P \leftarrow \alpha x y^H + y(\alpha x)^H + P$ $P \leftarrow -\alpha x y^H - y(\alpha x)^H + P$ C,ZPacked Hermitian xSYR $Y \leftarrow \alpha x x^T + Y$ $Y \leftarrow -\alpha x x^T + Y$ S,DSymmetric xSPR $P \leftarrow \alpha x x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked xSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + P$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DSymmetric xSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xGERC	$A \leftarrow \alpha x y^H + A$	$A \leftarrow -\alpha x y^T + A$	C,Z	General
xHPR $A \leftarrow \alpha x x^H + A$ $A \leftarrow -\alpha x x^H + A$ C,ZPacked HermitianxHER2 $A \leftarrow \alpha x y^H + y(\alpha x)^H + A$ $A \leftarrow -\alpha x y^H - y(\alpha x)^H + A$ C,ZHermitianxHPR2 $P \leftarrow \alpha x y^H + y(\alpha x)^H + P$ $P \leftarrow -\alpha x y^H - y(\alpha x)^H + P$ C,ZPacked HermitianxSYR $Y \leftarrow \alpha x x^T + Y$ $Y \leftarrow -\alpha x x^T + Y$ S,DSymmetricxSPR $P \leftarrow \alpha x x^T + P$ $P \leftarrow -\alpha x y^T - \alpha x x^T + P$ S,DPackedxSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + Y$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetricxSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xHER	$A \leftarrow \alpha x x^H + A$	$A \leftarrow -\alpha x x^H + A$	C,Z	Hermitian
xHER2 $A \leftarrow \alpha x y^H + y(\alpha x)^H + A$ $A \leftarrow -\alpha x y^H - y(\alpha x)^H + A$ C,ZHermitian xHPR2 $P \leftarrow \alpha x y^H + y(\alpha x)^H + P$ $P \leftarrow -\alpha x y^H - y(\alpha x)^H + P$ C,ZPacked Hermitian xSYR $Y \leftarrow \alpha x x^T + Y$ $Y \leftarrow -\alpha x x^T + Y$ S,DSymmetric xSPR $P \leftarrow \alpha x x^T + P$ $P \leftarrow -\alpha x x^T + P$ S,DPacked xSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + Y$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetric xSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xHPR	$A \leftarrow \alpha x x^H + A$	$A \leftarrow -\alpha x x^H + A$	C,Z	Packed Hermitian
xHPR2 $P \leftarrow \alpha x y^H + y(\alpha x)^H + P$ $P \leftarrow -\alpha x y^H - y(\alpha x)^H + P$ C,ZPacked HermitianxSYR $Y \leftarrow \alpha x x^T + Y$ $Y \leftarrow -\alpha x x^T + Y$ S,DSymmetricxSPR $P \leftarrow \alpha x x^T + P$ $P \leftarrow -\alpha x x^T + P$ S,DPackedxSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + Y$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetricxSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetricxSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xHER2	$A \leftarrow \alpha x y^H + y (\alpha x)^H + A$	$A \leftarrow -\alpha x y^H - y(\alpha x)^H + A$	C,Z	Hermitian
xSYR $Y \leftarrow \alpha x x^T + Y$ $Y \leftarrow -\alpha x x^T + Y$ S,DSymmetricxSPR $P \leftarrow \alpha x x^T + P$ $P \leftarrow -\alpha x x^T + P$ S,DPackedxSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + Y$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetricxSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xHPR2	$P \leftarrow \alpha x y^H + y (\alpha x)^H + P$	$P \leftarrow -\alpha x y^H - y(\alpha x)^H + P$	C,Z	Packed Hermitian
xSPR $P \leftarrow \alpha x x^T + P$ $P \leftarrow -\alpha x x^T + P$ S,DPackedxSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + Y$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetricxSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xSYR	$Y \leftarrow \alpha x x^T + Y$	$Y \leftarrow -\alpha x x^T + Y$	S,D	Symmetric
xSYR2 $Y \leftarrow \alpha x y^T + \alpha y x^T + Y$ $Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$ S,DSymmetric xSPR2 $P \leftarrow \alpha x y^T + \alpha y x^T + P$ $P \leftarrow -\alpha x y^T - \alpha y x^T + P$ S,DPacked	xSPR	$P \leftarrow \alpha x x^T + P$	$P \leftarrow -\alpha x x^T + P$	S,D	Packed
$\mathbf{xSPR2} \left[P \leftarrow \alpha x y^T + \alpha y x^T + P \right] \left[P \leftarrow -\alpha x y^T - \alpha y x^T + P \right] S, D \text{ Packed}$	xSYR2	$Y \leftarrow \alpha x y^T + \alpha y x^T + Y$	$Y \leftarrow -\alpha x y^T - \alpha y x^T + Y$	S,D	Symmetric
	xSPR2	$P \leftarrow \alpha x y^T + \alpha y x^T + P$	$P \leftarrow -\alpha x y^T - \alpha y x^T + P$	S,D	Packed

Reversal

Illustration: Level 2 Forward-Reverse Interfaces

Reversible Linear Congruential Generators (LCG)

$$x_{i+1} = (ax_i + c) \mod m$$
 Forward

$$b = a^{m-2} \mod m$$

Reverse
$$x_i = (bx_{i+1} - c) \mod m$$

$$x \mod m = \begin{cases} x & \text{if } 0 \le x < m, \\ (x-m) \mod m & \text{if } m \le x, \text{ and} \\ (x+m) \mod m & \text{if } x < 0. \end{cases}$$

LCG Code and Example

$x {Seed}$ $m {Modulus}$ $a {Multiplier}$ $c {Increment}$ $b \leftarrow a^{m-2} \mod m$	$\frac{\mathcal{S}()}{x \leftarrow (ax + c) \mod m}$	$\frac{\mathcal{S}^{-1}()}{x \leftarrow (b(x-c)) \mod m}$
Variables	Forward	Reverse
Example 7		27-2 m c d 7 5

Example m = 7, a = 3, and c = 2 $b = 3^{7-2} \mod 7 = 5$

-		Forward	Reverse
i	x_i	$x_{i+1} \leftarrow (ax_i + c) \mod m$	$x_i \leftarrow (b(x_{i+1} - c)) \mod m$
0	x_0	$\downarrow 5$	$\uparrow 5$
1	x_1	$\downarrow 3$	$\uparrow 3$
2	x_2	$\downarrow 4$	$\uparrow 4$
3	x_3	$\downarrow 0$	$\uparrow 0$
4	x_4	$\downarrow 2$	$\uparrow 2$
5	x_5	$\downarrow 1$	$\uparrow 1$
6	x_6	$\downarrow 5$	$\uparrow 5$

Reversibility Challenge in Sampling Complicated Random Distributions

Upper-bounded Rejection Sampling

Reversible Procedures for Dynamic Memory Allocation

Operation	Traditional	Reversible		
P	Forward-only $\overline{F}(P)$	Forward	Reverse	Commit
		F(P)	R(F(P))	C(F(P))
Allocation	m=malloc()	m=malloc()	m=pop()	pop()
		push(m)	free(m)	
Deallocation	free(m)	push(m)	pop()	m=pop()
				free(m)

Verifying Correctness of malloc under FRC (Forward-Reverse-Commit) Paradigm

Verifying Correctness of free under FRC (Forward-Reverse-Commit) Paradigm

$$\overline{F}(P) = [F(P) \rightsquigarrow R(F(P))]^* \rightsquigarrow F(P) \rightsquigarrow C(F(P))$$

$$\boxed{\text{free(m)}} = \underbrace{\left[\begin{array}{c} \text{push(m)} \\ \text{push(m)} \end{array}\right]^*}_{\left[\begin{array}{c} \text{push(m)} \\ \text{pop()} \end{array}\right]^*} & \longrightarrow \underbrace{\begin{array}{c} \text{push(m)} \\ \text{push(m)} \\ \text{free(m)} \end{array}\right]^*}_{\text{free(m)}}$$

Reversible Math – A New Framework Proposed for Reversible Integer Arithmetic

Future: Integrated Reversible Software

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Future: Evolution from Irreversible to Reversible Computing

Thank you

Q&A

Additional Slides

Back up

Model-based Reversal: Example

Reversible Execution

- Space discretized into cells
- Each cell *i* at time increment *j* computes a^j
- Can go forward & reverse in time
 - Forward code computes a_i^{j+1}
 - \succ Reverse code recovers a_i^j
- Note that a_{i+1} ^{j+1}= a_{i+1} ^j due to discretization across cells

Simplified Illustration of Reversible Software Execution

Traditional Checkpointing

Undo by saving and restoring e.g.

 $\rightarrow \{ save(x); x = x+1 \} \\ \leftarrow \{ restore(x) \}$

Disadvantages

- Large state memory size
- Memory copying overheads slow down forward execution
- Reliance on memory increases energy costs

Reversible Software

Undo by executing in reverse e.g.

 $\rightarrow \left\{ \begin{array}{l} \mathbf{x} = \mathbf{x} + \mathbf{1} \\ \mathbf{x} = \mathbf{x} - \mathbf{1} \end{array} \right\}$

Advantages

- Reduced state memory size
- Reduced overheads; moved from forward to reverse
- Reliance on computation can be more energy-efficient

Janus – Example of Reversible Program: Integer Square Root Computation

Program

num root z bit procedure root bit += 1from bit=1 loop call doublebit until (bit*bit)>num do uncall doublebit if ((root+bit)**2)<=num then root += bit **fi** (root/bit)\2 # 0 until bit=1 bit -= 1num -= root*root procedure doublebit z += bitbit += 7

z -= bit/2

Notes

Variables Computes floor(sqrt(num)) into root

Coarse search

Back up with fine search

Reversibly compute *z* = bit*bit

Automation Algorithms – Linear Codes

Example: Reversibly computing n^{th} and $n+1^{th}$ Fibonacci number: f(n)=f(n-1)+f(n-2)

Full, Periodic, Incremental Checkpointing

Automation of Reversal: Example Code to Illustrate Different Approaches

 $I_i \\ I_i^{-1}$

 R_i

 W_i

 R_{if}

 R_{while}

subroutine f() I_1, R_1, W_1 while (R_{while}) I_2, R_2, W_2 I_3, R_3, W_3 end while if (R_{if}) I_4, R_4, W_4 else I_5, R_5, W_5 end if I_6, R_6, W_6 end subroutine

Irreversible forward code

- $= i^{th}$ non-control flow instruction
- = Inverse instruction of I_i
- = Set of variables read by I_i
- = Set of variables overwritten by I_i
- = Variables used in loop condition
- = Variables used in branch condition

Automation Example: Compilation Approach

Automation Example: Interpretation or Log-based Approach

 I_1, R_1, W_1 $\frac{I_6^{-1}, R_6, W_6}{I_5^{-1}, R_5, W_5}$ I_2, R_{2_1}, W_{2_1} I_3, R_{3_1}, W_{3_1} or While I_4^{-1}, R_4, W_4 I_2, R_{2_2}, W_{2_2} $\overline{I_3^{-1}}, R_{3_C}, W_{3_C}$ I_3, R_{3_2}, W_{3_2} $I_2^{-1}, R_{2_C}, W_{2_C}$ While I_2, R_{2_C}, W_{2_C} I_3, R_{3_C}, W_{3_C} $I_3^{-1}, R_{3_2}, W_{3_2}$ $I_2^{-1}, R_{2_2}, W_{2_2}$ I_4, R_4, W_4 $I_3^{-1}, R_{3_1}, W_{3_1}$ Ľ or $I_2^{-1}, R_{2_1}, W_{2_1}$ I_5, R_5, W_5 I_{6}, R_{6}, W_{6} $^{-1}, R_1, W_1$

