

DOE Storage Systems and Input/Output (SSIO) Workshops Held December 8-11, 2014

Rob Ross Math and Computer Science Division **Argonne National Laboratory** rross@mcs.anl.gov

Organizers

- Rob Ross (ANL)
- Gary Grider (LANL)
- Evan Felix (PNNL)
- Mark Gary (LLNL)
- Scott Klasky (ORNL)
- Ron Oldfield (SNL)
- Galen Shipman (LANL)
- John Wu (LBNL)

Sponsor

Lucy Nowell (ASCR)

What is Storage Systems and Input/Output (SSIO)?

- Everything from the low-level parallel file system and archival storage up to libraries that serve as the interfaces to applications
- New challenges mandate new R&D:
 - Deeper storage hierarchies
 - Increasing scale(s), complex topologies
 - Demand for greater resilience
 - New science workflows

Storage, I/O, and Exascale

#6 Data management: Creating data management software that can handle the volume, velocity and diversity of data that is anticipated.

But also:

#4 Scalable System Software:

Developing scalable system software that is power- and resilience- aware.

Goals and Process

Goals:

- Review SSIO requirements for simulation-driven activities
- Assess state of the art
- Identify priority research directions in SSIO

3 Workshops

- Requirements gathering
- Cross-cutting computer science
- The SSIO meeting itself

Organizers

- Rob Ross (ANL)
- Gary Grider (LANL)
- Evan Felix (PNNL)
- Mark Gary (LLNL)
- Scott Klasky (ORNL)
- Ron Oldfield (SNL)
- Galen Shipman (LANL)
- John Wu (LBNL)

Sponsor

Lucy Nowell (ASCR)

Workshop 1: Requirements Gathering

Goal: Define a set of use cases for future systems to inform SSIO R&D community.

- Application representatives presented future requirements
- Answered a detailed set of questions on topics such as:
 - Composition of jobs, phases of I/O
 - Structure of data, methods of query
 - Methods of data reduction during runtime (i.e., in situ)
 - Expected uses of NVRAM in future systems
 - Archival storage use, provenance capture

Science/Mission Reps

- Salman Habib (HEP)
- Rob Neely (ASC)
- Varis Carey (ExaCT)
- David Rogers (ASC)
- Dave Richards (ExMatEx)
- Michael Glass (ASC)

Workshop 2: Cross-cutting Computer Science

Goal: Identify critical SSIO requirements and points for coordination between SSIO and other CS areas.

- Experts in related CS areas presented their views on how their area intersects with SSIO
 - Operating systems
 - Networking
 - Workflow
 - Resilience
 - Analysis and visualization
 - Collaborative technologies

Crosscutting CS Representatives

- Pete Beckman (OS/Runtime)
- Kerstin Kleese van Dam (Workflow)
- Ian Foster (Collab. Technologies)
- Oliver Rubel (Analysis and Vis.)
- Nathan Debardeleben (Resilience)
- Maya Gokhale (Analytics)
- Jay Lofstead (LAN Networking and OS)

Workshop 2: Cross-cutting Computer Science

In situ Infrastructure

Dependencies and Relationships with SSIO (1/2)

In situ Data Analysis and Visualization I/O	Traditional Simulation I/O
Read data into the simulation: e.g, analyses across time, compare with observation etc.	Write only
Save complex analysis results: including surfaces, graphs, sparse matrices etc.	Write structured fields
More frequent "smaller" writes: Save reduced data and analysis results at higher temporal resolution Irregular temporal intervals between writes: Save data and analysis results when specific features/events are discovered	Write data at regular and often sparse time intervals
Potentially unbalanced I/O load: E.g., the data partitioning may be optimized for the simulation not DAV.	Simulations often optimized for load balancing

Slide from O. Rubel.

Jay Lofstead (LAN Networking and OS)

Workshop 3: Identifying Research Directions

Goal: Identify potential research directions in SSIO for extreme scale DOE science.

- Initial talks summarized findings from prior workshops and other recent activities in the area
- Single track, open discussion, organized around five areas:
 - HW/SW architectures for SSIO
 - Metadata, name spaces, and provenance
 - Supporting science data
 - Integration with external services
 - Understanding SSIO systems

Workshop 3 Computer Scientist Participants

- Hasan Abbasi (ORNL)
- Eric Barton (Intel)
- Michael Bender (SUNY SB)
- John Bent (EMC)
- Suren Byna (LBNL)
- Phil Carns (ANL)
- John Chandy (UConn)
- Matt Curry (SNL)
- Bronis de Supinski (LLNL)
- Garth Gibson (CMU)
- Kevin Harms (ANL)
- Quincey Koziol (HDF Group)
- Bradley Kuszmaul (MIT)
- Wei-keng Liao (Northwestern)
- Darrell Long (UCSC)
- Carlos Maltzahn (UCSC)

- Meghan McClelland (Seagate)
- Ethan Miller (UCSC)
- Adam Moody (LLNL)
- Paul Nowoczynski (DDN)
- Manish Parashar (Rutgers)
- Narasimha Reddy (TAMU)
- Brad Settlemyer (LANL)
- Rajeev Thakur (ANL)
- Sudharshan Vazhkudai (ORNL)
- Lee Ward (SNL)
- Brent Welch (Google)
- Matt Wolf (GA Tech)
- Cornell Wright (LANL)
- Wenji Wu (FNAL)
- Erez Zadok (SUNY SB)

Hardware/Software Architectures

Topics included

- Network technologies and topologies
- Solid-state storage in and near the HPC system
- Compute-in-storage
- System noise, reliability
- Autonomics

Findings

- Storage hierarchy is increasing in complexity. Current organization methods (e.g., parallel file systems, archival management) must significantly change or be replaced to address this complexity.
- Scientists need an integrated view of storage resources. New metadata capabilities and integration with external storage are also needed.
- Priorities for research
 - Managing deep and heterogeneous storage hierarchies
 - Alternative management paradigms to the file system model

Hardware/Software Architectures

Raj Hazra, ISC, July 2015. Image from N. Hemsworth, "One Single System Architecture to Rule Them All," July 20, 2105.

Metadata, Name Spaces, and Provenance

Topics included

- Metadata and alternative data stores
- Automating provenance capture, connection to other services

Finding

 New requirements for validation of results will change role of metadata in DOE applications. New methods for capturing provenance and exploring datasets will be needed.

Priorities for research

- New methods of management of rich metadata
- Breaking away from the current file model

Graph-based methods of organizing and interacting with metadata are one possible alternative to current approaches.

D. Dai et al, "GraphTrek: Asynchronous Graph Traversal for Property Graph Based Metadata Management," Cluster 2015, September 2015 (to appear).

Supporting Science Data

- Topics included
 - Programming model integration
 - SSIO services in support of workflow
 - Self-tuning libraries
 - Data abstractions
- Findings
 - Scientist productivity is tied to ability to represent and interact with complex and specialized data.
 - Alternative programming languages and increased need for workflow support drive new SSIO research.
- Priorities for research
 - New generation of I/O middleware and services to support new programming abstractions and workflows

Autotuning I/O middleware can provide dramatically improved performance with limited search time over possible configurations.

B Behzad et al, "Improving Parallel I/O Autotuning with Performance Modeling," HPDC 2014, June 2014.

13

Integration with External Services

- Topics included
 - Scheduling and resource management
 - System monitoring
 - Workflow and orchestration
 - Archival storage
- Finding
 - Current SSIO designs hindered by isolation from system-level resource management, monitoring, and workflow systems.
- Not a research direction in itself, but rather influences direction of research in other areas

Understanding Storage Systems and I/O

Topics included

- Workload characterization
- Modeling and simulation
- Designing for understandability
- Findings
 - Many important aspects of application and system behavior are obscured from view. Better understanding is needed to maximize SSIO effectiveness.
- Priorities for research
 - Improve our ability to characterize storage activities to model and predict the behavior of SSIO activities on future systems.

Characterization of I/O traffic on production systems helps identify opportunities for improvement, leading to more productive use of DOE systems.

H. Luu et al, "A Multiplatform Study of I/O Behavior on Petascale Supercomputers," HPDC 2015, June 2015.

For more information...

Thanks to:

- Gary Grider (LANL)
- Evan Felix (PNNL)
- Mark Gary (LLNL)
- Scott Klasky (ORNL)
- Ron Oldfield (SNL)
- Galen Shipman (LANL)
- John Wu (LBNL)
- Lucy Nowell (ASCR)

http://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/ssio-report-2015.pdf

15-1338 Storage and I/O for Extreme Scale Science

- Themes:
 - Measurement and Understanding
 - Scalable Storage Software Infrastructure
 - New Paradigms in SSIO
- Proposals were due July 13, 2015

Ongoing Burst Buffer Discussion

Compute nodes run application processes.

I/O forwarding nodes (or I/O gateways) shuffle data between compute nodes and external resources, including storage.

Storage nodes run the parallel file system (or alternative).

- Possible solid-state storage (burst buffer) location

Ongoing Burst Buffer Discussion

Looking Forward

- Experimental and observational data brings new challenges
- HPC has a role, SSIO also has a role...

