Sandia
Exceptional service in the national interest National
Laboratories

Ron Brightwell
R&D Manager, Scalable System Software Department

» US DEPARTMENT OF L
L_‘? ENERGY &‘ A'a"ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
- Tray A e Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Purpose and Goals of the Workshop

= Review state-of-the-art in runtime systems (RTS)
= |dentify challenges being addressed by current RTS R&D
= |dentify research questions that need to be resolved

= Devise metrics, measures, benchmarks, and means for testing
and evaluation for RTS prototypes

= Discuss R&D roadmap that will result in one or more high-
quality RTS prototypes

= http://www.orau.gov/runtimesys2015/

ASCAC Meeting July 27, 2015

http://www.orau.gov/runtimesys2015

Workshop Details

= March 11-13, 2015

= Rockville Hilton, Rockville, MD

= 45 domain experts in HPC runtime systems
= Content

= |nvited talks and breakout sessions
= Topics
= The architecture for future RTS software
= RTS design
= Qutstanding research questions
= Roadmap for the future

ASCAC Meeting July 27, 2015

Focus Area 1: System Architecture

= Execution model
= Governing principles of the strategy of computation
= Asynchrony
= Semantics and control strategy in the presence of asynchrony
= System fragmentation
= Scope of the RTS, from system- to node-level
= Relationship between operating system and RTS
= Responsibilities and interfaces
= Relationship between programming models and RTS
= Basic requirements for RTS
= Compile-time information, guidance, and constraints
= Information that compilers can provide to the RTS
= Evaluation
= Metrics for testing and evaluating a RTS

ASCAC Meeting July 27, 2015

Focus Area 2: RTS Design

= Memory models, namespace, address space
= How the RTS manages memory resources
" |ntrospection interfaces, policy, and control
= How the RTS can use dynamic adaptive techniques
= Contribution to tools
= Role of RTS in correctness analysis
= Parallelism forms, granularity, and synchronization
= Role of RTS in managing parallelism
= Contribution and responsibility to reliability
= Specific capabilities of the RTS for resilience
= Contribution and responsibility to power/energy
= Role of RTS in minimizing energy costs
= Evaluation
= How to test and evaluate RTS design

ASCAC Meeting July 27, 2015

Workshop Builds on RTS Summit Activity

= RTS Summit meeting, April 9, 2014 Programening Modet

= 11 attendees from X-Stack projects —

= Day-long meeting to brainstorm about : [onnata {{f svensrs 143 | rsmnias 1] B | %
requirements for an exascale RTS 5 " e i g

= Goal was to develop high-level L | e |l o { we . M
requirements, roles, and responsibilities : '
for RTS e o .

= Provide some context for generating U vuascolerarswae

roadmap for future investments in RTS
= Services an RTS needs to provide

= |nterfaces between RTS and

= Node- and system-level hardware
abstraction layers

= QOperating system
= Programming interface
= Mapping these interfaces to existing RTS

= 45-page draft report

ASCAC Meeting July 27, 2015

RTS R&D in Several ASCR Projects

= X-Stack program has

played key role in m :;1_ g .,_.i_"w_
supporting RTSR&D for | . | ==f s
extreme-scale —erEss aaka Gl

" X-Stack renewal enables ===7 i 5
engagement across ;_E';: X mnj'“
projects in RTS Ao

= Prototypes
" |nterfaces
= Evaluation strategies

ASCAC Meeting July 27, 2015

RTS in NNSA/ASC Projects

HPX

Distinguishing Features of ParalleX/HPX

Qthreads
B B s Application <
1‘ S8 “'l 5% | AP % ,
“ I : S Charm++ Runtime) §
] (I8 Empowering the RTS e -
== EV = Adaptive € yﬂm% oty Yo § ARMI COmmun.cat;ofur;]r:::uiryﬁ:xr:cutor Performance

Runtime System Library Monitor

Pthreads, OpenMP, MPI, Native, ...
Asynchrony Overdecomposition Migratability

+ The Adaptive RTS can COﬂdUCtOI‘

~ Dynamically balance losds ‘

A Wrn- i Seabomn b PmonCoatrmtand HIX
Appbentbnn

- Optimize communication
Argobots ST UINTAH
Automatic lat tolerance
F st fect tabilie
MP1+Argobots: Data Movement in Distributed 03 perfce Dredictasey
Memory Systems with Lightweight Thre:ds
A ind
* Hybrid runtime of MPI and Argobots
- kghvtweight and dynamically adapt to the
hardware resource
* Two level of throads pravide an explicit
semantic for concurrency
= Eercution Stream [ES] provides concurrent
ecution
= User Leved Thread (ULT) provdes fast comtest o : .
swiich * Event based, dynamic, explicit representation of Inter- |
. ys. MPIsQtfreads task dependencies to bridge the latency gap
Othresss share 23 ULT smang warkers, o it e - E re control depanden y (camry no data) - order
can not specty which ULTs ren in paralel don" dencies
Argobots binds ULT to £5 for explict scheduling @
Highly optimized contest switch in Argobots [0

= T

MEHNERO: |

. lo'l_ﬁd,\nm

* Machine model
- Processors (CPU, GPU)
Mamory {catributed,
system, GPU memory,
Laro-<opy memocy)

Many Other Run Time Systems

= Nanos/StarSS/OmpSS (BSC)
= StarPU/ForestGOMP (Inria)
= SWARM (ETI)

= MassiveThreads (U. Tokyo)
= Cilk/Cilk Plus (MIT/Intel)

= Grappa (UW/PNNL)

= HAS (AMD)

Definition of RTS (incomplete)

= Strong desire to understand responsibilities of the RTS

= Characteristics
= Non-priveleged
= Runs in application space

Ephemeral
= Doesn’t live beyond the application
= Can manage hardware directly
= As long as isolation and protection mechanisms are provided

Interfaces to the node-level OS
May interface to the system OS and the enclave OS

= Definition may be platform specific

ASCAC Meeting July 27, 2015

Architecture for Exascale RTS

Execution model
= Struggle with nomenclature
= Depends on what runtime service being provided
= Runtime services should be able to be bypassed
= Asychrony
= Performance variability — how to do resource management?
= Some programming models embrace it
= Everything needs to be lightweight — scheduling, synchronization, etc.
= Relationship between RTS and OS
= Services used by application versus across applications
= OS should still get out of the way but enable the RTS
= Relationship to PM
= What gets exposed and what gets hidden (transparency)
= Connection to services like data management, security, performance monitoring

= Flow of information between app and RTS

= Evaluation
= What are the metrics?
= RTS portability

ASCAC Meeting July 27, 2015

RTS Architecture (cont’d)

= Blurry lines between RTS above (PM) and below (OS)

= Dynamic compilation, interpreted languages, etc. make this problem
worse

= Lack of clear taxonomy is hindering effective integration

= Need requirements from the top
= Loss of semantic information all the way down the stack

= QoS requirements, allocation of resources should be exposed
as hints from the application programmer to drive policy
decisions

= Managing shared resources
= Dealing with elasticity
= Resilience is a cross-cutting problem

ASCAC Meeting July 27, 2015

RTS Design

= Memory System
= Translation
= Need to support static, semi-static, and dynamic use of memory
= How to differentiate between memory and storage
= How memory is virtualized
= |ntrospection

= Need a well-defined set of policies and abstractions for reasoning about the behavior of
the system

= Need to be able to observe all aspects of the hardware
= Different granularities of information to be observed
= Cost of introspection
= Reliability
= Vulnerability of the RTS to faults
= Complexity of interactions exacerbates this problem

= Energy/Power Management
= Responsibility of job scheduler, job-level RTS, node-level RTS

ASCAC Meeting July 27, 2015

RTS Design (cont’d)

= Scheduling and Resource Management
= Priorities
= Load balancing
= Latency hiding
= Systems will be malleable and elastic
= Resolving conflicts between different policies

= Tool Infrastructure
= Toolchain needs to be co-designed with RTS
= Attribution of performance bottlenecks
= |nteroperability of different programming systems and RTSs
= Application developers need to understand detailed decisions by RTS

= Evaluation
= Adoption is a good metric
= Scalability, flexibility, portability, completeness, ease of use

ASCAC Meeting July 27, 2015

Articulate the RTS Ecosystem

= Develop an ecosystem model for RTS components

= Determine which RTS services are stand-alone and which are
embedded into larger components
= RTS support for language-specific features

= |dentify interfaces that are ready for a standardization
process

= Process for transitioning RTS software from research to
production

ASCAC Meeting July 27, 2015

Metrics

= Don’t want performance metrics alone
= Need relative metrics to evaluate research progress
= Time to solution
= Time to solution with failures
= Time to solution with system variability
= Time to solution under power/energy constraints

= Runtime overhead
= CPU overhead
= Memory overhead

= Portability of RTS

= Many concerns about
= Evaluating the RTS (or PM)
= Evaluating the implementation of the RTS (or PM)
= Evaluating the ability of the hardware to support the RTS (or PM)

ASCAC Meeting July 27, 2015

Dynamic Control

= What does each RTS layer or component control?

= How do layers coordinate toward goal-oriented
optimizations?

= Need to identify resources that are managed

= Need to figure out how to coordinate and optimize across
layers

= Backplane for communication between layers
= Define data and mechanisms for introspection

ASCAC Meeting July 27, 2015

Resilience

= RTS needs to support resilience
= Must interface to other software layers

= RTS also needs to be resilient
= RTS-based strategies
= Task replication and migration
= Fine-grain checkpointing

= (Critical challenge for extreme-scale

ASCAC Meeting July 27, 2015

Adoption

= New RTS layers must be done with application developers and
system software developers

= DOE needs to partner with application teams

= Need to disseminate RTS R&D impact
= Track open research questions

= Share peer-reviewed success with broader community

= Co-design should include system software, applications, and
platforms

ASCAC Meeting July 27, 2015

Research Questions

= What are the forms of schedulable tasks managed by the RTS? (threads,
processes, codelets, fibers, etc.)

= What is the assumed memory structure? What are the performance
trade-offs and opportunities of dynamic allocation and redistribution?

= What are first-class objects that can be named and what is the scope of
that name (locality)?

= |nterfaces and flow of information involving RTS

= Control model for RTS introspection

= Managing overhead of hiding latency while exploiting parallelism
= What s the role of the RTS in reliability?

= Role of the RTS in managing power/energy

= Role of RTS in application interoperability

= What architectural support does the RTS need?

= How can performance modeling and evaluation be leveraged?

ASCAC Meeting July 27, 2015

Research Questions (cont’d)
= RTS

User-level constructs that exist within a single executable
Part of the programming model implementation

Can the RTS support multiple PM/Es?

Can different RTSs use shared resources?

How does data move between runtimes?

= Convergence

No standard practice

Need to establish a process for incorporating research results into an
initial production approach

View the RTS as a set of services and establish minimal set of services

Need an initial detailed survey and inventory of service/interface
points

Allow for convergence on a few RTSs and establish attributes for
interoperability

ASCAC Meeting July 27, 2015

Research Questions (concl’d)

= |ndustry integration
= How to incorporate research efforts to industry

= RTS characteristics
= Are dynamic RTSs needed for exascale performance?
= How much parallelism should be exposed to the RTS?

= How should application communicate information about locality and
load balance to the RTS?

= How should the RTS interact with other parts of the system?

ASCAC Meeting July 27, 2015

Key Takeaways

= Need to define a process to work through several issues
= Workshop only scratched the surface
= Need crisp definitions for basic terms
= Need to agree on set of services to organize discussions

= Tension between monolithic approach and interoperable components
= Everyone wants control of the layers below them (including apps)

= Need bi-directional flow of information between layers

= Better agreement on what is “OS” and “RTS”

= |nteroperability between different RTS

= Are dynamic RTS capable or necessary for exascale?

= Emerging awareness of ties between RTS and SSIO

= RTS itself will need to be resilient

= |ntrospection is a key aspect, but what can/should be queried?

= Whatis the path to production use? How to engage vendors?

= Need metrics, even to help with concepts (e.g., overdecomposition, dynamic)
= Will overheads outweigh benefits at scale?

= Need to catalog research questions that are being answered

ASCAC Meeting July 27, 2015

Draft Report

2015 ECI Runtime Systems Workshop:
Summary Report

= Currently 29 pages R i

Background

Proposed exascale computing architectures present scientists with a number of
chaflenges to reaching DOE scienfific goals. Future runtime system software must
achieve significant improvements in efficiency and scalabiity in the context of user
productivity, performance portability, and dynamic adaptation.

In partcular:

* Computing platforms must become significantly more responsive to power
constraints, faults, and new goal-based programming models. Current system
software is often very stafic in nature — computing jobs are given fixed numbers
of compute resources at the beginning of every job, power is not dynamically
adjusted to meet computational goals, and paralleiism is often fixed.

* Runtime systems must support new, highly dynamic task-based programming
environments that span computing resources inside a node as well as giobally
across the platform.

* New software frameworks supporting introspection, autonomic tuning,
programing tools to support debugging and performance adaptation need
runtime layers that can efficiently manage hierarchical memory, hetercgeneous
computing elements, and shared storage systems.

Agvanced runtime systems must also be portable, have stable interfaces that can
support the long development cycles of many computational science teams, and perform
well across a variety of machines from different vendors or generations.

To address the research challenges outlined above, this workshop convened
approximately 45 domain experts in High Performance Computing Runtime Systems
{RTS) together for 2.5 days with the foliowing high level objectives:

1. Propose, discuss, and determine the required characterstics of future extreme
scale runtime systems

2. Dewvise metrics, measurements, benchmarks, and other means for testing and
evaluation for prototypes of runtime systems,

3. Identfy research guestions that need to be resclved within the context of current
experience and knowledge,

4. Discuss a research and development roadmap that will result in one or more high
guality runtime system scftware packages that could be deployed in the 2023
timeframe, on extreme scale systems.

ASCAC Meeting July 27, 2

	Structure Bookmarks
	Figure
	ECI Runtime Systems Workshop Summary
	Ron Brightwell R&D Manager, Scalable System Software Department
	Figure
	Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
	Purpose and Goals of the Workshop
	Purpose and Goals of the Workshop
	
	
	
	

	Review state-of-the-art in runtime systems (RTS)

	
	
	

	Identify challenges being addressed by current RTS R&D

	
	
	

	Identify research questions that need to be resolved

	
	
	

	Devise metrics, measures, benchmarks, and means for testing and evaluation for RTS prototypes

	
	
	

	Discuss R&D roadmap that will result in one or more high-quality RTS prototypes

	/
	
	http://www.orau.gov/runtimesys2015

	ASCAC Meeting July 27, 2015

	Workshop Details
	Workshop Details
	March 11-13, 2015
	

	
	
	
	

	Rockville Hilton, Rockville, MD

	
	
	

	45 domain experts in HPC runtime systems

	
	
	
	

	Content

	
	
	
	

	Invited talks and breakout sessions

	
	
	
	

	Topics

	
	
	
	

	The architecture for future RTS software

	
	
	

	RTS design

	
	
	

	Outstanding research questions

	
	
	

	Roadmap for the future

	ASCAC Meeting July 27, 2015

	Focus Area 1: System Architecture
	Focus Area 1: System Architecture
	
	
	
	
	

	Execution model

	Governing principles of the strategy of computation
	

	
	
	
	

	Asynchrony

	Semantics and control strategy in the presence of asynchrony
	

	
	
	
	

	System fragmentation

	Scope of the RTS, from system-to node-level
	

	
	
	
	

	Relationship between operating system and RTS

	Responsibilities and interfaces
	

	
	
	
	

	Relationship between programming models and RTS

	Basic requirements for RTS
	

	
	
	
	

	Compile-time information, guidance, and constraints

	Information that compilers can provide to the RTS
	

	
	
	

	Evaluation

	Metrics for testing and evaluating a RTS
	

	ASCAC Meeting July 27, 2015

	Focus Area 2: RTS Design
	Focus Area 2: RTS Design
	
	
	
	
	

	Memory models, namespace, address space

	How the RTS manages memory resources
	

	
	
	
	

	Introspection interfaces, policy, and control

	How the RTS can use dynamic adaptive techniques
	

	
	
	
	

	Contribution to tools

	Role of RTS in correctness analysis
	

	
	
	
	

	Parallelism forms, granularity, and synchronization

	Role of RTS in managing parallelism
	

	
	
	
	

	Contribution and responsibility to reliability

	Specific capabilities of the RTS for resilience
	

	
	
	
	

	Contribution and responsibility to power/energy

	Role of RTS in minimizing energy costs
	

	
	
	

	Evaluation

	How to test and evaluate RTS design
	

	ASCAC Meeting July 27, 2015
	Workshop Builds on RTS Summit Activity
	Workshop Builds on RTS Summit Activity
	
	
	
	

	RTS Summit meeting, April 9, 2014

	
	
	

	Day-long meeting to brainstorm about requirements for an exascale RTS

	
	
	

	Goal was to develop high-level requirements, roles, and responsibilities for RTS

	
	
	

	Provide some context for generating roadmap for future investments in RTS

	
	
	

	Services an RTS needs to provide

	
	
	
	

	Interfaces between RTS and

	
	
	
	

	Node-and system-level hardware abstraction layers

	
	
	

	Operating system

	
	
	

	Programming interface

	
	
	

	Mapping these interfaces to existing RTS

	
	
	

	45-page draft report

	
	
	
	

	X-Stack program has

	played key role in supporting RTS R&D for extreme-scale

	
	
	
	

	X-Stack renewal enables engagement across projects in RTS

	
	
	
	

	Prototypes

	
	
	

	Interfaces

	
	
	

	Evaluation strategies

	Figure
	
	
	
	

	11 attendees from X-Stack projects

	ASCAC Meeting July 27, 2015

	RTS R&D in Several ASCR Projects
	RTS R&D in Several ASCR Projects
	Figure
	ASCAC Meeting July 27, 2015
	RTS in NNSA/ASC Projects
	HPX STAPL
	Qthreads Conductor Charm++ Argobots Realm UINTAH
	ASCAC Meeting July 27, 2015
	Many Other Run Time Systems
	
	
	
	

	Nanos/StarSS/OmpSS (BSC)

	
	
	

	StarPU/ForestGOMP (Inria)

	
	
	

	SWARM (ETI)

	
	
	

	MassiveThreads (U. Tokyo)

	
	
	

	Cilk/Cilk Plus (MIT/Intel)

	
	
	

	Grappa (UW/PNNL)

	
	
	

	HAS (AMD)

	Definition of RTS (incomplete)
	
	
	
	

	Strong desire to understand responsibilities of the RTS

	
	
	
	

	Characteristics

	
	
	
	
	
	

	Non-priveleged

	Runs in application space
	

	
	
	
	
	

	Ephemeral

	Doesn’t live beyond the application
	

	
	
	
	

	Can manage hardware directly

	As long as isolation and protection mechanisms are provided
	

	
	
	

	Interfaces to the node-level OS

	
	
	

	May interface to the system OS and the enclave OS

	
	
	

	Definition may be platform specific

	ASCAC Meeting July 27, 2015
	Architecture for Exascale RTS
	
	
	
	
	

	Execution model

	
	
	
	
	

	Struggle with nomenclature

	
	
	

	Depends on what runtime service being provided

	
	
	

	Runtime services should be able to be bypassed

	
	
	
	

	Asychrony

	
	
	
	

	Performance variability – how to do resource management?

	
	
	

	Some programming models embrace it

	
	
	

	Everything needs to be lightweight – scheduling, synchronization, etc.

	
	
	
	

	Relationship between RTS and OS

	
	
	
	

	Services used by application versus across applications

	
	
	

	OS should still get out of the way but enable the RTS

	
	
	
	

	Relationship to PM

	
	
	
	

	What gets exposed and what gets hidden (transparency)

	
	
	

	Connection to services like data management, security, performance monitoring

	
	
	

	Flow of information between app and RTS

	
	
	
	

	Evaluation

	
	
	
	

	What are the metrics?

	
	
	

	RTS portability

	ASCAC Meeting July 27, 2015
	RTS Architecture (cont’d)
	
	
	
	
	

	Blurry lines between RTS above (PM) and below (OS)

	Dynamic compilation, interpreted languages, etc. make this problem worse
	

	
	
	

	Lack of clear taxonomy is hindering effective integration

	
	
	
	

	Need requirements from the top

	Loss of semantic information all the way down the stack
	

	
	
	

	QoS requirements, allocation of resources should be exposed as hints from the application programmer to drive policy decisions

	
	
	

	Managing shared resources

	
	
	

	Dealing with elasticity

	
	
	

	Resilience is a cross-cutting problem

	ASCAC Meeting July 27, 2015
	RTS Design
	
	
	
	
	

	Memory System

	
	
	
	
	

	Translation

	
	
	

	Need to support static, semi-static, and dynamic use of memory

	
	
	

	How to differentiate between memory and storage

	
	
	
	

	How memory is virtualized

	
	
	
	

	Introspection

	
	
	
	

	Need a well-defined set of policies and abstractions for reasoning about the behavior of the system

	
	
	

	Need to be able to observe all aspects of the hardware

	
	
	

	Different granularities of information to be observed

	
	
	
	

	Cost of introspection

	
	
	
	

	Reliability

	
	
	
	

	Vulnerability of the RTS to faults

	
	
	

	Complexity of interactions exacerbates this problem

	
	
	

	Energy/Power Management

	Responsibility of job scheduler, job-level RTS, node-level RTS
	

	ASCAC Meeting July 27, 2015
	RTS Design (cont’d)
	
	
	
	
	

	Scheduling and Resource Management

	
	
	
	
	

	Priorities

	
	
	

	Load balancing

	
	
	

	Latency hiding

	
	
	

	Systems will be malleable and elastic

	
	
	

	Resolving conflicts between different policies

	
	
	
	

	Tool Infrastructure

	
	
	
	

	Toolchain needs to be co-designed with RTS

	
	
	

	Attribution of performance bottlenecks

	
	
	

	Interoperability of different programming systems and RTSs

	
	
	

	Application developers need to understand detailed decisions by RTS

	
	
	
	

	Evaluation

	
	
	
	

	Adoption is a good metric

	
	
	

	Scalability, flexibility, portability, completeness, ease of use

	ASCAC Meeting July 27, 2015
	Articulate the RTS Ecosystem
	
	
	
	

	Develop an ecosystem model for RTS components

	
	
	
	

	Determine which RTS services are stand-alone and which are embedded into larger components

	RTS support for language-specific features
	

	
	
	

	Identify interfaces that are ready for a standardization process

	
	
	

	Process for transitioning RTS software from research to production

	ASCAC Meeting July 27, 2015
	Metrics
	
	
	
	
	

	Don’t want performance metrics alone

	
	
	
	

	Need relative metrics to evaluate research progress

	
	
	
	

	Time to solution

	
	
	

	Time to solution with failures

	
	
	

	Time to solution with system variability

	
	
	

	Time to solution under power/energy constraints

	
	
	
	

	Runtime overhead

	
	
	
	

	CPU overhead

	
	
	

	Memory overhead

	
	
	

	Portability of RTS

	
	
	
	

	Many concerns about

	
	
	
	

	Evaluating the RTS (or PM)

	
	
	

	Evaluating the implementation of the RTS (or PM)

	
	
	

	Evaluating the ability of the hardware to support the RTS (or PM)

	ASCAC Meeting July 27, 2015
	Dynamic Control
	
	
	
	

	What does each RTS layer or component control?

	
	
	

	How do layers coordinate toward goal-oriented optimizations?

	
	
	

	Need to identify resources that are managed

	
	
	

	Need to figure out how to coordinate and optimize across layers

	
	
	

	Backplane for communication between layers

	
	
	

	Define data and mechanisms for introspection

	ASCAC Meeting July 27, 2015
	Resilience
	
	
	
	
	

	RTS needs to support resilience

	Must interface to other software layers
	

	
	
	

	RTS also needs to be resilient

	
	
	
	

	RTS-based strategies

	
	
	
	

	Task replication and migration

	
	
	

	Fine-grain checkpointing

	
	
	

	Critical challenge for extreme-scale

	ASCAC Meeting July 27, 2015
	Adoption
	
	
	
	

	New RTS layers must be done with application developers and system software developers

	
	
	

	DOE needs to partner with application teams

	
	
	
	

	Need to disseminate RTS R&D impact

	
	
	
	

	Track open research questions

	
	
	

	Share peer-reviewed success with broader community

	
	
	

	Co-design should include system software, applications, and platforms

	ASCAC Meeting July 27, 2015
	Research Questions
	
	
	
	

	What are the forms of schedulable tasks managed by the RTS? (threads, processes, codelets, fibers, etc.)

	
	
	

	What is the assumed memory structure? What are the performance trade-offs and opportunities of dynamic allocation and redistribution?

	
	
	

	What are first-class objects that can be named and what is the scope of that name (locality)?

	
	
	

	Interfaces and flow of information involving RTS

	
	
	

	Control model for RTS introspection

	
	
	

	Managing overhead of hiding latency while exploiting parallelism

	
	
	

	What is the role of the RTS in reliability?

	
	
	

	Role of the RTS in managing power/energy

	
	
	

	Role of RTS in application interoperability

	
	
	

	What architectural support does the RTS need?

	
	
	

	How can performance modeling and evaluation be leveraged?

	ASCAC Meeting July 27, 2015
	Research Questions (cont’d)
	
	
	
	
	

	RTS

	
	
	
	

	User-level constructs that exist within a single executable

	
	
	

	Part of the programming model implementation

	
	
	

	Can the RTS support multiple PM/Es?

	
	
	

	Can different RTSs use shared resources?

	
	
	

	How does data move between runtimes?

	
	
	
	

	Convergence

	
	
	
	
	

	No standard practice

	
	
	

	Need to establish a process for incorporating research results into an initial production approach

	
	
	

	View the RTS as a set of services and establish minimal set of services

	
	
	

	Need an initial detailed survey and inventory of service/interface points

	
	
	

	Allow for convergence on a few RTSs and establish attributes for interoperability

	ASCAC Meeting July 27, 2015
	Research Questions (concl’d)
	
	
	
	
	

	Industry integration

	How to incorporate research efforts to industry
	

	
	
	
	

	RTS characteristics

	
	
	
	

	Are dynamic RTSs needed for exascale performance?

	
	
	

	How much parallelism should be exposed to the RTS?

	
	
	

	How should application communicate information about locality and load balance to the RTS?

	
	
	

	How should the RTS interact with other parts of the system?

	ASCAC Meeting July 27, 2015
	Key Takeaways
	
	
	
	
	

	Need to define a process to work through several issues

	
	
	
	

	Workshop only scratched the surface

	
	
	

	Need crisp definitions for basic terms

	
	
	

	Need to agree on set of services to organize discussions

	
	
	

	Tension between monolithic approach and interoperable components

	
	
	

	Everyone wants control of the layers below them (including apps)

	
	
	

	Need bi-directional flow of information between layers

	
	
	

	Better agreement on what is “OS” and “RTS”

	
	
	

	Interoperability between different RTS

	
	
	

	Are dynamic RTS capable or necessary for exascale?

	
	
	

	Emerging awareness of ties between RTS and SSIO

	
	
	

	RTS itself will need to be resilient

	
	
	

	Introspection is a key aspect, but what can/should be queried?

	
	
	

	What is the path to production use? How to engage vendors?

	
	
	

	Need metrics, even to help with concepts (e.g., overdecomposition, dynamic)

	
	
	

	Will overheads outweigh benefits at scale?

	
	
	

	Need to catalog research questions that are being answered

	ASCAC Meeting July 27, 2015
	Draft Report
	Currently 29 pages
	

	Sect
	Figure

	ASCAC Meeting July 27, 2015

